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Coronary calcification 
and bone microarchitecture 
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quantitative computed 
tomography from the São Paulo 
Ageing and Health (SPAH) Study
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José Ramón Lanz‑Luces4, Rosa Maria R. Pereira5 & Carlos Eduardo Rochitte6

Epidemiological studies reveal a link between osteoporosis and the risk of ischemic cardiovascular 
disease. We illustrate an association between coronary calcification and bone microarchitecture 
in older adults based on the SPAH study. This cross-sectional research comprised 256 individuals 
subjected to cardiac coronary computed tomography angiography (CCTA) for coronary artery 
calcification (CAC), high-resolution peripheral quantitative computed tomography (HR-pQCT) at the 
tibia and radius with standardized z score parameters, and dual-energy X-ray absorptiometry (DXA) 
to evaluate bone status. We used Student’s t test and the Mann–Whitney and Chi-squared tests for 
comparison of basal measurements. Association analysis was performed using the Poisson regression 
model with adjustment for CAC and sex. Multivariate analysis revealed different bone variables for 
predicting CAC in DXA and HR-pQCT scenarios. Although most of the bone parameters are related to 
vascular calcification, only cortical porosity (Ct.Po) remained uniform by HR-pQCT. Results for were 
as follows: the tibia—women (exp β = 1.12 (95% CI 1.10–1.13, p < 0.001) and men (exp β = 1.44, 95% 
CI 1.42–1.46, p < 0.001); the radius—women (exp β = 1.07 (95% CI 1.07–1.08, p < 0.001) and men (exp 
β = 1.33 (95% CI 1.30–1.37, p < 0.001). These findings suggest an inverse relationship between CAC and 
cortical bone content, as assessed by HR-pQCT, with higher coronary calcification in individuals older 
than 65 years.

Atherosclerotic disease and osteoporosis are highly prevalent pathologies in older adults1, 2. In addition to sharing 
risk factors3, evidence suggests that the diseases have common pathophysiological mechanisms4–6.

Furthermore, bone loss is associated with cardiovascular disease severity at the time of diagnosis, and the 
degree of vascular calcification is a significant predictor of bone loss and vertebral and nonvertebral fractures7, 8.

In this scenario, coronary artery calcification (CAC), as calculated by the Agatston score9, has proven to be 
a powerful tool in personalized cardiovascular event risk assessment10. Its negative predictive value is reported 
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to be 87% using a cutoff point of 10011. Additionally, the score is an independent predictor of cardiac outcomes 
up to 10 years, better than other combined risk factors that individualize atherosclerotic burden in a clinical 
form (ethnicity, age, and sex)12.

Areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry (DXA) is the most used 
exam for osteoporosis diagnosis and fracture risk assessment. It is a reproducible method with a low radiation 
dose. The main parameter is the T-score, which is considered normal when greater than − 1.0 standard deviation 
(SD); osteopenia is considered at − 1 to − 2.5 SD and osteoporosis at less than − 2.5 SD13. A reduction in aBMD 
has been independently associated with a higher number and greater severity of vertebral and hip fractures13, 14. 
Nevertheless, the Rotterdam study15 revealed a need for a more predictive tool based on results indicating that 
more than 60% of fractures occur in individuals considered to have a low risk. With its routine use worldwide, 
some authors have specified key limitations with regard to pitfalls in measuring and interpreting bone mineral 
density (BMD)16. For example, the need for internal rotation of the femur in 15–20% of cases favors an anteverted 
position, with a further 2.8% increase in BMD17. Other authors recommend avoiding Ward’s area18, 19, in which 
osteoporosis can be overestimated20.

High-resolution peripheral quantitative computed tomography (HR-pQCT) is a method that can address the 
deficiencies of DXA. It allows 3-D evaluation of trabecular and cortical bone compartments separately, as well as 
volumetric bone mineral density and structural parameters. In addition, HR-pQCT provides data on biomechani-
cal characteristics through finite element software21, 22, offering better predictors of fracture risk than DXA23.

To the best of our knowledge, only one study has shown an inverse association between trabecular bone 
volume (measured with HR-pQCT) and CACs, though only end-stage dialysis chronic kidney disease (CKD) 
patients were included24. Hence, the relationship in asymptomatic individuals with subclinical pathologies 
according to HR-pQCT remains unclearknown using HR-pQCT. This study aimed to investigate whether there 
is an association between coronary artery calcification and density and BMD (obtained by HR-pQCT) in a cohort 
of community-dwelling older adults.

