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Abstract

There is of significant interest and importance to develop robust machine learning models to 

assist organic chemistry synthesis. Typically, task-specific machine learning models for distinct 

reaction prediction tasks have been developed. In this work, we develop a unified deep learning 

model T5Chem for a variety of chemical reaction predictions tasks by adapting the ”Text-to-

Text Transfer Transformer”(T5) framework in natural language processing (NLP). Based on 

self-supervised pre-training with PubChem molecules, the T5Chem model can achieve state-of-

the-art performances for four distinct types of task-specific reaction prediction tasks using four 

different open-source datasets, including reaction type classification on USPTO_TPL, forward 

reaction prediction on USPTO_MIT, single-step retrosynthesis on USPTO_50k and reaction yield 

prediction on high-throughput C-N coupling reactions. Meanwhile, we introduced a new unified 

multi-task reaction prediction dataset USPTO_500_MT, which can be used to train and test five 

different types of reaction tasks, including the above four as well as a new reagent suggestion 

task. Our results showed that models trained with multiple tasks are more robust and can 

benefit from mutual learning on related tasks. Furthermore, we demonstrated the use of SHAP 

(SHapley Additive exPlanations) to explain T5Chem predictions at the functional group level, 

which provides a way to demystify sequence-based deep learning models in chemistry. T5Chem is 

accessible through https://yzhang.hpc.nyu.edu/T5Chem
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Introduction

Organic synthesis is one of the most fundamental problems in chemistry. With the 

advances of computing power, data availability and algorithms, there has been of significant 

interest in developing machine learning (ML) models to assist a variety of organic reaction-

related tasks,1-4 including reaction product prediction,5-18 retrosynthesis,9,14,17,19-37 reaction 

condition optimization,38-41 reaction yield prediction42-54 and reaction type classification. 
38,51,55-57 These ML-based data-driven approaches for organic synthesis can be classified 

into descriptor-based models,5-10,19-26,38-41,51,55,57 graph-based models11-13,27,28,52 and 

sequence-based models,14-18,29-37,53,54,56 depending on how molecules are represented as 

input for machine learning. Descriptor-based models use hand-crafted features as molecular 

representations, and often need feature engineering or template extraction for different 

reaction prediction tasks, which set limitations to generalizability. 43,58,59 For this reason, 

people start to turn to end-to-end models. Graph-based models treat molecules as graphs 

where atoms are viewed as nodes and bonds are viewed as edges. Although molecules 

can be naturally represented as graphs, stereoisomers, molecular structures with the same 

graph connectivity but different spatial arrangements, remain underexplored despite few 

previous works.60,61 Furthermore, most graph-based models suffer from the need of atomic 

mapping and inability of handling stereoisomers. Currently few attempts have been made 

to develop graph-based models for reaction yield prediction and reaction type prediction. 

On the other hand, sequence-based models showcased the feasibility of language modeling 

strategy on chemical reactions by using text-based representations of molecular graphs. 

Simplified molecular-input line-entry system (SMILES62) is a commonly used63,64 linear 

string notation in deep neural networks. Accordingly, reaction prediction can be formulated 

as machine translation problem, where reactants/reagents SMILES serve as source language 

and product SMILES serve as target sequences.

The recent key advance that has made for deep learning in language modeling is the 

transformer,65 which stands out for its outstanding performance and wide applicability. 

Schwaller et. al.16 adapted the transformer architecture for the forward reaction prediction 

task, namely molecular transformer, for the first time. After that, many efforts have 

been made to apply transformer models for the retrosynthesis task.14,17,30-36 Recently, 
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Schwaller et al. developed a new type of molecular fingerprint, rxnfp,56 for reaction type 

classification. Rxnfp is derived from bidirectional encoder representations from transformers 

(BERT),66 a transformer-based encoder that converts an input sequence into an internal 

vector representation. The BERT classifier reached a classification accuracy of 98.2% in an 

open-sourced dataset. Soon afterwards, they extended the BERT model with a regression 

layer to predict reaction yield.53

Transformer-based models not only shed light on general-purpose reaction predictions, 

but also transferable to particular reactions. Pesciullesi et al.18 published a transfer 

learning approach to predict regio- and stereoselective reactions on carbohydrates with 

molecular transformer. Moreover, transformers take advantage of pre-training56,67,68 and 

data augmentation17 with improved performance. In spite of all advances transformers have 

made, models developed for different reaction prediction tasks are still not interchangeable.

