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Abstract

Different psychiatric disorders and symptoms are highly correlated in the general population. A general psychopathology
factor (or “P-factor”) has been proposed to efficiently describe this covariance of psychopathology. Recently, genetic and
neuroimaging studies also derived general dimensions that reflect densely correlated genomic and neural effects on
behaviour and psychopathology. While these three types of general dimensions show striking parallels, it is unknown how
they are conceptually related. Here, we provide an overview of these three general dimensions, and suggest a unified
interpretation of their nature and underlying mechanisms. We propose that the general dimensions reflect, in part, a
combination of heritable ‘environmental’ factors, driven by a dense web of gene-environment correlations. This perspective
calls for an update of the traditional endophenotype framework, and encourages methodological innovations to improve
models of gene-brain-environment relationships in all their complexity. We propose concrete approaches, which by taking
advantage of the richness of current large databases will help to better disentangle the complex nature of causal factors

underlying psychopathology.

Introduction

A trend has emerged that shows striking parallels between
clinical psychology, psychiatric genetics and neuroima-
ging. The dense covariation between a range of
psychopathology-related traits is described in terms of new
constructs. These take the form of three general dimensions
or factors: a general psychopathology factor or “P-factor”
[1, 2], a general dimension of genetic liability for
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psychopathology [3, 4], and a general dimension of brain
structure and function [5, 6]. Here we refer to the general
dimension derived from behavioural data as “phenotypic
P-factor”, the general dimension derived from genomic
data as “genomic P-factor”, and general dimensions
derived from neuroimaging as “neural P-factors”. Whilst
these general dimensions are receiving ample attention
within each discipline, little has been done to interpret them
together.

This Perspective Article has three main aims: (1) to
integrate knowledge from the three types of P-factors into a
new unified theory; (2) to evaluate implications of this
theory for widely held assumptions behind endopheno-
types; (3) to translate the theory into concrete future
directions for psychiatric genetics and imaging genetics. In
the first section, we introduce each of the general dimen-
sions individually. This section is on purpose brief and not
meant as an exhaustive literature review. The second sec-
tion is the core of this paper, and where its novelty lies.
There, we advance previous interpretations of genetic and
phenotypic P-factors [7, 8] by integrating the neural
P-factor into a unified theory of all three P-factors (aim 1),
and by discussing important implications of this theory for
the endophenotype concept in psychiatry (aim 2). In the
third section, we translate our new theoretical perspective
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on gene-brain-behaviour interplay into concrete strategies
for future research (aim 3).

General dimensions describing inter-
individual variation in psychopathology,
genetic liability for psychopathology, and
brain structure and function

A phenotypic P-factor of psychopathology

Psychiatric disorders have fuzzy boundaries in their clinical
definitions and phenomenological presentations. Few
symptoms are unique to any diagnosis. A symptom can be
a contributing criterion to multiple disorders, and a com-
mon comorbidity across disorders. Moreover, disorders
may develop into other disorders through maturation and
ageing (i.e., “network theory”) [8-10]. Using structural
equation modelling (SEM), several studies have identi-
fied a single common psychopathology dimension, or “P-
factor” [1, 2, 11-16], which captures a significant por-
tion of inter-individual variation (e.g., 23% [16]) in the
presence and severity of psychiatric symptoms in the
population. This phenotypic P-factor is a reflection of
the correlation structure across symptom scales and the
comorbidity of psychiatric disorders [8]. Whilst further
interpretation of the P-factor itself has already received
much attention in the clinical and behavioural domain
[8, 17-19], its relationship to emerging general con-
structs in genetics and neuroimaging has not been
addressed in detail.

A genomic P-factor

The phenotypic P-factor is heritable [20-22], and pheno-
typic overlap may be partly driven by shared genetic lia-
bility [12]. Twin and family studies have long shown that
genetic risk for psychiatric disorders is indeed shared across
diagnostic categories [23, 24]. More recently, this shared
genetic risk has also been observed from single nucleotide
polymorphisms (SNPs) in DNA [25-27]. For example,
attention-deficit/hyperactivity disorder (ADHD), anxiety
disorders, major depressive disorder, bipolar disorder and
schizophrenia all have pairwise genetic correlations
exceeding ~0.20, ranging up to ~0.75 [26].

