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Wearable sensors during drawing
tasks to measure the severity
of essential tremor

Sheik Mohammed Ali%, Sridhar Poosapadi Arjunan?, James Peters?, Laura Perju-Dumbrava3,
Catherine Ding?, Michael Eller’, Sanjay Raghav'-?, Peter Kempster?,
Mohammod Abdul Motin?, P. J. Radcliffe® & Dinesh Kant Kumar®**

Commonly used methods to assess the severity of essential tremor (ET) are based on clinical
observation and lack objectivity. This study proposes the use of wearable accelerometer sensors for
the quantitative assessment of ET. Acceleration data was recorded by inertial measurement unit (IMU)
sensors during sketching of Archimedes spirals in 17 ET participants and 18 healthy controls. IMUs
were placed at three points (dorsum of hand, posterior forearm, posterior upper arm) of each
participant’s dominant arm. Movement disorder neurologists who were blinded to clinical information
scored ET patients on the Fahn-Tolosa—Marin rating scale (FTM) and conducted phenotyping
according to the recent Consensus Statement on the Classification of Tremors. The ratio of power
spectral density of acceleration data in 4-12 Hz to 0.5-4 Hz bands and the total duration of the action
were inputs to a support vector machine that was trained to classify the ET subtype. Regression
analysis was performed to determine the relationship of acceleration and temporal data with the

FTM scores. The results show that the sensor located on the forearm had the best classification and
regression results, with accuracy of 85.71% for binary classification of ET versus control. There was a
moderate to good correlation (=0.561) between FTM and a combination of power spectral density
ratio and task time. However, the system could not accurately differentiate ET phenotypes according
to the Consensus classification scheme. Potential applications of machine-based assessment of ET
using wearable sensors include clinical trials and remote monitoring of patients.

Essential tremor (ET), which affects roughly 2% of the population, is the commonest cause of tremor in neurolog-
ical practice"” Research into the disorder depends strongly on objective methods to characterise the tremor and
to measure its severity. In 2013, a task force established by the Movement Disorder Society to review rating scales
for the assessment of ET recommended 5 of these scales®. While each is a valid clinical tool, the report draws
attention to weaknesses of reproducibility and of floor and ceiling effects. Further development of automated
measurement of tremor severity may lead to more precise evaluation of treatment effects in ET clinical trials.
Screening of ET, for verification of diagnosis, and for inclusion in population-based studies, is a further
research application of clinical scales. A challenge for any ET clinical diagnostic instrument is the lack of a ‘gold
standard;, and ET may in fact be several rather than one disease entity. Unlike the second commonest tremor
disorder, which is Parkinson’s disease (PD), it lacks a distinct pathological basis. There are grey areas—with
normal or physiological tremor in mild cases, and with disorders such as dystonic tremor* and tremor-dominant
PD°. The recent Consensus Statement on the Classification of Tremors® has attempted to address some of these
uncertainties by sub-classifying ET syndromes. ET is separated into ET and ET plus, the additional ‘plus’ criteria
encompassing patients who meet basic criteria but have, in addition, ‘soft’ findings such as impaired tandem gait,
questionable dystonic posturing, memory impairment or other mild neurological signs that do not suffice to
diagnose another syndrome’. Analysis of tremor frequency and electromyographic activity can help in the diag-
nosis of ET. Automated tests may also prove useful in identifying ‘minor motor’ features that distinguish ET plus.
Technological advancement has led to the development of motion sensors that are wireless and wearable.
Acceleration® 1%, gyroscopic!'? and electromyographic'>!* data can all be recorded. Research groups*-2* have
proposed the use of such technology to detect and monitor parkinsonian and essential tremors. Multiple sens-
ing modules have been used for data collection from separate anatomical locations®>*%. A single wrist-worn
accelerometer for the assessment of rest tremors and bradykinesia has also been proposed for PD?. ET shows
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Control ET-0 ET+1 ET+2 P value