Herein we present a unified deep learning model T5Chem for a variety of chemical reaction 

predictions tasks by adapting the Text-To-Text Transfer Transformer69 (T5).The T5 model 

is structurally similar to the original Transformer,65 except that instead of using the Layer 

Norm bias, it places a layer normalization outside the residual path and uses a different, 

relative position embedding scheme. The idea of multi-tasking predictions is inspired by 

natural human learning process that knowledge learned from one task should be helpful to 

other related tasks. Meanwhile, we introduce a new multi-task reaction prediction dataset 

USPTO_500_MT, which can be used to train and test five different types of reaction tasks, 

including a novel reagent suggestion task.

In the following, we show how T5Chem can be tailored to tackle multiple reaction 

prediction tasks with task-specific prompts, which requires no or minor modifications on 

output layers. Then we apply this framework to several open-source datasets individually 

to illustrate its applicability and state-of-the-art performances. After that, we demonstrate 

this unified T5Chem model can be trained on the new unified multi-task reaction prediction 

dataset USPTO_500_MT without degrading performance on individual tasks. Finally, we 

look into specific prediction examples, and shed light on black-box model predictions with 

SHAP70 (SHapley Additive exPlanations).

Method

Model

T5Chem model is developed based on Text-To-Text Transfer Transformer69 (T5), which 

is an encoder-decoder model from the transformer family, as illustrated in Figure 1. In 

comparison with the original transformer model,65 T5 model uses the same self-attention 

strategy with two modifications: 1. It removes the layer norm bias, and places the 

normalization outside of the residual path. 2. It uses relative positional embedding scheme 

instead of sinusoidal position embedding. T5 model is designed to convert all language 

problems into a text-to-text format so that it is capable to work on a variety of tasks at the 

same time. To specify which task the model should perform, a task-specific prompt would 

be prepended to the original input sequence before feeding it to the model.
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To develop a unified deep learning model T5Chem for a variety of chemical reaction 

predictions tasks, besides the use of character-level tokenization for the SMILES input 

and introduction of task-specific prompts for different reaction prediction tasks into the 

vocabulary as special tokens, we have modified the original T5 output layer (language 

modeling head) into three different kinds in T5Chem as illustrated in Figure 2: the molecular 

generation head for all sequence to sequence tasks, i.e., reaction product prediction, 

single-step retrosynthesis and reagent suggestion; the classification head for reaction type 

classification; and the regression head for product yield prediction which employs the 

soft-label strategy.

Tokenization is the process that breaking a sequence into small chunks. In Natural 

Language Processing (NLP), tokenization can be performed on either word or sub-word 

level. Similarly, different tokenization approaches can be applied to molecules. T5Chem 

employs the character-level tokenization, which simply splits reaction SMILES into single 

alphabet letter, digit or special symbol. In comparison with atom tokenization which runs 

a WordPiece tokenization algorithm over SMILES strings using a regular expression,15 and 

SELFIES which is short for Self-Referencing Embedded Strings,71 one main advantage of 

the character-level tokenization is its simplification, flexibility and much smaller vocabulary 

size. In our exploration, neither atom tokenization nor SELFIES is found to outperform 

character-level tokenization for reaction prediction tasks (Table S1).

In T5Chem, each task-specific prompt is an English word that would not appear in original 

SMILES, and thus would be added to vocabulary as a special token. Here we use “Product:” 

for reaction product prediction, “Reactants:” for single-step retrosynthesis, “Reagents:” for 

reagent suggestion, “Classification:” for reaction type prediction, and “Yield:” for reaction 

yield prediction. Note that special tokens only work as identifiers for different tasks, and the 

exact wording of these prompts would not impact our model training.

For chemical reaction predictions, different tasks can have different label formats, and thus 

the output layer need to be changed accordingly, as illustrated in Figure 2. For sequence-to-

sequence tasks like forward reaction prediction, retrosynthesis and reagents prediction, the 

input and output sequences share the same vocabulary. Correspondingly, the output layer, 

molecular generation head, shares weights with input embedding layer, and produces a 

probability distribution among the whole vocabulary space.

For classification tasks such as reaction type classification, a classification head was used as 

the output layer. This is a new linear layer that outputs a probability distribution among all 

classification categories. As an example, for a reaction type classification task consisting of 

1,000 reaction template classes, the classification head for this task would be a linear layer 

with an output size to be 1,000.

For regression tasks such as reaction yield prediction, we applied the soft label strategy 

for min-max normalized training labels: the regression head is a single linear layer with an 

output dimension to be 2, representing weights for the min and max values. Different from 

molecular generation and classification heads, the Kullback-Leibler divergence is used as 
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the loss function to minimize the probability distribution between outputs and true labels for 

regression tasks.