To identify a genomic dimension that captures this
shared genetic liability, SNP-based genetic correlations
have been further analysed using genomic SEM [3] and
principal component analysis (PCA) [4]. A single genomic
factor (or “polygenic P-factor” [4]) containing genome-wide
factor-loadings representing each SNP’s contribution to
cross-disorder liability, was derived. This genomic P-factor

fitted well to the data [3], explained 20%-43% of the SNP-
effects across disorders [4], and improved power for
genome-wide association study (GWAS) [3].

A neural P-factor

The phenotypic P-factor is associated with brain structure
and function [28-36]. A meta-analysis of structural mag-
netic resonance imaging (MRI) studies showed that case-
control differences of six psychiatric disorders co-localized
to the same brain regions [37], while very few diagnosis-
specific associations were seen. Recent meta-analyses from
the ENIGMA Consortium confirm this neuroanatomical
overlap across adult psychiatric disorders [38, 39], but less
so for neurodevelopmental disorders [39, 40]. Regarding
functional MRI, a meta-analysis of case-control studies
disorders also revealed highly significant spatial overlap
across five psychiatric disorders, in the absence of
diagnosis-specific effects [41].

Akin to the phenotypic and the genetic domain, these
cross-diagnostic similarities have led to the construction of
general dimensions describing inter-individual variation in
neuroimaging traits. Such “neural P-factors” have been
identified from functional connectivity [6], diffusion MRI
[42], neuroanatomical data [5], and multi-modal data
encompassing all the above [43]. In white matter, a single
whole-brain factor of diffusion anisotropy was associated
with the phenotypic P-factor in a community sample of 10-
year old children [42]. In the resting-state connectivity
study, a single dimension capturing a combination of
functional connectivity, with environmental and beha-
vioural variables was identified, which explained up to 17%
of variance in input variables. The traits in this combined
phenotypic/neural P-factor showed an interesting pattern
with traits generally regarded as positive (intelligence, life
satisfaction, educational attainment) at one end of the
spectrum, and traits generally regarded as negative and
associated with psychiatric liability (substance abuse, poor
sleep quality, aggression, stress) on the other end [6]. An
analogous neural P-factor based on structural MRI was
recently described in the same sample, and correlated with
the same behavioural, demographic and environmental
measures [5]. A similar multimodal neural P-factor
explained 10-40% of variance in environmental and
demographic variables in an independent sample of children
and adolescents [43].

In summary, recent neuroimaging and genetic research
across psychiatric traits mirrors observations at the pheno-
typic level. Psychiatric symptoms and their biological cor-
relates co-vary highly in the population. Within each
discipline, this covariation can be captured by single phe-
notypic, genomic and neural P-factors.
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Table 1 Glossary.

Genetics
Heritability
Genetic correlation
GWAS

SNP

Polygenic

Mendelian Randomisation

LD-score regression
Neuroimaging

MRI

Functional MRI
Diffusion MRI

Functional connectivity

Multivariate methods
PCA

ICA
CCA

SEM

The proportion of variance of a phenotype that is attributable to genetic factors.
The degree to which two phenotypes are influenced by the same genetic variation.

Genome-wide association study: mass-univariate analysis to relate common variation over the entire length of the
DNA to a phenotype of interest.

Single nucleotide polymorphism: a (common) genetic variation in the DNA sequence where different alleles
(nucleotides) can exist in the population.

Influenced by many genetic variants (i.e., hundreds, or thousands of genes), as opposed to monogenic (influenced by
a single gene, or single genetic variant).

Hypothesis-driven method aimed at inferring causality from (cross-sectional) associations between a genetic variant
and two or more phenotypes. E.g. to test whether a modifiable behavioural or neural trait potentially mediates the
effect of a genetic variant on a disease [95].

Linkage-disequilibrium score regression: method to calculate genetic correlations on the basis of GWAS output (i.e.,
“summary statistics”), given the relationship of the statistics to each variant’s linkage disequilibrium pattern [25]

Magnetic Resonance Imaging

MRI acquisition method to estimate regional brain activation based on local blood-oxygen level dependent (BOLD)
signal.

MRI acquisition method to measure microstructural tissue properties based on direction and amount of diffusion of
water molecules. Most often used for investigating white matter fibres.

The degree to which two or more brain regions show similar activation patterns over time, based on the correlation
or mutual dependence of their BOLD time-series.

Principal Component Analysis: data-driven data reduction method to extract maximally uncorrelated components
(i.e., “factors”) from many variables.