Number 18 6 5 6 -

M:F 8:10 3:3 1:4 4:2 -

Age 62.8+11.6 |62.8+16.5 61.4+11.6 |77.2+7.3 0.084
Age at tremor onset - 37.7+£18.5 51.2+13.1 44.0+25.9 0.433
Tremor duration - 252+232 10.2+5.8 31.3+20.5 0.229
MoCA - 25.8+4.2 252+3.3 25.7+2.8 0.879
Average group clinical FTM score - 16.0+9.2 20.4+3.8 36.25+12.24 | 0.011
Average group sensor estimated FTM score | _ 19.63+5.4 240+10.5 |29.59+10.5 |0.197
Mean PSD ratio (sensor-1) 0.55+0.37 2.15+£1.66 3.90+2.59 4.74+1.82 0.001
Mean PSD ratio (sensor-2) 0.79+1.12  |2.84+2.42 5.16+559 |6.96+6.24 0.002
Mean PSD ratio (sensor-3) 0.81+£0.60 0.88+1.14 0.97£0.95 2.09+£2.59 0.000
Mean time 12.64+5.53 |20.53+14.23 |19.82+£8.04 |26.92+14.95 |0.007

Table 1. The demographic, clinical and estimated sensors information and the P-value of the Kruskal-Wallis
test between the groups of controls, ET -0, ET + 1, ET + 2. Significance values are in Bold.

a frequency between 4 and 12 Hz; its variable amplitude depends on factors such as anxiety, limb position,
voluntary activity and disease duration®. Clinical measurements may be performed at rest, with the arms held
in posture, or with goal-directed or repetitive tasks****. Some sensor systems have significant shortcomings:
limited accuracy with prolonged measurement, and a need for axial calibration. While devices such as Fitbit or
smartphone watch apps can estimate total tremor activity, the proprietary data of such devices are not well suited
to diagnosing or monitoring tremor disorders.

Clinicians use pen and paper tests in the diagnosis and monitoring of ET?. Spiral drawing is a particularly
suitable task for ET. It entails continuous movement in multiple planar directions rather than the more up-and-
down actions of writing®**’. The commonly used Fahn-Tolosa-Marin scale (FTM)*® has a domain devoted to the
analysis of drawing Archimedes spirals, as does the Bain and Findley scale?. Digital drawing tablet analysis of
spiral drawing has been shown to be more sensitive to small changes in tremor severity than visual spiral rating
methods™. They do, however, have the limitation that only 2-dimensional activity is captured.

This work proposes a method to record and analyse movement data captured during Archimedes spiral
drawing by three-axis accelerometers embedded in inertial movement unit (IMU) devices. The chief study aims
were twofold—to validate the estimation of the clinical tremor severity score from the sensor recordings; and
to classify ET data with respect to the Consensus Statement scheme for ET®. A secondary aim was to report on
suitable positions for placement of sensors to record upper limb tremor signal. We processed these signals to
combine the three acceleration axes into a single vector magnitude®. This was then analysed to obtain power
spectral density (PSD) for two frequency bands: 0.5—4 Hz and 4 -12 Hz. Most voluntary movement occurs in
the lower band, while the upper band captures tremor, both physiological and pathological®'-**. The ratio of the
PSD between the two bands overcomes the need for normalisation and allows comparison between different
people. We hypothesise that the ratio of PSD, along with the total time taken by the individual to perform the task
of sketching a pre-defined Archimedes spiral, will correlate with the tremor severity measure FTM. To validate
this, we employed statistical analysis and machine learning to establish the relationships of sensor features with
clinical ratings and classifications.

Results
Table 1 shows demographic information on the 35 participants (18 control, 17 ET) with analysable recordings.
Eleven had been classified as ET plus; five had 1 plus feature (ET + 1) and 6 had 2 plus features (ET +2). Six sub-
jects fulfilled the Consensus Axis 1 definition of ET, henceforth abbreviated as ET — 0. The columns of Table 1
correspond to controls, ET -0, ET + 1 and ET + 2. Demographic, clinical and sensor-derived statistics are shown.
ET plus patients were older, and older at tremor onset, though the groups were broadly matched for the dura-
tion of ET. Though FTM tremor severity was similar for ET —0 and ET + 1 groups, ET +2 was associated with
significantly higher scores. The inter-rater analysis for FTM scores showed a very strong correlation between
the two blinded assessors (r*=0.95), supporting the choice of the FTM score as the clinical severity standard for
this study. The estimated FTM scores from the Sensor-2 data appear below the clinical measurements. Cognition
according to the MoCA was similar across the groupings. The measured sensor parameter of mean PSD ratios
from the three sections of the arm (Sensor-1, Sensor-2, Sensor-3) and the mean task times are displayed in the
bottom part of the table.

Figure 1 shows the box plot of the PSD ratio in ET and control groups measured from the three sensor
locations illustrated in Fig. 5. The mean PSD ratio is higher in ET compared with controls for all three sensors.