Materials and methods
Population of study.  This was a cross-sectional study of 256 individuals older than 65  years. The data 
belonged to a third party (a cohort of community-dwelling older adults living in São Paulo city and participating 
in the São Paulo Ageing and Health Study [SPAH] study)25 (Fig. 1). Contact with the participants was initially 
achieved by phone, after which a physician explained the study aims and logistics. Recruitment was carried 
out from 4/30/2014 to 4/13/2015. Exclusion criteria were individuals with a history of liver failure, creatinine 
clearance (CrCl) < 30 mL/min/1.73  m2, hyperthyroidism, hypothyroidism, uncontrolled diabetes, malabsorp-
tion, other bone metabolic diseases (primary hyperparathyroidism, osteomalacia) based on previous laboratory 
results concerning bone metabolism, surgical myocardial revascularization, percutaneous coronary interven-
tion, and chronic steroid use. The research was approved by the Ethics Committee of the University of São Paulo 
School of Medicine (CAPPesq # 522.369), as based on the World Medical Association’s guidance and principles, 
and subject to the Declaration of Helsinki, including its last amendment by the General Assembly, Fortaleza, 
Brazil, October 201326.

Figure 1.   Flow diagram of the study population.
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All participants agreed to and signed the written informed consent form prior to enrollment into the study, 
thereafter, they were asked to fill out a questionnaire, which captured personal pathological background, cur-
rent medications, and health behaviors. Specially trained examiners performed anthropometric measurements. 
Height and weight were measured using a digital scale with a stadiometer (Mettler Toledo, mod. 2096PP, Toledo 
do Brasil Indústria de Balanças Ltda); all measurements were taken closest to 0.1 kg and 0.1 cm, and each par-
ticipant’s weight in kilograms was divided by the square of their height in meters to calculate body mass index 
(BMI). Waist circumference measurement was also performed.

Systemic arterial hypertension (SHT) was defined as documented history or treatment with antihypertensive 
medications; diabetes mellitus (DM) was defined as physician diagnosis and/or use of insulin or oral hypoglyce-
mic agents and dyslipidemia (DLP) as a known but untreated disease or by current use of hypolipidemic drugs. 
Metabolic syndrome was defined using the recommendations of the third NCEP panel report27. A positive smok-
ing history was considered current or previous smoking. A history of acute myocardial infarction (AMI), angina, 
stroke, carotid disease, osteoporosis, and coffee consumption was self-reported. The degree of physical activity 
was classified as either low (no housework), moderate (housework, gardening, nonregular walking), or high 
(regular physical activity outside the usual routine, e.g., walking or dancing at least twice a week for 30 min28). 
Coffee consumption data collection was based on a previously validated questionnaire29: participants were asked 
if they consumed at least one cup daily (50 mL = 1 cup). Alcohol intake was split into four groups: current drinker, 
intake in the last 3–4 years, never, or in a social manner. Bone T-score (BT score) ≤ − 2.5 was considered the 
smallest measurement acquired by DXA for the lumbar spine, total hip, or femoral neck. New fracture was self-
reported and considered if present in the last 5 years after the initial entry-study date. To calculate creatinine 
clearance (CrCl), we used the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation30.

Laboratory parameters.  Blood samples were collected to assess the lipid profile, creatinine, glycemia, 
insulin, and biochemical bone metabolism profile (calcium, phosphorus, alkaline phosphatase, PTH, and 
25-hydroxyvitamin D) and perform ultrasensitive PCR.

Bone remodeling markers were analyzed in 10 mL of fasting blood stored at − 80 °C. The following markers of 
serum bone metabolism were examined: CTX (C-terminal telopeptide type I collagen) and P1NP (aminoterminal 
propeptide of type I procollagen) by electrochemiluminescence (Elecsys systems, Roche Diagnostics, Mannheim, 
Germany). The intra-assay coefficients of variation (CVs) for CTX and P1NP were 2.5 and 2.2%, respectively.

Evaluation of coronary calcification.  Image acquisition for coronary calcium evaluation was performed 
using a 320-detector CT system (Aquilion One ViSION, Toshiba Medical System, Japan), with cardiac synchro-
nization using prospective triggering with a maximum temporal resolution of 125–250 ms as referenced in the 
literature31. The produced slice thickness of 0.5 mm was reconstructed to a 3 mm slice thickness for analysis, 
X-ray tube peak voltage was fixed at 120 kV, and the tube current was adjusted to the patient’s body size, with a 
range of 250–450 mA. The adaptive iterative dose reduction 3-dimensional algorithm (AIDR 3D) was used for 
iterative reconstruction32, resulting in a radiation dose ranging from 2.6 to 4.0 mSv. CAC values were calculated 
using the Agatston score9 at a dedicated workstation (Aquarius workstation, TeraRecon, Inc, San Mateo, CA). 
The nonenhanced scan protocol was used to analyze the calcium score evaluation. The images were evaluated by 
one specialist medical doctor with at least 2 years of specific training who was unaware of the patient’s clinical 
and tomographic information.

