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Abstract
α-Synuclein aggregation is a critical molecular process that underpins the pathogenesis of Parkinson’s disease. Aggregates 
may originate at synaptic terminals as a consequence of aberrant interactions between α-synuclein and lipids or evasion of 
proteostatic defences. The nature of these interactions is likely to influence the emergence of conformers or strains that in 
turn could explain the clinical heterogeneity of Parkinson’s disease and related α-synucleinopathies. For neurodegeneration 
to occur, α-synuclein assemblies need to exhibit seeding competency, i.e. ability to template further aggregation, and toxic-
ity which is at least partly mediated by interference with synaptic vesicle or organelle homeostasis. Given the dynamic and 
reversible conformational plasticity of α-synuclein, it is possible that seeding competency and cellular toxicity are mediated 
by assemblies of different structure or size along this continuum. It is currently unknown which α-synuclein assemblies are 
the most relevant to the human condition but recent advances in the cryo-electron microscopic characterisation of brain-
derived fibrils and their assessment in stem cell derived and animal models are likely to facilitate the development of precision 
therapies or biomarkers. This review summarises the main principles of α-synuclein aggregate initiation and propagation in 
model systems, and their relevance to clinical translation.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease. It is characterised by the motor 
symptoms of tremor, rigidity, bradykinesia, and postural 
instability as well as non-motor symptoms such as consti-
pation, postural hypotension, REM sleep behavioural disor-
der, apathy, and dementia. PD manifests differently in each 
patient but three broad sub-types are well recognised: those 
with tremor-dominant, unilateral, and slowly progressive 
disease; those with symmetrical motor disease, poor cogni-
tion, REM sleep behavioural disorder, postural hypotension 
and relatively fast progression and those with intermediate 

symptoms [1, 2]. PD has a long prodromal phase that is 
often associated with non-motor symptoms such as REM 
sleep behavioural disorder. Despite the diversity of the 
symptoms and the heterogeneity of the clinical presentation, 
aggregation of α-synuclein along relevant neuronal networks 
in the autonomic nervous system, brainstem, and cortex has 
provided a unifying molecular mechanism for therapeutic 
intervention in PD [3]. Aggregation of α-synuclein in oli-
godendrocytes is the neuropathological feature of a related 
but more aggressive parkinsonian condition termed Mul-
tiple System Atrophy, MSA [4] and diffuse deposition of 
α-synuclein inclusions in the cortex and brainstem is the 
neuropathological hallmark of Lewy body dementia [5]. 
Neuronal α-synuclein aggregates are also detected in cases 
of Alzheimer’s disease and rarer neurogenetic conditions 
[6–8].

The causative link between α-synuclein and disease is 
supported by (a) the identification of mutations or multi-
plications in the α-synuclein gene (SNCA) in familial PD 
and polymorphisms in the SNCA locus as the commonest 
risk in sporadic PD [9]; (b) the propensity of monomeric 
α-synuclein to self-assemble into filaments, that resemble 
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by electron microscopy those extracted from PD brain [4, 5] 
and (c) the evidence that increased expression or aggrega-
tion of α-synuclein in animals causes neuronal dysfunction 
or degeneration [10]. Neurodegeneration results from the 
formation of α-synuclein assemblies that are seeding-com-
petent, i.e. able to template further aggregation, and toxic 
at least partly by interfering with synaptic vesicle recycling 
and organelle homeostasis.

Although intraneuronal α-synuclein aggregates termed 
Lewy bodies or Lewy neurites constitute the defining neuro-
pathological feature of PD at post-mortem, these inclusions 
per se are only the visible tip of the “pathological iceberg”. 
Indeed, Lewy bodies at post-mortem do not always correlate 
with the disease severity in patients [11, 12]. It is important 
to note that beyond the Lewy pathology that is detected by 
classic immunohistochemical staining, α-synuclein aggre-
gates are widespread and especially abundant in neuronal 
terminals when visualised with more sensitive techniques 
[13]. Therefore, the early stages of α-synuclein aggrega-
tion are likely to be the most damaging whereas inclu-
sions may represent the end-stage process of disposing 
larger assemblies of misfolded proteins. Understanding the 
molecular mechanisms of these neuropathological changes 
and reproducing them in the laboratory has opened the way 
for rational targeted therapies and biomarkers. A number 
of comprehensive reviews are available on the structural 
plasticity and pathogenicity of α-synuclein [14, 15]. Here, I 
discuss past and recent studies that elucidated the principles 
of aggregate initiation and propagation in model systems, 
their key molecular underpinnings and their relevance to 
clinical translation.