Independent Component Analysis: data-driven data reduction method and source identification method, which
extracts maximally independent components (i.e., “factors”) from many variables.

Canonical Correlation Analysis: method to extract modes (here:*“factors”) across two or more sets of variables (e.g.,
MRI and behavioural variables), such that the variables within a mode are maximally correlated.

Structural Equation Modelling: data reduction method to fit a priori factor structures to data and extract these factors.
Can be confirmatory (1 model is tested) or exploratory (multiple a priori models are tested and compared).

“Note: For consistency and clarity, throughout the paper the term “factors” is used to describe all kinds of factors, components, dimensions,
sources, or modes, even if the term “factors” is unusual for the particular method that was used. For the purpose of the present paper, the
interpretation is the same across these terms.

An integrative interpretation of the general

dimensions

Explaining variance versus understanding

mechanisms

ultimate cases of ‘“‘correlation without causation.” Yet, we
know from basic and experimental neuroscience that the
associations between the genome, brain and behaviour are
governed by tightly regulated mechanisms of molecular
pathways and protein interactions. To arrive at a new inte-
grated perspective on potential mechanisms underlying the

Together, the scientific developments described above mark
a perhaps unsurprising, yet new development in our
understanding of biological underpinnings of psychiatric
disorders. Decades of work on pairwise associations
between genome, brain, and single diagnoses generally
revealed only modest effects. In comparison, the diagnosis-
general phenotypic, genomic and neural P-factors explain
undeniably large amounts of inter-individual variation.
Whilst this quality is immediately appealing from a statis-
tical perspective, it does not directly lead to mechanistic
insights or clinical impact [44]. As the P-factors are built
solely from covariance structures, they are arguably
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different P-factors, we first discuss some technical and
conceptual differences between the three P-factors.

Methodological differences between the P-factors

Tables 1 and 2 summarize key methods used to extract
P-factors in each discipline. Generally, the phenotypic
P-factor has been derived from continuous symptom ratings
in population-based samples [1, 2, 14]. Whilst different
designs and approaches have led to inconsistent results for
specific cross-diagnostic factors, such as “thought disorder”
or “fear and distress” factors, the general P-factor has been
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largely consistent, regardless of demographics or diagnostic
instrument [1, 2, 12-14, 17]. The finding that binary diag-
nostic phenotypes and continuous dimensional traits yield
similar results is in line with taxometric properties of phe-
notypic variability in the population [45] and the “liability
threshold model”, under which diagnoses are the extremes
of latent continuous traits [46].

Similar to the phenotypic P-factor, neural P-factors tend
to be derived from continuous traits in population-based
cohorts [5, 6, 42]. In contrast, genomic P-factors are gen-
erally based on case-control comparisons [3, 4]. The degree
to which the clinician-based case-control genomic P-factor
can be generalised to population-based traits has been
questioned [47]. This design-specific effect may be parti-
cularly strong for psychotic disorders, whereas case-control
GWAS of depression [48], ADHD [49], and autism spec-
trum disorders [50, 51] show high overlap with continuous
traits in community samples.

We ought to keep in mind these methodological differ-
ences until this has been tested directly (see Section 3).
Nevertheless, we hypothesise that the three types of
P-factors reflect to some degree the same inter-individual
variation, on the basis of their similarities.

Similarities between the P-factors
The three P-factors share several key properties:

1. They are based on the high degree of covariance
between many variables.

2. They describe substantial amounts of inter-individual
variation.

3. They are diffuse, comprised of subtle, widespread
effects throughout the phenotypic, genomic, and
neural domains, as opposed to restricted to a few
brain regions, genomic loci, or behavioural domains.

4. They do not infer directions of causality (except for
DNA, which due to its stability is more likely cause
than effect).

5. They are associated with heritable variables that are
rather “environmental” in nature. The phenotypic
P-factor and the neural P-factors are strongly associated
with household income, years of education, and welfare
benefit use [1, 5, 6]. While the genomic P-factor has not
yet been directly associated with environmental vari-
ables, many environmental factors are genetically
correlated with psychiatric disorders [7, 52, 53].

The shared properties 1-3 and 5 suggest that the three
types of P-factors, despite their differences, explain at least
some similar aspects of inter-individual variation. The 4th
shared property—the lack of causal information—is a cri-
tical limitation that impedes translation from correlations to
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mechanisms, and ultimately to clinical impact. We propose
that the 5th property—the association with the heritable
environment—may be particularly important in disen-
tangling these potential causal mechanisms.