Evaluation of the distal tibia and radius using HR‑pQCT.  The distal segment of the tibia and radius 
were evaluated. The measurement included 110 slices, corresponding to a 9.02 mm section along the axial direc-
tion. For the distal radius and tibia, the first slice of the scan was positioned at fixed distances from the reference 
line of 9.5 and 22.5 mm, respectively33. Microarchitecture was measured using a three-dimensional HR-pQCT 
system (Xtreme CT; Scanco Medical AG). This system allowed simultaneous acquisition of a stack of parallel 
slices with a resolution of 82 µm (voxel size). The following imaging parameters were used: 60 kVp effective 
energy, 95 mA X-ray tube current, and 1536 × 1536 matrix. Quality control was monitored through daily exami-
nations of a phantom (Phanton) containing hydroxyapatite rods (HA) incorporated in an equivalent resin fabric 
(QRM, Moehrendorf, Germany). Daily device calibration was performed to obtain images with good technical 
quality; parameters were kept stable throughout the study period.

All measurements were obtained using the same scanner, and one biomedical specialist analyzed the data 
according to guidelines21. The quality of the scan image was categorized as follows: perfect (G1), showing a 
slight (G2); moderate (G3); or unacceptable (G4) degree of movement artifact34. As the presence of movement 
artifacts was unacceptable, for the distal tibia, only 11 exams were repeated due to movement during the exam 
(talking, coughing).

The following trabecular parameters were analyzed: Tb.vBMD, trabecular volumetric density (mg HA/cm3); 
Tb.N, number of trabeculae (1 mm, SD); Tb.Th, trabecular thickness (mm); Tb.Sp, trabecular separation (mm); 
and cortical parameters: Ct.vBMD, cortical volumetric density (mg HA/cm3); Ct.Th, mean cortical bone thick-
ness (mm); and Ct.Po, cortical porosity.

In addition to standard morphological analysis, automatic segmentation software called “advanced cortical 
analysis” was used to determine cortical parameters35, 36.

The HR-pQCT precision measurement from our laboratory, expressed as the coefficient of variation, ranged 
from 0.25 to 1.16% for the density parameters at the tibia site37.

Areal bone mineral density.  Areal bone mineral density at the lumbar spine, femoral neck, and total hip 
were measured using DXA (Hologic QDR 4500, Inc. Bedford, MA, USA), and the results are expressed in g/cm2. 
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The T-score was applied as a noninvasive tool for osteoporosis diagnosis and as an addendum to the original 
description by the WHO criteria definition threshold30, 38. The same DXA scanner was used for all single exams, 
and the results were evaluated by one biomedical specialist. The least significant changes (LSCs) for BMD meas-
urement were 0.033 g/cm2 at the lumbar spine, 0.047 g/cm2 at the femoral neck, and 0.039 g/cm2 at the total hip.

Statistical analysis.  Statistical analysis was performed using STATA statistical software, version 12.0 
(Stata Corp., College Station, USA). Continuous variables are expressed as medians and interquartile ranges or 
means ± standard deviations depending on the Kolmogorov–Smirnov test for normality. Continuous variables 
in the total sample were separated by sex and analyzed for differences with Student’s t test if they showed a para-
metric pattern or the Mann–Whitney test if they did not (as with insulin and RCP values). Linkert scales such as 
for alcohol consumption and degree of physical activity were also evaluated by the Mann–Whitney test. In the 
case of binomial variables, a Chi-squared test was performed, and Fisher’s adaptation was used as needed. The 
study’s response variable was the calcium score, as expressed by its integer value. This variable was grouped by 
sex, assumed nonnegative integer values, with an asymmetric distribution on the left. Variables related to HR-
pQCT were standardized in z scores using the Formula: z = (observed value − sample mean)/sample standard 
deviation39. T-scores were used to evaluate bone density compared to normal values in a young adult and formed 
part of the regression model. In univariate analysis, variables with p < 0.20 were used in the regression model 
with a stepwise variable selection procedure. Analysis of association was performed using a generalized linear 
regression model with a Poisson probability distribution because of the nonparametric distribution of calcium 
content. In addition, a layered stratification approach was taken: (1) by sex; and (2) by anatomical site. Thus, 
there were four groups (radio men, tibia men, radio women and tibia women). All tests were two-tailed, and p 
values < 0.05 were considered statistically significant.