Initiation of α‑synuclein aggregation entails 
aberrant membrane interactions

α-Synuclein is one of the most abundant neuronal pro-
teins accounting for 0.5–1% of total brain protein and it is 
enriched in presynaptic terminals, giving the typical punc-
tate neuropil pattern in the normal brain [16, 17]. In presyn-
aptic terminals its function is not essential at least in animals 
when genetically knocked out, causing only subtle deficits 
such as an activity-dependent negative regulation of neu-
rotransmission [18] or impaired dilatation of the exocytic 
fusion pore [19]. Instead, the pathogenicity of α-synuclein 
is due to a toxic gain-of-function when mutated or over-
expressed. Even modest overexpression of α-synuclein in 
animals, in the range predicted for SNCA gene multiplication 
in patients, reduced synaptic vesicle density at the active 
zone and impaired the reclustering of synaptic vesicles after 
endocytosis without detectable neuropathology [20]. Given 
its physiological localisation and abundance, it is reasonable 
to consider the synaptic terminals as the sites of initiation 

of α-synuclein pathology in PD. This was first supported by 
animal models where transgenic expression of the aggre-
gation-prone C-terminally truncated α-synuclein or viral 
expression of the full-length protein led to aggregate for-
mation and impaired dopamine storage and release without 
overt neuronal death [21, 22], at least partly by redistribution 
of the synaptic SNARE proteins [23]. Soluble oligomers of 
α-synuclein block SNARE-dependent vesicle lipid mixing 
in vitro, suggesting a mechanism by which initial aggre-
gation events may impair synaptic vesicle fusion with the 
plasma membrane [24, 25]. These early synaptic changes in 
response to α-synuclein aggregation may occur at a poten-
tially reversible phase of the disease as shown in animals 
where suppression of α-synuclein expression led to partial 
clearance of aggregates and improved synaptic function and 
behaviour [26].

In vitro, the conversion of soluble α-synuclein into amy-
loid fibrils typically occurs after a lag phase that is followed 
by a rapid increase in fibril elongation and is concentration-
dependent [27]. This indicates that once a critical amount 
of α-synuclein amyloid precursors form stochastically, they 
act as “seeds” promoting the recruitment of α-synuclein 
monomer to the ends of these initial amyloidogenic units. 
The assembly of ɑ-synuclein into high molecular weight 
complexes is mediated by its central, hydrophobic sequence 
that is prone to aggregation. This sequence, is also termed 
the nonamyloid component of Aβ or NAC domain [28]. 
Therefore, at least in vitro, α-synuclein possesses proper-
ties that could explain its pathogenicity by a conformational 
templating mechanism. Accordingly, the A53T, H50Q and 
E46K α-synuclein mutations have been shown consistently 
to increase the rate of self-aggregation [27–31]. Duplication 
and triplication of the SNCA gene may also favour aggrega-
tion by increasing the concentration of assembly-competent 
conformers. On the other hand, not all mutations share this 
property; the A30P and G51D mutations impair the bind-
ing of α-synuclein to lipids or brain vesicles and decrease 
α-helical folding of its N-terminus [32, 33]. Therefore, in 
the crowded environment of the cell, assembly depends on 
additional factors such as altered interactions with mem-
brane lipids.

