Skip to main content
. 2022 Mar 28;13:59. doi: 10.1186/s13244-022-01199-3

Table 4.

Predictive modelling characteristics of studies using traditional machine learning-based semi-automated AI methods

Study No. of patients Training set Validation set Test set Algorithm MRI input IR IS Discriminative features No. of features used for training Outcome Zone Analysis Evaluation strategy
Bonekamp [25] 316 183 NR 133 RF T2WI, ADC, b = 1500 No Manual First-order, volume, shape, texture NR csPCa vs iPCa or benign lesions WP or PZ or TZ Per lesion and per patient Internal hold-out
Min [26] 280 187 NR 93 LR T2WI, ADC, b = 1500 No Manual Intensity, shape, texture, wavelet 9 csPCa vs iPCa WP Per lesion Internal hold-out
Kwon [27] 344 204 tenfold CV 140 CART, RF, LASSO T2WI, DWI, ADC, DCE Rigid No Intensity 54 csPCa vs iPCa or benign lesions PZ or TZ Per lesion Internal hold-out
Castillo [28] 107 80% 20% of training (100 random repeats) 20% LR, SVM, RF, NB, LQDA T2WI, DWI, ADC HPa Manual Shape, local binary patterns, GLCM NR csPCa vs iPCa WP Per lesion, Per patient Mixed hold-out
Bleker [29] 206 130 NR 76 RF, XGBoost T2WI, b = 50, b = 400, b = 800, b = 1400, ADC, Ktrans No Manual Intensity, texture NR csPCa vs iPCa or benign lesions PZ Per lesion Internal hold-out
Li [30] 381 229 NR 152 LR T2WI, ADC No Manual Intensity, age, PSA, PSAd 15 csPCa vs iPCa or benign lesions WP Per lesion Internal hold-out
Woźnicki [31] 191 151 fivefold CV 40 LR, SVM, RF, XGBoost, CNN T2WI, ADC No Manual Intensity, shape, PI-RADS, PSAd, DRE 15 csPCa vs iPCa or benign lesions WP Per patient Internal hold-out
Bevilacqua [32] 76 48 threefold CV 28 SVM ADC, b = 2000 No Manual Intensity 10 csPCa vs iPCa WP Per lesion Internal hold-out
Toivonen [33] 62 62 LPOCV N/A LR T2WI, ADC, Ktrans, T2 map No Manual Intensity, Sobel, texture NR csPCa vs iPCa WP Per lesion LPOCV
Antonelli [34] 164 134 NR 30

PZ: LinR

TZ: NB

ADC, DCE Rigid Manual Texture, PSAd NR csPCa vs iPCa PZ or TZ Per lesion fivefold CV
Yoo [35] 427 271 48 108 CNN, RF ADC, DWI No No First-order statistics of deep features 90 csPCa vs iPCa or benign lesions WP Per slice, Per patient tenfold CV
Hiremath [36] 592 368 threefold CV 224 AlexNet or DenseNet and Nomogram T2WI, ADC Rigid, affine Manual Deep learning imaging predictor, PI-RADS, PSA, gland volume, tumour volume NR csPCa vs iPCa or benign lesions WP Per patient External hold-out

ADC, apparent diffusion coefficient; CART, classification and regression trees; CNN, convolutional neural networks; GLCM, grey level co-occurrence matrix; HP, histopathology; IR, image registration; IS, image segmentation; LASSO, least absolute shrinkage and selection operator; LinR, linear regression; LQDA, linear and quadratic discriminant analysis; LR, logistic regression; NB, naïve Bayes; PI-RADS, prostate imaging-reporting and data system; PSA, prostate-specific antigen; PSAd, prostate-specific antigen density; RF, random forests; SVM, support-vector machines

aHistopathology images registered with T2-weighted images using specialised software