Mann-Whitney U testing showed significant differences between ET and controls for the PSD ratio (U=25.00,
p=0.00) for sensor-2, and for T (U=52.00, p=0.001), the task execution time.

Estimation of ET severity. Regression analysis was performed to determine the relationship between
FTM clinical scores and each sensor’s PSD ratio (Fig. 2). The dependent variable is FTM, and the independent
variable is the PSD ratio, performed using a total observation of 17 subjects. The coefficient of determination
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Figure 1. a Boxplot of the PSD ratio for ET and controls at the three sensing locations. ETS1—ET Sensor—1,
ETS2—ET Sensor—2, ETS3—ET Sensor—3; and for Controls, CS1—Control Sensor—1, CS2—Control
Sensor—2, CS3—Control Sensor—3 . (b) Shows the placement of the sensor location, S1, S2 and S3. (c) Boxplot
of the Task Time of ET and controls at the sensing locations.
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Figure 2. Regression analysis of the PSD ratio versus FTM score at three sensing locations.

(r?), Root Mean Square Error (RMSE) and the regression equation for the three sensors are shown in Table 2. The
results show that for sensor-1, * = 0.3855; for sensor-2, #* = 0.50; and for sensor-3, r*=0.4184. This shows that
the estimation of FTM was of moderate strength using sensor-2, while it was weak for sensors 1 and 3.

Regression analysis between T and PSD ratio was very low (r?=0.0905). Being independent of one another
yet correlated with tremor severity, these two features are suitable for joint use to estimate the FTM score.

Scientific Reports | (2022) 12:5242 | https://doi.org/10.1038/s41598-022-08922-6 nature portfolio



www.nature.com/scientificreports/

Sensor-1 Sensor-2 Sensor-3
PSD ratio-ETS1 versus FTM PSD ratio- ETS2 versus FTM PSD ratio- ETS3 versus FTM
Regression analysis score score score
Coefficient of determination 0.3855 0.50 0.4184
(r-squared)
Root mean square error (RMSE) | 9.6476 8.7891 9.3858

Regression equation

11.6747 +(3.5655*PSD ratio)

15.6031 + (1.7763*PSD ratio)

18.2019 + (4.6912*PSD ratio)

Table 2. Regression analysis of PSD ratio vs FTM score at the three sections of the arm.
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Figure 3. (a) Shows the 3D scatter plot of the FTM, PSD Ratio and Task Time representing the groups of ET -0
(yellow), ET +1 (blue) and ET +2 (red), (b) Shows the 3D regression plot of the regression Eq. (1).

Model OLS
Coefficient of determination (R-squared) 0.561

Root mean square error (RMSE) 8.158
8.2439 + (0.2791*time) + (1.9890*PSD ratio)

Regression equation

Table 3. Regression Analysis for the estimation of FTM.

Regression analysis using the least-squares method was performed to estimate the FTM score from
the two sensor features. Figure 3 shows the 3D plot of the parameters used for the regression model. The depend-
ent variable was FTM score, and the two independent variables were T and PSD ratio. Data of 17 people with ET
were analysed and the regression analysis resulted in a model equation:

(y = 8.2439 + (0.2791 x T) + (1.9890 x PSD ratio)) 1)

The validation of this model was done by computing the correlation of the model estimates with the clinically-
derived FTM scores, as shown in Table 3; 7*=0.561 and RMSE = 8.158. Figure 4 shows the comparison between
clinically obtained FTM for the three ET subtypes and the FTM estimation from the model (Eq. 1) using wear-
able sensor data.

Classification of ET phenotype. A support vector machine (SVM) classifier was applied to the PSD ratio
and T statistics in two-class and four-class computations. For the binary classification of ET and control, accu-
racy was 85.71%. The 4-class SVM classifier, comprising ET -0, ET + 1, ET +2 and controls, achieved only an
accuracy of 57.14% using the combination of T and PSD ratio. The predictive power for ET phenotype, accord-
ing to blinded clinical assessment, was therefore moderate. Table 4 shows the SVM classification accuracy.

Conclusion

This paper has developed a more accurate method for measurement of ET severity by wearable accelerometer
sensors. We determined that, of the three positions tested (Fig. 1b), the most suitable sensor location is on the
forearm, at the mid-point between the lateral epicondyle of the humerus and the anatomical snuff box. The PSD
4-12 Hz: 0.5-4 Hz ratio drawn from acceleration data, combined with the total duration of the spiral drawing
task, showed a moderate to good correlation (r*=0.561) with clinical FTM scores. While the accuracy of the
system to discriminate ET from control was 85%, classification was much poorer when attempting to separate
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Figure 4. Shows the ET Phenotype of the clinical and estimated FTM scores.