Natively unfolded α-synuclein in solution, adopts an 
α-helical conformation in its N-terminal domain in the 
presence of membranes with acidic phospholipid head-
groups and/or high curvature [34–36]. This interaction of 
α-synuclein with membranes may normally reduce misfold-
ing into a β-sheet assembly [37] and/or promote physiologi-
cal multimers [38, 39] that mediate its function in SNARE 
complex assembly and synaptic vesicle recycling [40]. On 
the other hand, the presence of lipids and detergents was 
also shown to increase the rate of α-synuclein fibril forma-
tion [41, 42]. A critical factor appears to be the lipid com-
position [43, 44] as well as the ratio of α-synuclein to lipid 
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or detergent with lower concentrations of lipid driving and 
higher concentrations of lipid preventing aggregation [45]. 
This observation suggests that one mechanism by which 
lipids or lipid-like molecules may facilitate α-synuclein 
aggregation is by confining the protein to a small surface 
thereby increasing the local effective concentration to a criti-
cal threshold. This may also trigger the formation of helical 
intermediates of α-synuclein as suggested by NMR studies 
[46]. Additional factors are likely to promote aggregation-
prone conformations of α-synuclein around membranous 
compartments such as focal changes in pH or Ca2+ concen-
tration (Fig. 1). For example, Ca2+ binding to the C-termi-
nus of α-synuclein may induce N-terminal unfolding and 
aggregation-prone conformations [47]. Low pH minimises 
the large net negative charge especially at the C-terminus, 
thereby decreasing charge-charge intramolecular repulsion, 
permitting hydrophobic interaction-driven collapse to a par-
tially folded intermediate [48]. In this context, C-terminal 

truncation, e.g. by stress-induced activation of proteases, 
was also shown to accelerate aggregation [21].

Interestingly, α-synuclein aggregation on membranes has 
been shown to disrupt their integrity by different mecha-
nisms [49, 50], which could in turn cause pH changes around 
endosomes, lysosomes or synaptic vesicles from leaked H+, 
triggering further aggregation. Once aggregated, α-synuclein 
interacts with transmembrane proteins on organelles such 
as SERCA on ER [51], TOM20 on mitochondria [52] and 
LAMP2A on lysosomes [53] impairing their function, thus 
setting up a pathogenic vicious circle that eventually disrupts 
synapses and neuronal function (Fig. 1B). The concept of 
α-synuclein aggregate initiation on or around membranes 
and its impact on organellar function is supported by the 
ultrastructure of Lewy bodies. Early electron microscopy 
showed that Lewy bodies have a dense osmiophilic core 
composed of neuromelanin, lipofuscin, mitochondria, 
dense core vesicles and endosomes surrounded by radially 

Fig. 1   Bi-directional equilibrium between α-synuclein conforma-
tional states. A α-Synuclein acquires a partially folded α-helical 
structure when bound to lipid membranes but is natively unfolded in 
solution. Under favourable conditions, unfolding of the N-terminus 
and exposure of the NAC domain triggers oligomerisation via par-
tially folded intermediates. Oligomers convert into β-sheet contain-
ing protofibrils and highly ordered cross-β-sheet fibrillar polymorphs 
(strains). Distinct amino acid side chains exposed on the surface of 
each strain may lead to differential post-translation modifications 
(PTM) or protein interactions. By differentially evading protective 

factors or disrupting functional protein complexes such interactions 
may explain variance in strain toxicity, cellular vulnerability and 
potentially disease severity. B Focal accumulation of α-synuclein 
on or around membranes due to impaired turnover, mutations, post-
translational modifications or changes in lipid composition could 
initiate misfolding and assembly of toxic oligomers. Amyloidogenic 
oligomers disrupt membrane integrity, causing local changes in pH or 
Ca2+ levels that promote fibril formation and disruption of organelle 
function
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or haphazardly oriented fibrils [54]. This was confirmed 
more recently using correlative light and electron micros-
copy and tomography showing a crowded environment of 
membranes in Lewy bodies, including vesicular structures 
and dysmorphic organelles interspersed with fibrils [55]. A 
similar sequestration and disruption of organelles has been 
reproduced in a neuronal model of α-synuclein aggregation 
[56].