Results
Anthropometric and clinical characteristics.  The baseline patient characteristics regarding anthropo-
metric and clinical variables are shown in Table 1. The mean age was 79.5 ± 4.24 years without sex differences. 
Women represented the largest group (65%). In them was observed a higher percentage of non-white women 
compared to men. Waist circumference was similar in both groups. BMI, hypertension, and diabetes were sig-
nificantly higher in women, and consequently, women had a higher prevalence of metabolic syndrome. Stroke 
and osteoporosis prevalence was also higher in women. In contrast, alcohol consumption was higher in men. 
Different grades of physical activity from low to high were similar in both groups. Although the women had 
more fall histories and worse BT scores, they had similar new fracture events when compared to men.

Regarding coronary calcium, median CAC values did not differ significantly between the groups (Fig. 2).

Laboratory characteristics.  Lipid indices (CT, HDL, and LDL) and phosphorus were higher in women; 
carbohydrate metabolism, as represented by glucose and insulin, was similar for both groups. Although plasma 
creatinine was different between the groups, renal function, as measured by clearance, was similar for men and 
women (Table 2).

Medication use.  Table 3 shows that thiazide diuretics were the most used medication (and more frequently 
in women), followed by statins and beta-blockers. Regarding osteoporosis, specific treatment was used more by 
women than men: almost twice as much for calcium and 25(OH)D and with a higher proportion for bisphos-
phonate. Unfortunately, neither the specific kind of bisphosphonate nor the dosage of vitamin D was recorded.

Bone mineral density and bone microarchitecture based on CAC​.  The median CAC value was 54.5 
(IQR 1–290.75) for the general population, with no difference observed between women [33 (IQR 0.25–236.5) 
and men (80.5 (IQR 1.25–450.25)], p = 0.06 (supplementary information).

In univariate analysis, total hip aBMD in both sexes and femoral neck aBMD in men were associated with 
lower CAC. Inversely, lumbar spine aBMD in both sex, and femoral neck aBMD in women, were associated 
with higher coronary calcification. Also, we found that T-score ≤ − 2.5 SD, was associated with higher coronary 
calcification in women; however, the association was the opposite in men.

Regarding HR-pQCT parameters, Ct.vBMD and Ct.Po in women at the tibia was negatively and positively 
associated with CAC, respectively. In men, more variables were associated with higher CAC, namely, Ct.vBMD, 
CT.Po, Tb.N, and Ct.Th. Overall, trabecular parameters were positively associated with CAC, with a 31–47% 
chance for each standard deviation of the z score. For the radius, only CT.Po had a positive association with 
CAC in women, and the other parameters followed an opposite trend. In men, Ct.vBMD, Ct.Th, and CT.Po were 
positively associated with CAC (Tables 4 and 5).

Multivariate analysis was adjusted for CAC and sex, the dependent variables were DXA and HR-pQCT 
parameters. Surprisingly, some tibia and radius DXA/HR-pQCT results in multivariate analysis were different 
between the sexes (Table 6), with paradoxical results, as described below.

Tibia measurements.  In women, regarding DXA results, a greater quantity of CACs was associated with 
BT score ≤ − 2.5 SD. Concerning HR-pQCT, CT.Po showed a positive relationship. In contrast, Ct.vBMD had an 
inverse relation of 21% for each unit in the standard deviation of the z score.

In men, BT score ≤ − 2.5 SD was significantly associated with lower CACs. Concerning HR-pQCT parameters, 
only CT.Po was associated with higher CAC, with a positive 44% chance for a unit in the calcium score, Ct.vBMD 
presented a coefficient opposite to what was expected compared to women.
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Radius measurements.  In women, BT score ≤ − 2.5 SD was also significantly associated with higher CACs. 
About HR-pQCT parameters, CT.Po and Ct.vBMD were associated with greater coronary calcification.

In men, vascular calcification was not related to osteoporosis based only BT score ≤ − 2.5 SD. Concerning 
CT.Po, it was congruent not only with the radius measurements in women but also with the tibial measurements. 
However, in men, Ct.vBMD showed an inverse relationship with coronary calcification (Table 6).

Discussion
In this cross-sectional study involving healthy older adults, we observed an association between CAC and HR-
pQCT parameters. Our main findings suggest an inverse relationship between calcium content in the coronary 
arteries and bone microarchitecture.