Implementation and Training Details

T5Chem is implemented in Python (version 3.7) by using RDKit (version 2021.03.1)72 for 

reaction preprocessing and SMILES validation, and employing pytorch (version 1.7.0)73 

and huggingface transformers (version 4.10.2)74 for seq2seq modeling. The source code is 

available online at https://github.com/HelloJocelynLu/t5chem.

Similarly to the original work, a BERT66-like “masked language modeling” objective would 

be used for model pre-training in a self-supervised manner. 97 million molecules from 

Pubchem75 were used for pre-training. During the pre-training, tokens of source sequences 

would be randomly masked, and the goal is to predict correct tokens that have been masked. 

We applied the same mask rate, 15%, as original T5 model. Masked tokens would be 

substituted to mask token (<mask>) in 80% of time, or be replaced by another random 

token in vocabulary for 10% of time, and remain the same for the rest of time. Then 

the model would be fine-tuned in supervised downstream tasks. During the fine-tuning, 

various task-specific prompts and output layers would be used for different output styles, as 

illustrated in Fig. 2.

In T5Chem, the molecular generation head for all sequence to sequence tasks, including 

reaction product prediction, reactants prediction and reagents prediction, is the same as the 

output layer of T5ForConditionalGeneration with huggingface transformers74 package. It 

produces a probability distribution among the same vocabulary space as input sequence. 

For classification tasks, the classification head is used, which is a linear output layer 

that generates a probability distribution among all classification categories. Both molecular 

generation head and classification head use cross entropy loss as the loss function. On the 

other hand, for regression tasks, the soft label strategy is used for min-max normalized 

training labels, and the regression head is a single linear layer with an output dimension to 

be 2, representing the probability distribution between min and max. The Kullback–Leibler 

divergence is used as the loss function to minimize the probability distribution between 

outputs and true labels for regression tasks. During the test phase, molecular generation 

head of T5Chem repeatedly generates molecules token by token, until the ”end of sentence 

token” is generated or the maximum length of allowed prediction is reached, while both 

classification and regression heads can be viewed as a one-time generation procedure which 

has the maximum allowed prediction length to be 1.

For all tasks, T5Chem uses whole encoder and decoder architecture with 4 layers and 8 

attention heads. We used 256 as hidden dimension for T5Chem and 2048 for intermediate 

feed forward layer. The maximum vocabulary size was set to 100, which include 70 

tokens from character-level tokenization of SMILES of pubchem and USPTO molecules, 

5 special structural tokens (<s>, </s>, <unk>, <pad>, <mask>), 6 prompting tokens and 19 

placeholders. The <pad> token is used as the first input token for decoder to initialize 

decoding process. It is worth mentioning that placeholders can be replaced to other 

prompting tokens at any time when needed, which makes T5Chem extendable to more 

tasks without retraining the whole neural network.
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Dataset

In this work, we used four open-sourced datasets introduced by previous published work 

for better comparison. We also introduced one new reaction dataset, USPTO_500_MT for 

multi-tasking purpose. All chemical reactions were described using SMILES representation 

as inputs for T5Chem. Table 1 shows an overview of these data sets.

USTPO_TPL for reaction type classification.

The dataset for reaction type classification task was originally derived from the USPTO 

database by Lowe76 and introduced by Schwaller et al.56 This strongly imbalanced dataset 

consists of 445,000 reactions divided into 1,000 classes without reactant-reagent separation. 

Reaction classes here were defined by SMART reaction templates, and obtained by atom-

mapping the USPTO dataset with RXNMapper. Among all USPTO reactions, 1,000 most 

frequent template hashes were selected as targets. Reactions were randomly split into 90% 

for training and validation, and 10% for testing.

USPTO_MIT for forward reaction prediction.

This benchmark dataset has been prepared by Jin et al.12 based on the USPTO database 

of Lowe76 and include both separated and mixed versions. The mixed version without 

reactants/reagents separation is used as a more challenging task which needs to learn to 

identify “reagents” and “reactants” by itself. In machine-aided reaction prediction, reagents 

are defined as chemical species that do not appear in (major) products. Therefore, the mixed 

version reflects a real-world scenario that users do not have prior knowledge about products 

before predictions were made. This dataset consists of 479 k reactions: 409 k for training, 30 

k for validation and 40 k for testing.

USPTO_50K for single-step retrosynthesis.

Retrosynthesis is the process of deconstructing a molecule. More specifically, single-step 

retrosynthesis prediction task is defined as given a product as input, to find reactants 

combination that could generate the input compound. The dataset was a filtered version 

of Lowe’s patent dataset. It contains only 50 k reactions that have been classified into 10 

board reaction types.77 In this work, we did not remove stereochemical information and 

did not provide model with reaction types as we would encounter in real-world situation. 