α‑Synuclein pathology progression involves 
cell non‑autonomous mechanisms

The finding of neuronal α-synuclein inclusions in embryonic 
neural grafts 11–16 years after transplantation [57, 58] in 
patients, raised the possibility that aggregated α-synuclein 
from the host PD brain may have passed into the grafted 
cells, and templated the conversion of soluble α-synuclein 
similar to infectious cases of human prion diseases. These 
studies reinvigorated an earlier suggestion by Braak and 
colleagues, whose post-mortem neuropathological stud-
ies indicated that in the majority of cases, Lewy pathology 
evolves along interconnected brain networks, which begin 
in the dorsal motor nucleus of the glossopharyngeal and 
vagal nerves or the olfactory bulb and the anterior olfactory 
nucleus spreading rostrally [59]. In transgenic mice, human 
α-synuclein can transit to nerve cells grafted into the stria-
tum [60]. Injection of recombinant or PD brain-extracted 
α-synuclein assemblies into the striatum or olfactory bulb 
of wild-type mice gave rise to α-synuclein inclusions and 
progressive neuronal loss [61–63]. These observations in 
mice have been replicated with injection of α-synuclein 
fibrils or Lewy bodies extracts into the brain of monkeys 
[64, 65]. Several mechanisms have been implicated in the 
internalisation of α-synuclein fibrils, principally via endo-
cytosis [66], non-conventional pathways such as tunnelling 
nanotubes [67] or heparan sulfate proteoglycan mediated 
micropinocytosis [68]. It is likely that some mechanisms 
are cell-type specific or peculiar to a subcellular domain 
[68, 69] but the existence of a “receptor” for α-synuclein 
fibrils is controversial [70]. The strength of connections has 
emerged as a primary determinant of the spread of fibrillar 
forms of α-synuclein pathology when injected in different 
brain regions [71–73]. However, injections of fibrils in the 
pedunculopontine nucleus showed that the pattern of pathol-
ogy was not a simple function of connectivity or synaptic 
coupling [74]. Therefore, although synaptic connectivity 
constrains the spread of α-synuclein pathology in the brain, 
other factors play a critical role in determining its pattern, 
severity or temporal evolution. In this respect, a key deter-
minant is the cell type-specific expression level of endog-
enous α-synuclein [71, 73, 75]. Other factors include the 
axonal arborisation and metabolic stress, which is similarly 

extensive for dopaminergic and cholinergic neurons that are 
especially vulnerable [76] as well as the activation state of 
surrounding microglia and potentially other glial cells [77, 
78].

Lewy bodies in PD patients are also found in the enteric 
nervous system raising the possibility that the spread of 
α-synuclein aggregates also occurs between the gastroin-
testinal system and the brain. In support of a gut-to-brain 
spreading, vagotomy has been associated with a reduced risk 
of PD [79]. In animals, all α-synuclein species (monomers, 
oligomers and fibrils) when injected in the intestine were 
actively transported to the dorsal motor nucleus of the vagus 
by both slow and fast axonal transport [80]. Fibril injec-
tion in the duodenal muscularis layer triggered the spread 
of pathogenic α-synuclein, as assessed by its phosphoryl-
ation at serine 129, first in the dorsal motor nucleus and 
subsequently more rostrally, and was prevented by truncal 
vagotomy or injection in α-synuclein knockout mice [81]. 
On the other hand, injection of Lewy body extract in baboon 
monkeys showed that the progression of α-synuclein pathol-
ogy was either caudo-rostral or rostro-caudal but not found 
in the vagal nerve, supporting a systemic route for long-
distance bidirectional spread between the enteric and the 
central nervous systems [82]. One potential mechanism is 
the release of α-synuclein in neuronally derived extracellular 
vesicles [83] which is increased in PD patients even in the 
prodromal phase [84]. Interestingly, systemic injection of 
fibrils into the circulation also induces brain pathology in 
rodents [85] and α-synuclein aggregates have been detected 
in the serum of PD patients [86] but whether the latter are 
seeding-competent remains to be seen.