Previous studies have revealed a relationship between CAC and bone density. Using DXA and multide-
tector tomography in postmenopausal women, Lee et al.40 reported an associated odds ratio of 2.79, 95% CI 
1.05–6.90) for osteoporosis, with a CAC score above 100 and higher odds of multivessel disease (8.91, 95% CI 
1.93–41.22), as adjusted for cardiovascular risk factors and age. Nonetheless, that study did not address intake 
of bone metabolism drugs.

Table 1.   Anthropometric and clinical characteristics of 256 older adults, separated by sex. Continuous 
variables are represented as the mean ± standard deviation (t test); discontinuous variables are represented as 
the median and interquartile range (Mann–Whitney U test); binomial variables are represented as the number 
and percentage (Chi2 test); *Variables with Linkert scales were analyzed by the Mann–Whitney U test. WC 
waist circumference, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, DM 
diabetes, HT hypertension, DLP dyslipidemia, MI myocardial infarction, DVT deep-vein thrombosis, BT score 
bone T score.

Variable
Total
N = 256

Women
N = 168

Men
N = 88 p value

Age (years) 79.5 ± 4.2 (68–94) 79.7 ± 4.2 (70–94) 79 ± 4.3 (68–92) 0.200

Height (cm) 153.2 ± 8.8 149 ± 6.9 161.2 ± 7.5 < 0.001

Weight (kg) 67.4 ± 12 66.4 ± 12.2 69.3 ± 11.6 < 0.070

WC (cm) 96 ± 11.1 96.6 ± 11.5 94.8 ± 10.2 0.223

BMI (kg/cm2) 28.7 ± 4.9 29.9 ± 5.0 26 ± 4.2 < 0.001

Race

White 75 (29.3%) 44 (26.2%) 31 (35.2%)
0.310

Non-White 181 (70.7%) 124 (73.8%) 57 (64.8%)

SBP (mmHg) 158 ± 23 (105–220) 159 ± 23 (105–220) 154 ± 23 (105–217) 0.382

DBP (mmHg) 84 ± 12 (56–131) 84 ± 15 (60–196) 84 ± 13 (56–124) 0.560

Alcohol consumption*

Current 4 (1.6%) 0 (0%) 4 (4.6%)

< 0.001
Last 3–4 years 2 (0.8%) 0 (0%) 2 (2.3%)

Never 201(78.5%) 143 (85.1%) 58 (65.9%)

Social 49 (19.1%) 25 (4.9%) 24 (27.3%)

Smoking 24 (9.4%) 7 (8%) 17 (10.1%) 0.570

Degree of physical activity*

Low 40 (15.6%) 28 (16.7%) 12 (13.6%)

0.199Moderate 149 (58.2%) 102 (60.7%) 47 (53.4)

High 67 (26.2%) 38 (22.6%) 29 (33%)

Coffee Consumption 231 (90.2%) 156 (92.9%) 75 (85.2%) 0.051

DM 58 (22.7%) 42 (25%) 16 (18.2%) 0.210

Metabolic syndrome 103 (40.2%) 84 (50.6%) 19 (21.6%) < 0.001

HT 192 (75%) 133 (79.2%) 59 (67.1%) 0.030

DLP 117 (45.7%) 89 (53%) 28 (31.8%) 0.001

Angina 1 (0.4%) 1 (0.6%) 0 (0%) 1.000

MI 8 (3.1%) 5 (3%) 3 (3.4%) 1.000

Stroke 20 (7.8%) 9 (5.4%) 11 (12.5%) 0.040

DVT 6 (2.3%) 5 (3%) 1 (1.1%) 0.660

BT score ≤ − 2.5 101 (39.5%) 81 (48.2%) 20 (22.7%) < 0.001

New fracture 17 (6.6%) 14 (8.3%) 3 (3.4%) 0.130

Fall 76 (29.7%) 58 (34.5%) 18 (20.5%) 0.010
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Later, a large cohort study with an 8-year follow-up41 found increased mortality risk and CAC related to BMD. 
The study used the trabecular thoracic spine as a reference for BMD levels, and after stratifying CAC into four 
categories, the observed association was more robust in postmenopausal women than men. Interestingly, the 
authors also explored ethnicity and found a weaker link for Asians in the CAC 1–100 category. We were unable 
to investigate this link because our population was not ethnically diverse.

Cortical and trabecular bone loss exhibited different behaviors in renal patients. Costa et al.42 used vertebral 
tomography and observed that cortical bone loss in mid-term follow-up (24 months), unlike trabecular bone 
loss, was not associated with aortic calcification. One of the hypotheses to explain this lack of association was 

Figure 2.   Coronary calcium content between the sexes. CACs values are expressed in a logarithmic display and 
sex comparisons made by Mann–Whitney test.