2 Class kernels used | 2 Class accuracy in percent (ET and controls) | 4 Class kernel used | controls)

4 Class accuracy in percent (ET -0, ET +1, ET +2 and

Time

RBF

74.28 Linear 54.28

PSD Ratio

Linear

85.71 Linear 54.28

Time

PSD Ratio

RBF

82.85 Linear 57.14

Table 4. SVM classification accuracy.

ET subgroups. Between control, ET -0, ET + 1 and ET + 2 groups, accuracy was only 57%, perhaps reflecting the
emphasis on clinical features other than tremor in the Consensus classification scheme. The advantage of this
method is that these easy-to-wear, wireless sensors can be used to assist neurologists to measure and to record
tremor severity in deciding treatment options for their patients.

Discussion
This study has confirmed the hypothesis that the ratio of PSD, along with the total time taken to perform the pre-
defined Archimedes spiral sketching task, correlates with tremor severity measured clinically by FTM scoring.

Task execution time. Participants with ET took significantly longer than controls to complete the
standardised drawing task. However, the total duration of the activity T was found to correlate very weakly
(*= 0.002) with the FTM score.While there is evidence that ET patients have a degree of slowness of
movement®~*%, this is not captured by the FTM scale, or by other clinical rating scales for ET. Rapid alternat-
ing limb movements are performed abnormally slowly**=*’, and the rhythmicity of repetitive hand movements
is impaired by ET?®. Slowness of movement in ET has, in some studies, been comparable in degree with the
bradykinesia of early PD*. Both the tremor itself and slowness that is independent of the tremor could therefore
contribute to ET patients taking longer to sketch the pre-defined spiral.

PSD ratio. We used the ratio of PSD to validate the use of sensors for estimating the FTM score data. The
PSD ratio determined the relative power in the two bands, obviating the need for normalisation and minimising
effects of inter-subject variation. The 0.5—4 Hz band includes mostly voluntary muscle activity in both unim-
paired and tremor-impaired individuals, whereas the 4 -12 Hz band includes physiological and pathological
tremor. While tremor frequency tends to be a little greater in physiological tremor, there is substantial overlap
with ET frequencies®®. The chief difference is that pathological tremor usually has more power than physiological
tremor, so the relative power at the tremor frequency (or even in the entire tremor band) is greater in tremor-
impaired individuals. Power in the lower, voluntary band is likely to depend on the activity being performed.
There may also be differences between ET and control groups in this band because of slowness of voluntary
movement in ET, as discussed in the previous section.

ET has a frequency range of 4-12 Hz'#*!. Power spectrum analysis of accelerometer signals can discriminate
effectively between PD and controls, between ET and controls, and between PD and ET?. Previous research
has shown the effectiveness of power spectral analysis of acceleration signal is effective in the detection of
tremor?**-*. Similar to our analysis, they reported the ratio of the PSD between segments with and without
tremor, which was identified manually. None of these studies had investigated the relationship of these measures
to the severity of the tremor disorder. Our pilot study showed a weak correlation when using raw PSD, while
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the PSD ratio, combined with total duration, was established as a reliable feature set to differentiate ET from
controls and to estimate FTM score.

Placement of wearable sensors.  Wearable sensors may use accelerometers, gyroscopes, and electromyo-
graphy for tremor detection. Sensors may be placed at single or multiple body locations. Some previous studies
have had limitations in their validation of different sensor locations and estimation of sensor accuracy. A sen-
sor’s location can affect the accuracy of detection?****2. We placed sensors at three sites and identified the most
suitable of these locations for tremor measurement. Taken individually, the mid-forearm Sensor-2 performed
better than the proximal and distal sensors to estimate tremor severity by PSD ratio. The explanation for this may
involve several factors. Spiral drawing involves greater proximal muscle use than writing, though wrist flexion-
extension motion produces much of the tracing oscillation that can be seen in Fig. 6%°. More severe ET tends to
be more disseminated*’, which could contribute to a more proximal tremor emphasis. Device weight, of mobile
phones in particular, can also affect long-term monitoring functions*, suggesting the need for lightweight sen-
sors instead of smartphones.