The precise structure and size of the toxic 
species in PD remains unresolved

It is currently unknown which α-synuclein assemblies are 
the most relevant to the human condition. It is well estab-
lished that a β-sheet conformation is an essential element 
of seeding and toxicity. For example, single molecule 
techniques have revealed that different types of oligomers 
may assemble during the formation of α-synuclein fibrils, 
but only those that are proteinase K resistant, i.e. contain-
ing β-sheet conformation, are damaging to cells [87, 88]. 
Kinetically trapped β-sheet oligomers were shown to con-
tain approximately 30 monomers [89]. The minimum num-
ber of α-synuclein molecules for stable fibril generation 
was recently estimated to be approximately 70 monomers, 
giving a size of approximately 40 nm [90]. A bidirectional 
equilibrium exists between oligomers and higher molecular 
weight fibrillar assemblies [87, 91] raising the possibility 
that cellular toxicity and seeding competency are medi-
ated by conformers or assemblies of different size along 
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this continuum. Studies in vitro showed that the fibrilla-
tion kinetics vary between different α-synuclein mutants, 
whereas the steady-state population of oligomeric interme-
diates is a shared property, suggesting that this may be the 
toxic species [91]. Experiments in animals using a lentiviral 
expression of α-synuclein mutants that promote either oli-
gomer or fibril formation showed that the most severe dopa-
minergic loss in the substantia nigra was observed with those 
α-synuclein variants that form oligomers [92]. On the other 
hand, when injected into animals, fibrils but not oligom-
ers were able to seed aggregation and cause toxicity [85]. 
Although vis-à-vis comparison between these two different 
models is problematic, one potential unifying explanation 
of these disparate findings is that oligomers per se do not 
propagate, but are generated during the assembly or disas-
sembly of seeding-competent fibrils inside neurons, as has 
been shown in vitro [87], and constitute the primary drivers 
of neuronal damage. Whether such oligomers are generated 
or stabilised intraneuronally, e.g. by post-translational modi-
fications or incomplete disaggregation/degradation remains 
to be seen. For example, the vulnerability of dopaminergic 
neurons has been partly ascribed to oxidation of dopamine in 
the cytosol, forming reactive quinones and partially reduced 
oxygen species that stabilise potentially toxic oligomers of 
α-synuclein [93, 94]. Phosphorylation at Serine 129 is pre-
sent in > 90% of α-synuclein isolated from the human brain 
aggregates [95] but the effect of this abundant modification 
on assembly is controversial [95–97] and may also occur 
after aggregation.

Another important consideration is that α-synuclein 
assembles into structurally distinct fibrillar polymorphs or 
strains. This has been demonstrated by generating strains de 
novo using different experimental conditions [98, 99] and 
by the cryo-electron microscopic characterisation of either 
sarkosyl-insoluble brain-extracted fibrils or fibrils amplified 
in the presence of brain homogenate or CSF from different 
α-synucleinopathies [100–102]. It remains to be determined 
which structure most accurately represents the seeding-
competent assemblies that form inside intact neurons in the 
human condition and what is the influence of detergents 
or the extraction/amplification process on their structure. 
Nevertheless, the generation and characterisation of these 
fibrillar α-synuclein strains led to the hypothesis that they 
are in part responsible for the heterogeneous clinical mani-
festation of α-synucleinopathies. This is supported by find-
ings in human iPSC-derived dopaminergic neurons [75] 
and animal models [103] showing that strains amplified in a 
pure form from MSA brain homogenate are more toxic than 
strains amplified from Lewy body disease brain homogenate. 
Similarly, intracerebral injection of MSA brain extract into 
transgenic mouse brains led to abundant α-synuclein inclu-
sions and neurodegeneration that was not observed to the 
same extent with PD brain extract [104, 105]. These findings 

in experimental models reflect the more aggressive nature 
of MSA in patients which unlike PD causes death within 
7–10 years from onset.