The heritable environment and gene-environment
correlations

In the context of quantitative genetics, the “heritable envir-
onment” may seem paradoxical, because in genetics
“environment” tends to equal everything that is not
explained by genetic variation. Here, we mean by “envir-
onment” the common sense conceptual notion, i.e., variables
mainly located outside the body. Environmental variables
like recreation, educational attainment and socio-economic
status have heritability estimates around 40-50% in twin
studies and 5-27% in SNP-based estimation [52, 54-58].

The heritability of environmental measures revives
seminal papers of Plomin et al. [59], Kendler et al. [60], and
Scarr and McCartney [61], who first described the impor-
tance of possible gene-environment correlations (rGE) in
this context. RGE occurs when exposure to an environ-
mental risk factor is influenced by the same genetic variation
as a (psychiatric) trait of interest [59, 62]. As a consequence,
rGE can give rise to “environmentally mediated pleiotropy”
[7, 63, 64]. For example, hypothetically genetic variation
influencing one’s degree of openness to new experiences in
turn may influence a person’s attitude toward substance use,
which is a risk factor for several psychiatric disorders.
Although scarcely considered in the GWAS era so far [62],
rGE is abundant in psychiatric genetics. For example,
household income and educational attainment are genetically
correlated with multiple psychiatric disorders [52, 53]. In
line with the possibility of “environmentally mediated
pleiotropy” [4, 7, 63], statistically removing the variance of
socio-economic status significantly alters genetic correla-
tions between psychiatric disorders [65].

Importantly, many of these environmental variables also
have spatially overlapping associations with brain traits
[5, 6, 43], which is captured by the neural P-factor (see
section 1.3). Therefore, the consideration of gene-
environment correlations has important consequences for
the identification of brain mechanisms on the causal path-
way from genes to behaviour.

Reconsidering the brain as mediator between genes
and behaviour

Brain structure and function are heritable [64, 66—-69], and
theoretically, the brain is the mediator in the causal chain
from genetic effect to behaviour and environment. There-
fore, studying brain traits - as “endophenotypes” - in rela-
tion to genetic risk factors is generally considered to help
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Traditional, intuitive endophenotype model

Gene-environment correlation model
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Fig. 1 The brain is mediator in theory, but not necessarily in
practice. Intuitive theories and concepts, like endophenotypes, logi-
cally assume that genetic effects on behaviour (and on environment)
pass through the brain. However, the heritable environment induces
rGEs, which propagate over time, through brain, environment and
behaviour. Hence, the model is updated with a causal brain-behaviour-
environment loop. This loop permits a multitude of causal mechanisms

unravelling causal mechanisms from genome to behaviour
[70-73]. However, the complexity of environmentally
mediated pleiotropy [4, 7, 63] also holds for genetic influ-
ences on the brain, and challenges the bottom-up causality
from genome to brain to behaviour (Fig. 1). Consequently,
the causal chain from genes to behaviour includes a brain-
environment loop. For example, the SNPs that confer risk
for major depression may influence the brain directly
throughout development, but many of these SNPs also
contribute to environmental exposures such as household
income [52], social deprivation [52], traumatic experiences
[74], poor sleep [75], socio-economic status [76], to name a
few. Some of these factors will affect the brain as well.
These indirect, environmentally mediated effects accumu-
late over time. Thus, in theory, the brain is the mediator
between the genome and behaviour, but in practice the
genetic effects on the brain we measure can be anywhere on
the causal brain-environment loop that perpetuates and
broadens from the moment of conception to the moment of
MRI measurement. Considering the number of causal routes
to psychopathology this permits, it should be no surprise
that psychiatric disorders and their associated brain traits are
highly polygenic [77-79], and non-specific to brain regions,
tissues or circuits [50, 80, 81]. In line with Avinun et al.
(2020) [7], we argue that this convolution of many causal
routes induces not only highly correlated and subtle effects
in the genome, but also in the brain, and these are now
captured by general dimensions in the form of P-factors.