Table 2.   Laboratory characteristics of 256 older adults, separated by sex. The mean ± standard deviation 
was adopted for all variables (t test), except for insulin* represented with median + interquartile range 
25–75 (Mann–Whitney U test); HDL high-density lipoprotein, LDL low-density lipoprotein, ClCr estimated 
creatinine clearance, iPTH parathyroid hormone, 25OHD 25-hydroxyvitamin D, CRP C-reactive protein, 
CTX collagen type I amino-terminal telopeptide, P1NP amino-terminal propeptide of type I collagen. p value 
compares female vs. male variables.

Variable
Total
N = 256

Women
N = 168

Men
N = 88 p value

Blood glucose, mg/dL 102 ± 28 103 ± 30 101 ± 24 0.482

Total Cholesterol, mg/dL 207 ± 44 214 ± 45 192 ± 37 < 0.001

HDL, mg/dL 56 ± 15.16 59 ± 15 50 ± 13 < 0.001

LDL, mg/dL 126 ± 40 129 ± 43 119 ± 33 0.030

Triglycerides, mg/dL 132 ± 63 121 ± 63 121 ± 63 0.054

Creatinine, mg/dL 0.92 ± 0.28 0.83 ± 0.20 1.08 ± 0.32 < 0.001

ClCr mL/min/1.73 m2 75.71 ± 19 78.55 ± 33 74.73 ± 20 0.544

Alkaline phosphatase, U/L 76.92 ± 29 78.55 ± 33 73 ± 21 0.216

Phosphorus, mg/dL 3.34 ± 0.49 3.47 ± 0.46 3.08 ± 0.45 < 0.001

Calcium, mg/dL 9.68 ± 0.49 9.7 ± 0.51 9.63 ± 0.46 0.291

iPTH, pg/dL 56.79 ± 27 56.1 ± 22 58.09 ± 35 0.627

25(OH)D, ng/mL 23 ± 9 23 ± 9 24 ± 9 0.700

Insulin, mU/L* 10.90 [6.98–16.7] 11.8 [7.5–18.7] 9.05 [5.9–13.2] < 0.001

CRP, mg/L 3.90 ± 9.57 4.03 ± 9.71 3.65 ± 9 0.071

CTX, ng/mL 0.27 ± 0.17 0.27 ± 0.17 0.27 ± 0.17 0.985

P1NP, ng/mL 39 ± 26 40 ± 28 37 ± 20 0.355
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that cortical bone has lower porosity and turnover rates than trabecular bone. The study found no effect of bone-
affecting medications (diuretics, calcium base phosphate binders, and calcitriol).

Another study evaluated the relationship between BMD (assessed by HR-pQCT) and ischemic heart disease 
(myocardial infarction and angina)43. Interestingly, lower cortical volumetric BMD in the distal radius but not 
in the tibia was found; the study did not estimate coronary calcium content or medications, which can modify 
bone turnover.

Other studies, however, showed inverse results between vessel calcification and BMD. Aoyagi et al.44 evaluated 
aortic calcification contrasting with different skeletal sites (calcaneus, proximal and distal radius) and failed to 

Table 3.   Absolute and relative frequencies of medications used in 256 older adults, separated by sex. ACEI 
angiotensin-converting enzyme inhibitor, ASA acetylsalicylic acid, 25(OH)D 25-hydroxyvitamin D.

Variable
Total
N = 256—%

Women
N = 168—
%

Men
N = 88—% p value

ACEI 89 34.8 58 34.5 31 35.2 0.910

Thiazide 109 42.6 81 48.2 28 31.8 0.012

Calcium blocker 47 18.4 35 20.8 12 13.6 0.150

Beta-blocker 53 20.7 42 25.0 11 12.5 0.010

Statin 83 32.4 64 38.1 19 21.6 0.007

ASA 72 28.1 45 26.8 27 30.7 0.510

Warfarin 4 1.6 3 1.8 1 1.1 1.000

Levothyroxine 31 12.1 26 15.5 5 5.7 0.020

Insulin use 17 6.6 11 6.6 6 6.8 0.940

Supplemental calcium 86 33.6 69 41.1 17 19.3 < 0.001

25(OH)D 111 43.4 91 54.2 20 22.7 < 0.001

Bisphosphonate 98 38.3 84 50.0 14 15.9 < 0.001

Glucocorticoid 4 1.6 3 18 1 1.1 1.000

Table 4.   Bone mineral density (DXA) and bone microarchitecture (HR-pQCT) for CAC status (z score) in 
women. Exp β equation coefficient, aBMD areal bone mineral density, BT score bone T-score, SD standard 
deviation, Tb.vBMD trabecular volumetric density, Ct.vBMD cortical volumetric density, Tb.N trabeculae 
number, 1 mm, Tb.Th trabecular thickness, Tb.Sp separation between trabeculae, Ct.Th cortical thickness, CT.
Po cortical porosity, CI confidence interval.