Why these strains exhibit different toxicities is not fully 
understood. Although a critical level of aggregation is neces-
sary for neuronal loss, which in turn depends on the levels 
of monomeric α-synuclein [75], additional mechanisms are 
at play. One explanation is the differential interactions of 
α-synuclein strains with the cellular proteome due to differ-
ent amino acid stretches, in particular their side chains, that 
are exposed on the surface of each conformer (Fig. 1A). In 
this way, strains could differentially disrupt critical protein 
functions or evade homeostatic defences and/or be subjected 
to different post-translational modifications. We recently 
used proximity-dependent biotin identification to label 
interacting proteins within ~ 10 nm radius of α-synuclein 
aggregation in cells seeded with de novo-generated or brain-
amplified fibrils. We found that α-synuclein interacts with 
approx. 1000 cellular proteins during assembly but only 
56 proteins were differentially interacting between strains 
including the PD-associated protein DJ-1 [75]. Loss-of-func-
tion mutations in DJ-1 cause autosomal recessive PD with 
Lewy bodies [106] and CRISPR/Cas9 knockout of DJ-1 in 
our human iPSC-derived model increased seeded aggrega-
tion and aggregate-induced neuronal death [75] potentially 
via loss of its deglycase activity [107]. Glycation may block 
the ubiquitination of exposed lysine residues on misfolded 
α-synuclein such as the N-terminal lysine 12 [75, 108–110], 
in this way preventing its efficient degradation. Fibrils of 
α-synuclein are also subjected to disaggregation by the chap-
erone HSC70 and members of the HSP90 family, mediated 
by the recognition of a canonical motif in the N-terminus 
of α-synuclein [111], which is enriched in lysine residues. 
It is, therefore, possible that in the human brain, the fold 
of certain α-synuclein strains confers selective advantage 
by evading protective responses to become dominant and 
pathogenic whereas interactions with protective factors, 
such as DJ-1, mitigate their toxicity in the most resilient 
cells. Accordingly, in many brain regions of experimental 
animals α-synuclein pathology induced by fibrils was tran-
sient, demonstrating that certain cell types are more efficient 
in eliminating α-synuclein aggregates [73, 74]. Strains may 
also “evolve” differently depending on cell-type-specific 
proteostatic pressures: for example, oligodendrocytes but 
not neurons were shown to transform misfolded α-synuclein 
into an MSA-like strain [105]. Differential interactions are 
expected not only to imbalance proteostasis but also to 
sequester other proteins into non-functional states. Distinct 
fibrillar α-synuclein polymorphs bind to and cluster differ-
entially at the plasma membrane in both primary neuronal 
cultures and organotypic hippocampal slice cultures from 
wild-type mice causing differential synaptic redistribution 
of α3-Na+/K+-ATPase and certain synaptic receptors [112].
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Translation of α‑synuclein aggregation 
studies into clinical outcomes

The fundamental insights into the mode of assembly and 
trans-neuronal spread of α-synuclein provided a rationale 
for novel therapeutic approaches. Both active and passive 
immunotherapies have been extensively studied and shown 
to reduce α-synuclein pathology in animal models [113]. 
More recently, small molecule inhibitors of aggregation 
showed good efficacy in pre-clinical models [114, 115]. 
Once further delineated, generic mechanisms of uptake or 
clearance of pathogenic assemblies may also be suitable for 
therapeutic targeting. Phase II clinical trials in humans so 
far have been performed with two anti-α-synuclein antibod-
ies: Prasinezumab (PRX002), a humanised version of the 
mouse monoclonal antibody 9E4 [116] that binds to the 
C-terminus, and Cinpanemab (BIIB054), a human derived 
antibody that binds to the N-terminus of α-synuclein [117]. 
Both antibodies bind to aggregated α-synuclein but it is 
unclear whether either binds to disease-relevant species 
(e.g. seeding-competent assemblies) that are thought to be 
responsible for the progression of the pathology. Although 
treatment with both antibodies missed the primary efficacy 
outcomes, prasinezumab significantly slowed the decline 
on the motor examination (UPDRS Part III) and the digital 
motor score by 25–30%, and participants with more severe 
and faster-progressing symptoms benefitted the most from 
treatment. Based on these encouraging findings, a Phase IIb 
study (PADOVA) in PD patients with more advanced symp-
toms was started and will run through to 2023.