Summary: an integrated interpretation of three
P-factors

To summarise, the phenotypic, genomic and neural
P-factors all capture inter-individual variation extremely

between the genome and behaviour, inside and outside the brain, and
we propose that this is reflected in the cross-trait covariance captured
by the P-factor and its genetic and neural equivalents. Note that the
exact mechanisms by which the environment influences the brain and
behaviour are many, and may potentially involve tissues outside the
brain. For the sake of clarity, we here do not include routes from
genome to behaviour that are outside of the brain.

efficiently in a single variable. However, this efficiency
does not readily translate to mechanistic insights. We note
an important contribution of heritable environmental risk
factors as a common feature to all three P-factors. Insofar as
we can speculate on causal relationships, it seems likely that
variables within and across dimensions have bidirectional
causal relationships, at least when considered throughout
the human lifespan. In this context, we emphasise that
heritable environmental risk factors can, just like neural
processes, be mediators on the causal pathway from genes
to behaviour. Thus, as a general conclusion, general
dimensions of psychopathology and genetic liability for
psychopathology reflect a dense web of mutually reinfor-
cing traits that propagate throughout development, via the
environment and the brain, in conferring risk for psychiatric
disorders. While the P-factors in the brain and the genome
may not be the only explanation for all patterns at the
phenotypic level, our interpretation also fits with “network
theory”:[9, 10] the web of mutually reinforcing traits may,
at different stages of development and under different cir-
cumstances, clinically manifest as a sequence of different
symptoms or diagnoses.

Onwards: quantifying and using gene-
environment correlations

Our conclusion may appear daunting: if all risk factors are
correlated and their causal effects are bidirectional, it is
difficult to dissect their relationships into mechanistic
insights that can be therapeutically interfered with. How-
ever, it is only by acknowledging this complexity that we
can make headway in biological psychiatry, for example
using imaging genetics. Both neuroimaging and genetics
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studies have been troubled by lack of replication and limited
clinical impact. This is largely due to subtle and widespread
effects in the genome and the brain, which call for new
approaches that can more effectively model these patterns
of effects. We finally have large sample sizes to work with
(e.g. UK Biobank [64, 82], ENIGMA [83, 84], PGC [27]),
and a range of new methods to apply to them.

Concretely, we consider the following strategies to move
toward understanding biological mechanisms underpinning
the P-factors:

1. To test directly to what extent the three P-factors
reflect the same inter-individual variation.

2. To quantify rGEs using GWAS data and extract
multiple dimensions, which may reflect more distinct
mechanisms.

3. To extend multivariate genetic models to include data
types at multiple molecular and neurophysiological
scales of investigation.

4. To apply multivariate models to longitudinal cohorts,
to get a glimpse of sensitive age-windows and
possibly causal dynamics of gene-brain-environment
interplay.

Testing to what extent the three P-factors reflect
the same variation in the population

Different designs and statistical approaches were used for
deriving the three P-factors (Table 2 and Section 2.2). Using
the same statistical method across phenotypic and brain
traits and applying it to the same sample, would be a first
step to understand the shared biological mechanisms behind
these new constructs and help identify any potential biases
and confounders in their derivation. In addition, the validity
and generalisability of the P-factors needs to be examined
across healthy and clinical populations of different ances-
tries and demographics (e.g., age, sex).

Quantifying genetic correlations and gene-
environment correlations using GWAS data

Classic twin models can be extended to multivariate models
to quantify the shared genetic influence on multiple vari-
ables, including environmental measures [85, 86]. This
way, rGEs can be quantified. For example, the effect of
exposure to aggressive media on aggressive behaviour in
children may be partly explained by genetically driven
media preferences [87]. Since multivariate models can also
be applied to GWAS output [25], their scope and feasibility
has increased. For example, using LD-score regression [25],
genetic overlap between socio-economic status and several
major psychiatric disorders and risk factors was quantified,
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and accounting for genetic variation of socio-economic
status changed the genetic correlations between those psy-
chopathology traits [76]. In addition, multivariate models
like genomic SEM can generate not only a single general
factor, but also more specific factors [27]. Similarly, at the
phenotypic level, two or three more specific factors are
often derived [1, 2, 13, 14, 33, 45, 88, 89]. The high
dimensionality of neuroimaging data already tends to be
described by dozens of dimensions rather than a single one
[5, 36, 43]. Combining data more systematically across
disciplines and drastically increasing the number of phe-
notypes to hundreds or more, would allow better estimation
of many more genomic factors as well. Table 2 describes
data-driven methods suitable for such high-dimensional
multivariate analyses. Multiple independent factors may
expose more specific patterns of gene-brain-behaviour
associations, thereby aiding interpretation in terms of con-
crete mechanisms. In the genome, for example, bioinfor-
matics [90, 91] may reveal that multiple independent factors
map to molecular pathways or cell types with higher sen-
sitivity and specificity than a single general factor. This
could ultimately help to disentangle multiple specific
mechanisms from the web of correlated risk factors.