Variable Exp β 95% CI p value

DXA

aBMD lumbar spine (g/cm2) 1.1159 1.1003 1.1317 < 0.001

aBMD femoral neck (g/cm2) 1.1020 1.0863 1.1180 < 0.001

aBMD total hip (g/cm2) 0.9716 0.9571 0.9862 < 0.001

BT score ≤ − 2.5 SD 1.1118 1.0891 1.1350 < 0.001

HR-pQCT

Tibia

 Tb.vBMD (mg HA/cm3) 1.3139 1.2984 1.3296 < 0.001

 Ct.vBMD (mg HA/cm3) 0.7629 0.7521 0.7738 < 0.001

 Tb.N (1/mm) 1.0620 1.0501 1.0740 < 0.001

 Tb.Th (mm) 1.3100 1.2973 1.3228 < 0.001

 Tb.Sp (mm) 0.8662 0.8566 0.8759 < 0.001

 Ct.Th (mm) 1.0112 0.9990 1.0236 0.072

 Ct.Po (1) 1.1743 1.1614 1.1872 < 0.001

Radius

 Tb.vBMD (mg HA/cm3) 1.2219 1.2070 1.2371 < 0.001

 Ct.vBMD (mg HA/cm3) 1.1900 1.1757 1.2045 < 0.001

 Tb.N (1/mm) 1.1025 1.0904 1.1148 < 0.001

 Tb.Th (mm) 1.0734 1.0639 1.0831 < 0.001

 Tb.Sp (mm) 0.8708 0.8608 0.8809 < 0.001

 Ct.Th (mm) 1.2539 1.2391 1.2689 < 0.001

 Ct.Po (1) 1.0601 1.0539 1.0664 < 0.001
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Table 5.   Bone mineral density (DXA) and bone microarchitecture (HR-pQCT) for CAC status (z score) 
in men. Exp β equation coefficient, aBMD areal bone mineral density, BT score bone T-score, SD standard 
deviation, Tb.vBMD trabecular volumetric density, Ct.vBMD cortical volumetric density, Tb.N average number 
of trabeculae, 1 mm, Tb.Th trabecular thickness, Tb.Sp separation between trabeculae, Ct.Th cortical thickness, 
CT.Po cortical porosity, CI confidence interval.

Variable Exp β CI 95% p value

DXA

aBMD lumbar spine (g/cm2) 1.0006 0.9881 1.0132 0.928

aBMD femoral neck (g/cm2) 0.9113 0.9010 0.9217 < 0.001

aBMD total hip (g/cm2) 0.9506 0.9392 0.9621 < 0.001

BT score ≤ − 2.5 SD 0.7281 0.7088 0.7479 < 0.001

HR-pQCT

Tibia

 Tb.vBMD (mg HA/cm3) 1.0309 1.0191 1.0428 < 0.001

 Ct.vBMD (mg HA/cm3) 0.6745 0.6643 0.6848 < 0.001

 Tb.N (1/mm) 0.7417 0.7320 0.7516 < 0.001

 Tb.Th (mm) 1.4704 1.4522 1.4888 < 0.001

 Tb.Sp (mm) 1.4147 1.3821 1.4480 < 0.001

 Ct.Th (mm) 0.9184 0.9087 0.9283 < 0.001

 Ct.Po (1) 1.3852 1.3733 1.3972 < 0.001

Radius

 Tb.vBMD (mg HA/cm3) 1.2304 1.2163 1.2447 < 0.001

 Ct.vBMD (mg HA/cm3) 0.9114 0.9013 0.9216 < 0.001

 Tb.N (1/mm) 1.2857 1.2672 1.3044 < 0.001

 Tb.Th (mm) 1.1166 1.1009 1.1326 < 0.001

 Tb.Sp (mm) 0.5924 0.5754 0.6098 < 0.001

 Ct.Th (mm) 0.9264 0.9175 0.9355 < 0.001

 Ct.Po (1) 1.3613 1.3302 1.3931 < 0.001

Table 6.   Regression models for calcium content using bone mineral density (DXA) and HR-pQCT parameters 
at the tibia and radius stratified for sex. Exp β equation coefficient, CI confidence interval, SD standard 
deviation, BT score bone T-score, Ct. Po cortical porosity, z z score, Ct.vBMD cortical volumetric density.