A major limitation in the development of these thera-
pies is the lack of biomarkers that measure target engage-
ment in the CSF or brain. Currently there is no PET ligand 
available for α-synuclein aggregates but the resolution of 
their structure by cryo-electron microscopy may facilitate 
this urgently needed biomarker. The concept of self-tem-
plating assembly of α-synuclein has led to the adaptation 
of assays previously used for prions (RT-QuIC or PMCA) 
to measure α-synuclein seeding when incubated with CSF 
[118, 119] and more recently peripheral tissue homogenates 
[120]. α-Synuclein seeding assays in the CSF showed sen-
sitivities and specificities for PD diagnosis at 80–90% with 
a high degree of overlap between the two assay types [121]. 
Interestingly, RT-QuIC also identified individuals at risk of 
developing PD and dementia with Lewy bodies, indicating 
that seeding assays may be useful in detecting prodromal 
α-synucleinopathies [122]. Based on the kinetics of aggrega-
tion in the PMCA assay, it was shown that PD could also be 
distinguished from MSA with an overall accuracy of 95% 
[100]. Therefore, once further validated and standardised, 
RT-QuIC or PMCA could be used to stratify patients that 
are most likely to benefit from specific immunotherapies e.g. 

based on the binding affinity of antibodies to patient-specific 
seeds, assuming that CSF seeds resemble those in brain, 
or to monitor treatment response. For this purpose, further 
development is required to achieve a quantitative readout, 
ideally in an easily accessible peripheral source of tissue 
or biofluid.

Conclusions

Since the original discovery of α-synuclein as the main com-
ponent of Lewy bodies in sporadic PD and the identifica-
tion of SNCA mutations in rare familial forms, significant 
progress has been made in understanding its role in human 
disease. Early studies in transgenic or viral overexpression 
animal models demonstrated that pathogenicity arises from a 
toxic-gain-of function of misfolded α-synuclein that is most 
likely initiated at the synapse. Multiple lines of evidence 
indicate that toxicity is mediated by aggregate-induced 
interference with synaptic vesicle recycling and organelle 
function. Modelling of aggregation in vitro revealed a self-
templating mode of assembly, suggesting that a similar 
mechanism may account for the spread of the pathology 
and the progressive march of clinical symptoms in patients. 
This has been demonstrated in a number of animal models 
following a single injection of synthetic or brain-derived 
fibrils. At least in animals, the pattern of spread is deter-
mined by neuronal connectivity and levels of expression of 
endogenous α-synuclein. Additional cellular factors, such 
as the interaction of α-synuclein with protein partners or 
membrane lipids may influence the emergence of distinct 
conformers or strains, which could at least partly explain 
the clinical heterogeneity of α-synucleinopathies. Although 
it is widely accepted that a β-sheet conformation is an essen-
tial component of pathogenic α-synuclein assemblies, the 
remarkable conformational plasticity of α-synuclein and 
resulting conformation ensembles has made it difficult to 
precisely define the structure that is most relevant to the 
human condition. Extensive neuropathological observations 
in post-mortem PD brains have lend credence to the concept 
of propagation of such assemblies along connected networks 
but it is unclear whether and to what extent this occurs in liv-
ing patients. It is conceivable that PD is the result of multiple 
stochastic aggregation events due to impaired protein or lipid 
homeostasis along interconnected neuronal networks or their 
supporting glial cells with limited capacity to spread beyond 
a single synapse. It is also possible that in the human brain 
there are variants of the dominant strain across brain regions 
and/or patients. If this is true, then a single immunotherapy 
or anti-aggregation therapy will never be efficacious across 
the whole disease spectrum and a molecular approach to 
patient classification will be required to identify those most 
likely to benefit, as is currently done with targeted therapies 
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in cancer. In this respect, the application of cryo-electron 
microscopy and modelling in human neurons and animals 
have the potential to introduce a step-change in the way we 
stratify and eventually treat α-synucleinopathies with preci-
sion diagnostics and therapeutics, ideally introduced in the 
prodromal phase of carefully selected at-risk individuals.
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