We followed the splitting proposed by Liu et al,29 and also has been used by many 

works.17,19,27,28,30,31 40 k, 5 k and 5 k reactions were used for training, validation and 

testing, respectively.

C-N coupling dataset for reaction yield prediction.

This is a high-throughput experiment dataset. In 2018, Ahneman et al performed 4,608 

Pd-catalyzed Buchwald-Hartwig C-N cross coupling reactions.43 These nanomole-scale 

experiments were carried out on three 1536-well plates consisting of a full matrix of 15 

aryl and heteroaryl halides, 3 bases, 4 ligands and 23 isoxazole additives. 3,955 applicable 

reactions after removing control groups were used. In their work, a random forest model 

was used with 120 DFT calculated features of compounds. This strategy gave a promising 

performance. Recently, Schwaller et al53 proposed a BERT-based reaction encoder enriched 
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with a regression layer (Yield-BERT). This model can directly take reaction SMILES 

as input and thus is extendable to other reaction types without feature engineering. It 

outperforms random forest model on many tests except for the most challenging out-of-

sample test. To demonstrate the capability of T5Chem on regression task, we followed 

previous data splitting: ten random splitting (70/30 for training/testing) and four out-of-

sample sets. Test samples in out-of-sample sets contain reactions additives which are not 

included in the training data, which can be used to evaluate the generalizability of machine 

learning models.

USPTO_500_MT for multi-task reaction prediction.

In order to illustrate the multi-tasking capability of our unified model, we introduced a new 

dataset that is applicable for multiple reaction prediction tasks, including forward reaction 

prediction, reactants prediction (single step retrosynthesis), reagents prediction, reaction 

yield prediction and reaction type classification. The same splitting is expected for all tasks 

to avoid possible data leakage problem. A more detailed overview for this newly introduced 

dataset is available in Supporting Information (Figure S1-S2).

USPTO_TPL (in Task 1: Reaction type classification) is a good starting point to construct 

this multi-tasking dataset, as it contains reactants, reagents, product and reaction type for 

every reaction instance. In order to recover reaction yield for each reaction, we looked 

into text-mined records78 by Lowe, and matched reactions based on reactants, reagents 

and product. In the original record, yields are reported either directly mined from the 

document or calculated from the isolated product amount or both. However, discrepancies 

exist between text-mined and calculated values for a same reaction in the same patent,3 

and some calculated yields have values > 100%. Thus all yields with values > 100% were 

removed first. Then for reactions with only one type of yield available, that one is used as 

the label for reaction yield. When both text-mined and calculated values are available, their 

average value is used if the difference between two values is less than 10%, otherwise, the 

text-mining value is used. A successful curation of reaction yield with a complete match is 

only achieved for about one-third of reactions in the USPTOTPL dataset. We noticed that 

some reactions classes are very sparse (as many reactions cannot be recovered). Therefore, 

we kept the top-500 most frequent reaction classes and ended up with 116k reactions for 

training, 13k and 14k reactions for validation and testing, respectively. We refer this dataset 

as USPTO_500_MT.

Results and discussion

One of the most intriguing features for transformer models is the effectiveness of its 

pre-training. T5Chem was pre-trained with masked language modeling (MLM) objective 

on 97 million PubChem molecules. The pre-trained model shows a steady learning curve 

and faster convergence (Figure S3), and it has been used to initialize all models used 

in the following experiments. First, we examined T5Chem for four distinct types of 

task-specific reaction prediction tasks using four different open-source datasets, and the 

results indicated that the T5Chem model can achieve state-of-the-art performances. Then we 

applied to USPTO_500_MT, which demonstrates the multi-tasking capability and robustness 
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of T5Chem. Finally, we used SHAP (SHapley Additive exPlanations) to explain T5Chem 

predictions at the functional group level, which illustrates how to demystify sequence-based 

deep learning models in chemistry.

Task 1. Reaction type classification

Here we used the USPTO TPL dataset the same way as the original work, i.e., the BERT 

classifier,56 in which reactants and reagents are not separated. T5Chem has been trained for 

100 epochs, and the test results are summarized in Table 2. Our model outperformed BERT 

classifier56 and achieved 99.5% accuracy. Looking at the confusion entropy of a confusion 

matrix (CEN) and the overall Matthews correlation coefficient (MCC) also leads to the same 

conclusion.

Task 2. Forward reaction prediction

USPTO_MIT has been used for benchmarking forward predictions in many previous works. 

T5chem was trained on this dataset with a task-specific prompt “Product:” for 30 epochs. 