Including multi-level neurobiological data at
multiple scales of investigation

We focused mostly on integration of neuroimaging, geno-
mic and phenotypic research. However, the underlying
mechanisms involve every step from alleles, through
molecular interactions, cell morphology, neural circuits to
behaviour [92], and even non-brain related mechanisms that
contribute to behaviour. The examples of multivariate
models above can be extended with multi-layer biological
information, including transcriptomics, epigenetics, and
proteomics. Doing so could yield new P-factors and more
specific factors (as described above) across biological levels
of investigation. Just like in genomic SEM, which is based
on the covariance of SNP-phenotype associations, covar-
iance matrices of methylation-brain or transcriptome-brain
associations be decomposed into novel constructs whose
factor loadings indicate which variables across levels work
together in influencing phenotypes of interest. For example,
N-dimensional PCA of transcriptome-neuroimaging asso-
ciations returns N factors containing loadings of brain
measures, plus N respective vectors of transcript loadings.
Transcripts and brain measures loading highly on the same
component jointly describe a distinct portion of brain-
transcript covariance, and therefore may point to a distinct
mechanism of how gene expression influences brain struc-
ture and function, or vice versa. Neural and transcript-
dimensions can be further linked to molecular pathways
[90, 91] and atlases of brain function [93], which while
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allowing no direct causal inference, help generate new
testable hypotheses for experimental studies to test caus-
ality. To model many variables with complex relations and
different distributions, new methods such as MiXeR [94]
could be considered to quantify genetic overlap more flex-
ibly, while Mendelian Randomization [95] could give first
glimpses of causal inference.

Modelling the dynamics of gene-environment
correlations over time

Longitudinal twin research indicates that the phenotypic P-
factor and its genetic underpinnings are largely stable over
time [96]. Extensions of longitudinal genetic models can
give insights into which gene-brain-environment associa-
tions and interactions are most relevant for psychiatric
symptoms at different age-windows, and as a first test of
causality. For example, a longitudinal twin study suggests
that the genetic influence on temperament at age 3 years
partly determines peer problems at a later age [97]. Cur-
rently, SNP-based analyses have several advantages over
twin studies: GWAS data are currently more widely avail-
able than twin samples; and SNP-based results can be fur-
ther investigated to understand the molecular basis of the
general and specific factors. Established methods from twin
research provide a ready-made framework for further
extending SNP-based approaches [25, 98] to better under-
stand mechanisms underlying rGEs. Although longitudinal
modelling of single variables has been performed [99, 100],
further extensions of these models including environmental
variables and/or multivariate genomic, neural and psycho-
pathology factors reviewed above, are now feasible with the
increased availability of summary statistics of large con-
sortia [27, 64, 82, 83, 101].

General conclusion

Pioneers of P-factor concept wrote: “Correlations [between
different symptom dimensions] are not a problem, but a
profoundly important source of information about the nature
of psychopathology.” [17]. The same is true for the highly
correlated biological risk factors of psychopathology we
reviewed here. In the last few decades, the limited clinical
impact of psychiatric genetics and neuroimaging in psy-
chiatry has been largely attributed to two issues: (1) tiny
effect sizes in any specific (genomic or neuroanatomical)
location, and (2) a lack of specificity to diagnoses or
symptoms. Following our integrated interpretation of the
recently identified general dimensions in psychopathology,
psychiatric genetics, and neuroimaging, our perspective is
that the solution to these problems lies in accepting the
complexity of the nature of the causal mechanisms we aim

to find, and in modelling them more accurately. We suggest
that the neural P-factor, like its genetic and phenotypic
equivalents [7], reflects an abundance of rGEs underlying
multifactorial neuropsychiatric traits. The expansion of
available data and new multivariate methods provide pro-
mising new ways to account for and quantify the nature of
the covariance of psychopathology with a multitude of
biological and environmental risk factors. In the near future,
we anticipate exciting new research that will take our
understanding of gene-brain-behaviour-environment rela-
tionships from a web of associations to new hypotheses of
causal relationships.
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