Variable Exp β CI 95% p

Tibia

Women

BT score ≤ − 2.5 SD 1.03 1.00 1.05 < 0.001

Ct.Po z (1) 1.12 1.10 1.13 < 0.001

Ct.vBMD z mg HA/cm3 0.79 0.78 0.81 < 0.001

Men

BT score ≤ − 2.5 SD 0.75 0.73 0.77 < 0.001

Ct.Po z (1) 1.44 1.42 1.46 < 0.001

Ct.vBMD z mg HA/cm3 1.10 1.07 1.13 < 0.001

Radius

Women

BT score ≤ − 2.5 SD 1.20 1.18 1.23 < 0.001

Ct.Po z (1) 1.07 1.07 1.08 < 0.001

Ct.vBMD z mg HA/cm3 1.22 1.20 1.24 < 0.001

Men

BT score ≤ − 2.5 SD 0.73 0.71 0.75 < 0.001

Ct.Po z (1) 1.33 1.30 1.37 < 0.001

Ct.vBMD z mg HA/cm3 0.98 0.88 0.99 0.012
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observe a relationship in women. Their rationale revolved around hormonal imbalances and a lack of knowledge 
about vitamin D intake.

To the best of our knowledge, only one study in the literature has compared these two biological parameters 
using highly accurate imaging methods. However, this study was performed in a specific population with chronic 
kidney disease on dialysis, in whom lower trabecular and cortical parameters were associated with higher coro-
nary calcification24.

Our results showed that higher CT.Po in both sexes and lower Ct.vBMD in women were associated with 
higher CACs. Furthermore, BT score ≤ − 2.5 SD, as evaluated by DXA, was associated with higher CACs in 
women.

Regarding HR-pQCT analysis, changes in cortical bone parameters were more greatly influenced by age and 
sex45, 46. Mc Donald et al.47 showed a decline in Ct. BMD with age in both women and men (14% and 17%, respec-
tively), and the increase in CT.Po was three times higher in women than in men. Whitmarsh et al.48 observed 
a significant decrease in Tb. BMD (38.1%) and Ct.Th (13%) using micro-CT on femoral head specimens from 
women undergoing hemiarthroplasty from the 9th to the 10th decade of life. The difference between the sexes 
likely involves the influence of testosterone supporting periosteal bone expansion and estrogen preventing bone 
loss49. This might explain why our findings were more evident in women.

Moreover, there is evidence of a different response to exogenous and endogenous factors, in addition to 
the metabolic and structural differences between cortical and trabecular tissue50. A study analyzing HR-pQCT 
reference curves in 450 healthy women aged 20–85 years observed an age-related increase in CT.Po in women, 
though trabecular parameters remained relatively stable35.

A hypothesis that might explain this antagonistic pattern is the existence of an intracortical remodeling 
transition area that increases porosity by the process of trabecularization of the internal cortex, which may cause 
underestimation in the measurement of cortical bone and overestimation in that of trabecular tissue51. This 
phenomenon is subject to ex vivo analysis using computed microtomography (μCT), HR-pQCT images from 
cadaveric specimens, or electron microscopy52. A study of postmortem femur specimens obtained from 24 white 
women aged 29–99 years (mean age 69 years) suggested that cortical thinning occurs owing to the coalescence 
of cortical pores rather than endocortical expansion53.

This behavior is likely amplified by interaction of the similar pathophysiological processes of the two illnesses. 
Because of the high accuracy of both methods in diagnosis and risk stratification, it may be relevant to continue 
investigating this association to obtain new prevention and treatment strategies that involve both pathologies, 
especially for females.

Furthermore, our results reinforce knowledge of the relationship between VC and decreased bone remodeling 
and have important clinical implications in the design of more specific diagnostic and treatment strategies for 
both pathologies.

We recognize the limitations of our study, as a cross-sectional design does not allow for inference of cause 
and effect in the association. The sample size might be considered small regarding the initial referential study, 
which confers less statistical power. The small number of participants in the group of men may explain those 
results, and the differences in bone-health medications were lower in this group.

In conclusion, we observed that cortical bone impairment at the tibia and radius, as assessed by HR-pQCT, 
is associated with increased coronary calcification in older people from the São Paulo Ageing and Health Study 
cohort. Otherwise, bone mineral density by DXA showed the opposite trend when related to coronary calcifica-
tion depending on sex.
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