The results are summarized in Table 3 with comparison to some previous models. Seq2seq15 

is one of the first attention-based sequence-to-sequence model that treats molecules as 

strings. WLDN513 performed a two-stage model using graph-convolutional neural network. 

Both models were only evaluated with reactants/reagents separation. We presented results 

as top-k accuracy. Top-k accuracy takes k model predictions with highest probability. If one 

of them is a true label, it classifies the prediction as correct. Note that here we just used 

a single model without any data augmentation. T5Chem shows slight better performance 

in comparison with molecular transformer,16 and clearly outperforms both Seq2seq and 

WLDN5.

Task 3. Single-step retrosynthesis

In this task, we used the same model architecture as forward reaction prediction. We trained 

T5Chem on USPTO_50k for 100 epochs without given reaction types, and compared our 

results with some previous studies with sequence-based models using the same training data. 

The results for T5Chem without data augmentation were shown as Table 4. Specifically, 

Seq2seq29 model utilizes LSTM81 architecture. Molecular transformer14 was based on 

the Transformer architecture65 which was solely based on self-attention mechanisms. 

SCROP32 is short for self-corrected retrosynthesis predictor, they used a transformer-based 

retrosynthetic reaction predictor coupling with a neural network-based syntax corrector. We 

can see that T5Chem is capable to perform well for retrosynthesis as a single task, as it 

achieves better performance in comparison with other smiles-based sequence-to-sequence 

models.

Task 4. Reaction yield prediction

In order to fit our T5Chem to reaction yield prediction, a regression head was added to 

give number outputs as described in Method section. Task-specific prompt “Yield:” was 

prepended to input reaction SMILES to specify the task type. To test the proposed approach, 

the same splits were used as in Sandfort et al,44 and Schwaller et al.53 We trained T5Chem 

on this cross coupling data for 100 epochs. The results are shown in Table 5.
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Since only reaction SMILES were used in our model, this approach can be easily adapted to 

other reaction types without any modifications or feature engineering. Generally, our model 

performs best among listed models. For random splitting, our model achieved average R2 

of 0.970. For more challenging out-of-sample tests, T5Chem also gets best results except 

for Test 1. Test 4 is viewed as the most challenging test among all testsets as shown in 

other models. This might imply that T5Chem would have better generalizability in this task. 

To further investigate our model predictions on four test sets, we examined the prediction 

accuracy for each test. In real world problem like singleton batch experiments and THE, 

there are underlying experimental errors in measurement. To address this issue, we used 

±10% as acceptable error range and calculated prediction accuracy within this range as 

shown in Table 6.

Task 5. Multi-task prediction

After showing that T5Chem is able to achieve comparable or better performance with 

other sequence-based models for individual tasks, we carried out multi-task experiments 

with the newly prepared USPTO_500_MT dataset to demonstrate multi-tasking capability 

and transferability of T5Chem. The new dataset USPTO_500_MT contains five objectives: 

forward reaction prediction, single-step retrosynthesis, reagent prediction, reaction type 

prediction and reaction yield prediction. Note that the curation of this dataset does rely 

on atom-mapping for labeling, but T5Chem does not require atom-mapping as inputs. The 

training/validation/testing sets are well separated to ensure no reaction overlapping across all 

task types.

We first applied T5Chem in all tasks independently to get baseline results. Though the 

model has already achieved promising results, we are interested in figuring out whether 

further performance gains can be obtained by cross-task training. The five tasks are grouped 

into two subgroups. The first subgroup includes forward reaction prediction, single-step 

retrosynthesis and reagents prediction, as they are all sequence-to-sequence tasks and can 

share the same model architecture. The second subgroup consists of reaction classification 

and reaction yield prediction. Both tasks take the whole reaction sequence as inputs, and 

we proposed that model can be trained on the two tasks at the same time by combining 

their loss functions together. A multi-task training using combined loss functions from all 

five tasks has also been carried out with worse performance. It may due to the fact that 

the regression and classification tasks are internally less similar than sequence to sequence 

predictions. When we trained them together, we forced the major part (embedding, encoder 

and decoder) to share the same weights among all tasks. The molecular generation head also 

shares weights with embedding layer. The only flexibility components: regression head and 

classification head are not sufficient to differentiate those tasks. The results can be found in 

the Supporting Information. (Table S2)

For sequence-to-sequence subgroup, we mixed training sets of three tasks. To distinguish 

different tasks, task-specific prompts (”Product:”, ”Reactants:”, ”Reagents:”) were used. We 

used a combined, big training set as shown in Figure 3. In addition, we explored 5-fold 

data augmentation using non-canonical SMILES, and found that data augmentation did not 
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improve performance on USPTO_500_MT dataset in terms of top-k accuracy (even slightly 

worse results), but it did improve SMILES validity (Table S3).