Development of wearable sensors as clinical tools. Previous research using smartphone technology
highlights some of the challenges in this area. Episodic rather than continuous data recordings, collected under
artificial conditions at certain study intervals, have been reported®. The quality and quantity of such informa-
tion depends on the compliance and motivation of patients®. The sensing method proposed in our study is
task-specific and employed in a clinical environment that mitigates some of these limitations. To understand
the fluctuation of tremor over time, clinicians rely on the accounts of their patients. This can be misleading and
suffers from recollection bias*. Wearable sensors have advantages of monitoring over long periods and dur-
ing functional activities, but there is still more work to be done in this area for clinical applications. Another
potential advantage of wearable sensing methods is the ability to store a large quantity of data, even though there
are limitations in analysing these data sets to provide clinically relevant information*. Our study employed a
single motor task for the analysis and showed high correlation with a clinical tremor severity scale. Some of our
methodology, particularly anatomical sensor placement, could be extended to long-term ambulatory monitor-
ing of the effects of ET on daily living. In the future, both types of applications are likely to find a place in clinical
management and clinical trials.

ET and ET plus

The Consensus scheme attempts to identify clinical markers that may correspond to underlying pathophysiol-
ogy. The sub-classification of the disorder into ET and ET plus is based on the presence of additional clinical
features, the majority of which are unrelated to tremor. While criteria for ET plus do not include tremor severity,
we found significantly higher FTM scores in ET plus participants, highlighting a possible weakness. Critics of
the consensus statement point out that the ET plus concept may be insensitive to biological differences because
its criteria tend to select for more prolonged and severe ET’. Our automated classification into ET -0, ET+1, and
ET+2 showed only a modest accuracy of 57.14%. The measurements performed better in predicting the clinical
FTM score, which is the novel finding of this study of wearable technology in ET.

Limitations of this study

This study has two major limitations, which concern repeatability and sample size. Each participant was inves-
tigated only once and hence the repeatability was not tested. The sample size was not large enough to perform a
detailed analysis of the differences within ET subgroups.

Methodology

Participants and clinical assessments. Ten men and nine women with a clinical diagnosis of ET were
recruited from the Movement Disorders service at Monash Health. Their mean age was 67.2+ 13.0 and the mean
duration of tremor symptoms was 21.7 £ 19.0 years. All complied with the Axis 1 definition of ET in the 2018
Consensus Statement on the Classification of Tremors®. No participant with ET met any of the Axis 1 exclusion
criteria for ET and ET plus. Twenty age-matched healthy participants acted as controls for spiral drawing tasks.
Two ET and 2 control participants were excluded from the analysis because of noisy or incomplete IMU data
recording.

A structured interview of ET subjects concentrated on clinical aspects of the tremor disorder. A MoCA was
also conducted*. Two movement disorder neurologists who were blinded to clinical information scored the
FTM? from videotapes. Mean total scores were obtained for each subject. The blinded assessors then classified
the ET disorder as defined in Axis 1 of the Consensus Statement. They were also provided with a summary of
the structured clinical interview, the MoCA results, and videotapes of testing of goal-directed limb coordination,
distal limb rapid alternating movement and gait (normal and tandem). Subjects were classified as ET plus by
the presence of any of the following features: impaired tandem gait, questionable dystonic posturing, memory
impairment, mildly impaired goal-directed incoordination of unknown significance, mildly impaired rapid
alternating movement of unknown significance, tremor at rest. For each participant, a neurologist familiar with
the case also phenotyped the tremor disorder from the videotape. A majority classification was then obtained
on the presence or absence of plus features and on the number of plus features documented. The study was
conducted following the human experiments Helsinki Declaration (revised 2004) and approved by the Monash
Health and RMIT University Human Research Ethics Committees (HREC Project Number: 184981). All par-
ticipants in this study gave their written informed consent before data recording.

Scientific Reports |

(2022) 12:5242 | https://doi.org/10.1038/s41598-022-08922-6 nature portfolio



www.nature.com/scientificreports/

Figure 5. Participant performing the spiral drawing task with the wearable sensors mounted on the upper limb.

Spiral Drawing Task
@ @
Essential Tremor Healthy Control

Figure 6. Sketch of the spiral drawing task performed by both control and ET patient.

Equipment and data recording. Wearable IMU sensors (Delsys Trigno, USA) with an inbuilt three-axis
accelerometer, gyroscope, magnetometer, and electromyography were used for data recording. Only the accel-
erometer data is reported in this paper, which concentrates on the use of this modality to analyse tremor as
outlined in previous research®*.

