Skip to main content
. 2022 Mar 28;13:59. doi: 10.1186/s13244-022-01199-3

Table 3.

Predictive modelling characteristics of studies using deep learning-based fully-automated AI methods

Study No. of patients Training set Validation set Test set Algorithm MRI input Image registration Image segmentation Outcome Zone Analysis Evaluation strategy
Wang [20] 346 204 fivefold CV 142 CNN (MISN)

ADC, BVAL, DWI0, DWI1, DWI2, Ktrans,

T2WI-Cor, T2WI-Sag, T2WI-Tra

NR Open data csPCa vs iPCa or benign lesions PZ or TZ Per lesion Internal hold-out
Fernandez-Quilez [21] 200 NRa NRa NRa CNN (VGG16) T2WI, ADC NR Open data csPCa vs iPCa or benign lesions WP Per lesion Internal hold-out
Schelb [22] 312 250 No 62 CNN (U-Net) T2WI, DWI SimpleITK, non-rigid Bspline with Mattes mutual information criterion Automated (U-Net) csPCa vs iPCa or benign lesions WP Per lesion, per patient Internal hold-out
Deniffel [23] 499 324 75 50b CNN (3D) T2WI, ADC, DWI Static, affine Manual bounding boxes csPCa vs iPCa or benign lesions WP Per patient Internal hold-out
Seetharaman [24] 424 102 fivefold CV 322 CNN (SPCNet) T2WI, ADC Manual Registration from pathology images csPCa vs iPCa or benign lesions WP Per pixel, per lesion Internal hold-out

ADC, apparent diffusion coefficient; CNN, convolutional neural networks; csPCa, clinically significant prostate cancer; CV, cross-validation; DWI, diffusion-weighted imaging; iPCa, indolent prostate cancer; MISN, multi-input selection network; MRI, magnetic resonance imaging; NR, not reported; PZ, peripheral zone; T2WI, T2-weighted imaging; TZ, transition zone; WP, whole prostate

aThe study included 200 patients and 299 lesions, of which 70% were used to train train, 20% to test, 10% to fine-tune the models

bDescribes the calibration cohort