In this experiment, we only trained one model with the mixed dataset, and then tested it 

separately on three test sets from different tasks. We compared this result with individual 

models that were trained and tested on separate datasets. Two metrics have been reported: 

The accuracy in top-k predictions and the invalid SMILES rate in top-k predictions. Both 

metrics are calculated on all predictions. The valid SMILES is defined as SMILES string 

that can be parsed by RDKit package. Note that one may have a high top-k accuracy and 

high SMILES invalidity at the same time: For example, if T5Chem gives 5 predictions to 

a custom input, and the first prediction is correct. Then all top-k accuracy would be 100% 

because the first prediction is always included. However, if the 2nd-5th predictions are 

wrong and chemical invalid, we will have top-5 SMILES invalidity as high as 80% (4/5)! 

The results are summarized as Figure 4.

T5Chem achieves top-1 accuracy of 97.5%, 72.9% and 24.9% for forward prediction, 

retrosynthesis and reagents prediction, respectively. It achieves comparable performance as 

being trained on separate tasks in terms of top-k accuracy. This demonstrates that these three 

tasks are closely related, and are possible to learn at once. T5Chem also generates much 

less grammatically invalid molecules when being trained on mixed training data, especially 

when more molecules are generated (when k > 1 in top-k predictions). It may indicate 

that leveraging knowledge from different yet related tasks is helpful to build a more robust 

model.

Upon deeper look into the new task – reagents prediction task, T5Chem actually made some 

reasonable suggestions for those some seemly ”wrong predictions”. Figure 5 shows one 

reaction from test set that T5Chem failed to predict. The proposed reagents do not have the 

exact match and therefore being labelled as ‘incorrect”. But similar transformation (reaction 

class template 112) under proposed conditions can be found in training dataset.

Previously, people needed to train models separately for different tasks. By using mixed 

dataset, we can obtain one common model that is able to do three tasks at the same time 

without further fine-tuning.

The other two tasks, which include reaction type classification and reaction yield prediction, 

take whole reaction sequence as inputs, we hypothesized that the model may benefit from 

transfer learning. We first trained a reaction type classification model as an individual 

task, and got an accuracy of 99.6% in reaction type classification with USPTO_500_MT. 

This result is close to that for USPTO_TPL as shown in Table 2. The classification 

head of T5Chem was then replaced by a regression head for reaction yield prediction. 

This transfer learning model achieves better performance on yield prediction than directly 

training in terms of both R2(0.22 v.s. 0.20) and MAE(17.5 vs. 17.8) in percentage yield. 

Furthermore, we build a combined model to train both tasks together. During training, 

we calculated summation of losses from individual tasks and selected the best checkpoint 

based on validation loss. The combined model got an accuracy of 99.4% in reaction type 

classification, R2 of 0.22 and MAE of 17.8 in reaction yield prediction. The results are 

Lu and Zhang Page 10

J Chem Inf Model. Author manuscript; available in PMC 2023 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comparable to its counterpart that be trained individually. The prediction accuracy within 

±10(%) absolute error range is 39.7% for this combined model.

Table 7 summarized the results of T5Chem on USPTO_500_MT. We observed promising 

results on this multi-task dataset. Note that reaction yield prediction in USPTO has always 

been a challenging task as there are many noises in this dataset. The best model till now 

applies yield prediction at different mass scales, and only get R2 of 0.117 (gram) and 0.195 

(sub-gram).53

Model interpretation with SHAP

In order to explain predictions given by our T5Chem, we applied SHAP70 (https://

github.com/slundberg/sl to explain T5Chem predictions at the functional group level. SHAP 

is short for SHapley Additive exPlanations, which has been one of the most popular 

tools to decipher machine learning models via game theoretic approach. It measures the 

contributions to the final outcome (i.e., prediction) from each player (i.e., feature) separately 

among the coalition. For a particular prediction, every input token was assigned a SHAP 

value, which can be viewed as its contribution to that prediction. For a better visualization to 

reveal chemical insights, tokens are grouped as functional groups.

Figure 6 shows one reaction example from USPTO_500_MT testset. It is a Pt catalyzed 

reduction. Input compounds for each task are colored based on their SHAP values using bwr 

colormap from matplotlib.82 Generally, SHAP values are calculated for each output token 

with regard to every input token. Here we map tokens back into atoms and clustered them 

into functional groups with EFGs package (https://github.com/HelloJocelynLu/EFGs).83 

In forward prediction and retrosynthesis, we summed the SHAP values over those 

changed atoms, as we would like to reveal contributions from inputs that lead to the key 

transformation. In reagents prediction, we examined on all output atoms since we want to 

have an overview for whole reaction environment.