Sensors were placed at three points on the dominant arm:

® Sensor-1 at the mid-point between the styloid process of the ulna and the head of the third metacarpal;

Sensor-2 at the mid-point between the lateral epicondyle of the humerus and the anatomical snuff box;

® Sensor-3 at the mid-point between the lateral tip of the acromion process and the lateral epicondyle of the
humerus.

Figure 5 shows the positioning of wearable sensors. Participants were recorded while drawing on a digital
tablet (Wacom Intuos Pro Large, A3 sized) with a pressure-sensor mounted ink-pen. The tablet was overlaid
with a sheet of paper to normalise the experience as much as possible. It was set upon a standard height desk,
positioned as was most comfortable to each participant. They were asked to draw the spiral at their convenient
speed. Customized software was developed in c-sharp, which integrated the digital tablet and Delsys Trigno
IMU signals. Pen-tip pressure was used to separate movement on and above the tablet. Pen movements with
pressure =0 were labelled as ‘pen-up’ strokes, a ‘pen-down’ stoke was any movement while pressure was > 0. The
acceleration data was recorded at 148.1 samples/sec and stored in a .csv file format. Figure 6 shows the ink-pen
record of the spiral drawing task performed by ET and control participants.

Previous researchers into functional neuroimaging5°’51, timed clinical motor assessments®>>?, and activ-
ity monitoring during daily living conditions*>**->” have faced choices about motor task, the duration of record-
ing, and other extrinsic factors that may influence the outcomes. We adopted a standardised task of spiral sketch-
ing, which is routinely used in clinical practice, to minimise some of these potential limitations.

52,53
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Data analysis. Acceleration data were recorded from the three IMUs while participants drew the pre-
defined spiral. Data was segmented from the start to the end of the task from the tablet’s pen-up and pen-down.
To overcome the problem of the variation of the angle of placement of the sensor, vector magnitude was derived
from the raw triaxial accelerometer data as/x? + y2 + z2?>%. This was filtered using a high pass filter of 0.5 Hz
to remove artefacts.

People with ET have heightened activity in the frequency range of 4-12 Hz. In healthy people, physiological
tremor produces much less power in this range and the 0-4 Hz band is dominant®**. While there can be inter-
subject variability, this study proposes the ratio of PSD between these two frequency ranges as a feature likely to
be higher in ET than controls. From the three-axis acceleration data, the vector magnitude was calculated, then
the PSD ratio was calculated from the ratio of the PSD at 4-12 Hz to the PSD at 0.5—4 Hz.

People with ET take longer to perform comparable writing tasks . This could result from the tremor itself,
or from the slowness of voluntary movement that also occurs in ET”¢. The time feature T, corresponding to the
pen-down duration for the whole task, was measured and evaluated against the FTM.

Statistical analysis. Shapiro-Wilk testing, conducted to check for normality distribution of drawing
parameters®!, showed a non-Gaussian distribution. Statistical analysis was performed using the non-parametric
Mann-Whitney U tests to determine the significance of group differences. Analyses were conducted on differ-
ences in ET and controls parameter values. Kruskal-Wallis test was performed to determine p-values between
the different groups.

Regression analysis. Linear regression analysis using the least square method were performed to deter-
mine the strength of relationship between the sensor parameters and the clinically derived FTM score. From the
17 ET and 18 healthy controls who participated in the study, the PSD ratio and the task time were the sensor
parameters used as independent variables, and the mean FTM scores by clinical assessment were the depend-
ent variables. Inter-rater assessment was done by correlation analysis on the FTM score generated by the two
independent and blinded neurologists. The coefficient of determination r? values are obtained from the analysis.

Classification. An SVM classifier was applied to classify individually and in combination the PSD ratio and
total task time for multiclass problems comprising control and ET subgroups. The analysis was based on the
Leave-One-Out Cross-Validation (LOOCV) technique using linear and radial basis function kernels, and the
best classification accuracy was chosen from these two kernels. In this cross-validation technique, the number
of folds equals the number of instances in the data set. Thus, the algorithm applies once for each instance, using
all other instances as a training set and the selected instance as a single-item test set. The result is computed by
taking the mean of individual evaluations. Studies have shown LOOCYV to be a more reliable performance for
similar size datasets®?. The inputs are the PSD ratio measured from the IMU sensor unit and the duration of each
instance from the 17 ET and 18 healthy control participants. All computation, including statistical analysis, was
performed using Python 3.8.
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