As expected, the nitro group, as well as its reduced species – amine group, have strong 

positive contributions to this transformation in all three tasks. Interestingly, the aromatic ring 

also shows strong positive contributions in all tasks even though it is not directly involved 

in this reaction. Recall that nitro groups in alkyl and aryl nitro compounds are in different 

chemical environments, and behave differently, it may imply that our model learned to pay 

attention to key substructures even though they are not directly involved in a transformation. 

In forward prediction, the catalyst Pt also have positive contribution to product as expected. 

In retroaynthesis, we noticed that chloride and another side chains also showed some SHAP 

intensities. It may due to the fact that this compound is also potentially synthesizable by 

chlorination or ether synthesis, but with much lower probability, as indicated by more 

predictions if we increased the beam size.

Figure 7 A) shows most influential reaction components in C-N coupling reactions.43 The 

SHAP values indicate that the selections of aryl halides, additives and catalysts contribute 

most to all yield predictions. Among which 4-chloromethoxybenzene plays the most 

significant role in reaction yield prediction. We noticed that the benzene ring and chloride 

substitution have strong negative contributions. This observation can be demonstrated by the 
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fact that the average reaction yield with 4-chloromethoxybenzene as one reactant is 30% 

lower than total average.

To show how SHAP value explanation can help us optimize reactions, we select two 

reactions with distinguished reaction yields as illustrated in Figure 7 B). These two reactions 

are only different on reactant A, aryl halides, and have the same reaction conditions. 

T5Chem predicts both reaction yields successfully. We noticed that the benzene and chloride 

in 4-chloromethoxybenzene have negative contributions to T5Chem predictions while the 

iodide and pyridine ring in 2-iodopyridine show positive contributions. This example implies 

that one may modify negative contributed substructures in reaction components to get a 

higher predicted yield.

Conclusion

In this work, we presented an explainable and unified transformer model T5Chem for 

multiple machine learning tasks related to organic chemistry synthesis. Our T5Chem shows 

state-of-the-art performances for four distinct types of reaction prediction tasks using four 

different open-source datasets. Furthermore, we introduced a new dataset USPTO_500_MT 

for multi-task machine learning of chemical reactions, including forward reaction prediction, 

retrosynthesis, reagents prediction, reaction type classification (500 classes) and reaction 

yield prediction. Our results showed that T5Chem models trained with multiple tasks are 

more robust and can benefit from mutual learning on related tasks. Finally, we demonstrated 

the applicability of SHAP to explain T5Chem predictions at the functional group level, 

which provides a way to demystify sequence-based deep learning models in chemistry. This 

sets the stage to develop T5Chem into a widely applicable and versatile machine learning 

framework for a variety of prediction tasks in molecular science.
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Figure 1: 
Illustration of the general transformer architecture65 used in T569 and T5 Chem
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Figure 2: 
Multi-tasking of T5Chem. Five different tasks are shown above. All models have a general 

structure of encoder, decoder and output layers. However, they may have different prompts 

and head types, depending on task types.
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Figure 3: 
Mix training dataset from different tasks. In multi-task training scheme, we combined 

forward reaction prediction task, retrosynthesis task and reagents prediction task together. 

Every input instance starts with a task-specific prompt, then followed by actual input. In 

forward reaction prediction, the model takes reactants and reagents (without separation) 

as source sequence. In retrosynthesis, the model takes only product SMILES as source 

sequence. In reagents prediction, the model takes both reactants and product SMILES as 

inputs. A reduction reaction is shown above as an example.
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Figure 4: 
Test results on USPTO_500_MT. We evaluated both accuracy and SMILES invalidity for 

top-k predictions on different tasks. Individual tasks and multi-task training schemes have 

comparable performance in accuracy for all three tasks. But combined training gives much 

lower invalid SMILES rate. Note that one may have a high top-k accuracy and high SMILES 

invalidity at the same time.

Lu and Zhang Page 20

J Chem Inf Model. Author manuscript; available in PMC 2023 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
A alcohol protection reaction with an acetate group. The ground true answer is colored 

in red. T5Chem failed to predict the exact match, but the proposed predictions are 

also reasonable despite they are identified as ”wrong predictions”. Similar transformation 

(reaction class template 112) under the top-2 proposed conditions can be found in training 

dataset.
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Figure 6: 
Visualize SHAP values in multi-task predictions. The intensity of color stands for the 

magnitude of SHAP values. Positive contributions are drew in red and negative contributions 

are drew in blue.
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Figure 7: 
Visualize SHAP values in reaction yield predictions. A) SHAP values show that the 

selections of aryl halides, additives and catalysts contribute most to yield predictions. 

Among all compounds, 4-chloromethoxybenzene is the most influential compound with 

negative contributions. B) Two reactions that only differ in reactant A have distinguished 

reaction yields. The benzene and chloride in 4-chloromethoxybenzene have negative 

contributions in low yield reaction prediction while the iodide and pyridine ring in 2-

iodopyridine show positive contributions in high yield reaction prediction.
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Table 1:

Dataset Splits Used for the Experiments

Dataset Train Valid Test Total Task

USPTO_TPL56 a 360,545 40,059 44,511 445,115 Reaction type classification

USPTO_MIT12 409,035 30,000 40,000 479,035 Forward prediction

USPTO_50k29 a 40,029 5,004 5,004 50,037 Retrosynthesis

C-N Coupling44

a, b

(Random splits) 2,767 – 1,188 3,955 Reaction yield prediction

C-N Coupling44

a, b

(Out-of-sample test1) 3,057 – 898 3,955 Reaction yield prediction

C-N Coupling44

a, b

(Out-of-sample test2, 4 3,055 – 900 3,955 Reaction yield prediction

C-N Coupling44

a, b

(Out-of-sample test3) 3,058 – 897 3,955 Reaction yield prediction

USPTO_500_MT
a

116,360 12,937 14,238 143,535 Multi-task prediction

a
Contains stereochemical information

b
With reactants/reagents separation
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Table 2:

Results for reaction type classification. The lower the confusion entropy of a confusion matrix79 (CEN) 

and the higher the Matthews correlation coefficient80 (MCC) the better. The bold entries highlight the best-

performing approach.

Model Accuracy CEN MCC

BERT classifier56 0.989 0.006 0.989

T5Chem 0.995 0.003 0.995
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Table 3:

Results for forward reaction prediction. T5Chem achieved comparable performance with molecular 

transformer model on this individual task. The bold entries highlight the best-performing approach.

Model Mixed Separated

Top-1 (%) Top-2 (%) Top-5 (%) Top-1 (%) Top-2 (%) Top-5 (%)

Seq2seq15 – – – 80.3 84.7 87.5

WLDN513 – – – 80.6 90.5 93.4

Molecular Transformer16 88.6* 92.4* 94.2* 88.8 92.6 94.4

T5Chem 88.9 92.9 95.2 90.4 94.2 96.4

*
It is Unclear whether data augmentation strategy has been used for these results.
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Table 4:

Results for single-step retrosynthesis on USPTO_50k with other smiles-based sequence-to-sequence models.

Model Top-1 (%) Top-3 (%) Top-5 (%)

Seq2seq29 37.4 52.4 57.0

Molecular Transformer14 43.5 60.5 –

SCROP32 43.7 60.0 65.2

T5Chem 46.5 64.4 70.5
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Table 5:

Results for reaction yield prediction on C-N coupling reactions. The bold entries highlight the best-performing 

approach.

R 2 DFT43 MFF44 Yield-BERT53 T5Chem

Random 70/30 0.92 0.927 ± 0.007 0.951 ± 0.005 0.970 ± 0.003

Test 1 0.80 0.851 0.838 0.811

Test 2 0.77 0.713 0.836 0.907

Test 3 0.64 0.635 0.738 0.789

Test 4 0.54 0.184 0.538 0.627

Avg. Test 1-4 0.69 ± 0.104 0.596 ± 0.251 0.738 ± 0.122 0.785 ± 0.094
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Table 6:

Accuracies for reaction yield prediction on C-N coupling test sets. Predictions within 10% error range are 

viewed as accurate.

Test 1 Test 2 Test 3 Test 4

Accuracy (%) 75.5 83.9 64.5 59.9
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Table 7:

Multi-task testing results with T5Chem on USPTO_500_MT. The five tasks are grouped into two subgroups. 

The first subgroup includes forward reaction prediction, single-step retrosynthesis and reagents prediction, 

as they are all sequence-to-sequence tasks and can share the same model architecture. The second subgroup 

consists of reaction classification and reaction yield prediction. Both tasks take the whole reaction sequence as 

inputs, and can be trained at the same time by combining their loss functions together. Only one model was 

trained per group with the mixed dataset.

Task Type Forward Retrosynthesis Reagents Classification Yield

Metrics Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy Accuracy R

Results 97.5% 72.9% 24.9% 99.4% 0.46
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