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Plasmodium falciparum, originates from its initial
transcriptional response
Lei Zhu1,22, Rob W. van der Pluijm2,3,4,22, Michal Kucharski 1,22, Sourav Nayak1, Jaishree Tripathi1,

Nicholas J. White2,3, Nicholas P. J. Day2,3, Abul Faiz5,6, Aung Pyae Phyo 3,7, Chanaki Amaratunga2,3,8,

Dysoley Lek9, Elizabeth A. Ashley 3,10, François Nosten 3,11, Frank Smithuis3,7, Hagai Ginsburg12,

Lorenz von Seidlein2,3, Khin Lin13, Mallika Imwong2,14, Kesinee Chotivanich2,14, Mayfong Mayxay10,15,

Mehul Dhorda2,3,16, Hoang Chau Nguyen17, Thuy Nhien Thanh Nguyen17, Olivo Miotto 2,3,18,19,

Paul N. Newton3,10, Podjanee Jittamala2,20, Rupam Tripura2,3, Sasithon Pukrittayakamee2,13,21,

Thomas J. Peto 2,3, Tran Tinh Hien20, Arjen M. Dondorp 2,3✉ & Zbynek Bozdech 1,2✉

The emergence and spread of artemisinin-resistant Plasmodium falciparum, first in the Greater

Mekong Subregion (GMS), and now in East Africa, is a major threat to global malaria

elimination ambitions. To investigate the artemisinin resistance mechanism, transcriptome

analysis was conducted of 577 P. falciparum isolates collected in the GMS between

2016–2018. A specific artemisinin resistance-associated transcriptional profile was identified

that involves a broad but discrete set of biological functions related to proteotoxic stress, host

cytoplasm remodelling, and REDOX metabolism. The artemisinin resistance-associated

transcriptional profile evolved from initial transcriptional responses of susceptible parasites to

artemisinin. The genetic basis for this adapted response is likely to be complex.
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Artemisinin-based combination therapies (ACTs) have
been critical to the success in reducing the global burden
of falciparum malaria between 2000 and 20151. Loss of

these drugs to resistance would be a disaster. Historically the
Greater Mekong Subregion (GMS) has been the origin of anti-
malarial drug resistance in P. falciparum. In recent years the
emergence and spread of artemisinin resistance and, subse-
quently, partner drug resistance has led to high failure rates of
ACTs in several parts of the GMS2,3. Recently artemisinin resis-
tance has arisen independently in East Africa (parts of Rwanda
and Uganda)4. The phenotypic manifestation of artemisinin-
resistant P. falciparum infections in vivo is slowed parasite
clearance after treatment with artesunate. The slow clearance
phenotype, defined by a parasite clearance half-life (PC½) > 5 h, is
attributed to loss of sensitivity of P. falciparum to artemisinins
during the early stage of the intraerythrocytic developmental
cycle (IDC), ring stage5,6 and is causally associated with non-
synonymous mutations in the propeller region of the P. falci-
parum kelch 13 gene (PfK13)7,8. Artemisinin resistance was first
reported in western Cambodia, Pailin province in 2009. Initially,
over 20 different PfK13 mutations were associated with the slow
parasite clearance phenotype8–10. However, since 2013 the soft
sweeps resulting in multiple emergences of PfK13 mutations in
the eastern part of the GMS were largely replaced by a selective
sweep of a haplotype bearing a single nonsynonymous PfK13 SNP
(C580Y)11. This single lineage of artemisinin-resistant P. falci-
parum spread and expanded through western and northern
Cambodia, northeastern Thailand and southern Vietnam, and
Lao PDR8,12,13. This was soon joined with molecular markers
associated with resistance to the ACT partner drug piperaquine.
PfK13-propeller domain mutations in artemisinin-resistant
parasite lineages have also emerged independently and spread
through Myanmar and western Thailand14. Moreover, PfK13-
propeller domain mutations have been reported in Northern
India15, and more recent foci include independent emergence in
Papua New Guinea16, Rwanda4, Ethiopia17, and other parts of
sub-Saharan Africa18.

The molecular mechanism by which the PfK13 mutations
confer artemisinin resistance is a subject of intense research using
in vitro and in vivo models (reviewed in19–23). Collectively, these
studies have proposed the involvement of multiple cellular and
metabolic processes in artemisinin resistance including hae-
moglobin degradation, proteotoxic/unfolded protein stress
response, vesicular biogenesis as well as oxidative stress response
and mitochondrial functions. Translational suppression mediated
by phosphorylation of eIF2α, linked to cell quiescence and
slowing of the IDC can also confer artemisinin resistance
in vitro24. Missense or loss-of-function alleles of other genes were
also shown to contribute to artemisinin resistance in vitro. These
include coronin25, falcipain2a/b26, ubiquitin hydrolase
(pcubp1)27, and μ-subunit of the AP2 vesicular trafficking com-
plex (pcap2)27. Thus, it appears that artemisinin resistance is
mediated by a multifaceted mechanism that results from a con-
certed action of several metabolic and cellular factors. These may
act in different, not mutually exclusive, combinations28.
Undoubtedly these mechanisms drive artemisinin resistance of P.
falciparum in in vitro conditions in which the parasites are
supplied with superfluous amounts of nutrients, kept at uniform
temperature, are not targeted by the host’s immune system and
other ambient stresses exerted by the host’s environment29. The
question now is what are the roles of each of these identified
components of artemisinin resistance in natural infections,
in vivo.

To investigate this, several genome-wide association studies
(GWAS) were conducted. These identified large regions on
chromosome 10 and 13, and 1430,31, and subsequently seven

nonsynonymous SNPs associated with PfK13 SNPs32. A con-
current longitudinal study of the GMS parasites collected between
2001 and 2014 suggested that additional genes might be asso-
ciated with artemisinin resistance including an additional kelch
protein on chromosome 1033. Collectively, these studies detected
genes that could be loosely linked with the artemisinin resistance-
implicated biological functions, however, no experimental evi-
dence of their role in the artemisinin resistance clinical phenotype
has been reported so far.

Transcriptome-wide association analysis (TWAS) is currently
emerging as the method of choice for identifying causative genetic
variations of complex traits in a wide range of biological systems
ranging from plants34 to human35–37. This is based on the wealth
of GWAS studies showing that the vast majority of genetic
polymorphisms associated with complex genetic traits (such as
genetic diseases) lay within the noncoding regions38. These are
typically affecting DNA regulatory sequences and thus gene
expression through which the phenotype is manifested39. This
likely also applies to P. falciparum as suggested by our earlier
study investigating expression quantitative trait loci (eQTL) in the
TRACI parasite isolates40. We then carried out transcriptome
analyses of the P. falciparum parasites from the Tracking Resis-
tance to Artemisinin Collaboration (TRACI) study conducted in
the GMS countries between 2011 and 20138,41. This showed that
artemisinin resistance is associated with broad transcriptional
changes of many genes, some of which may be linked with
inductions of the unfolded protein response (UPR) and with a
general deceleration of the IDC. Here we present a transcriptome
analysis of parasite isolates from a more recent cohort of P. fal-
ciparum natural infections collected in the GMS between 2016
and 2018; 5–7 years after the initial TRACI study8, and after the
recent selective sweep of PfK13 C580Y2. We identified a spectrum
of transcriptionally correlated genes that likely contribute to
artemisinin resistance via their altered transcriptional levels. We
termed this the artemisinin resistance-associated transcriptional
profile (ARTP) and provide evidence that its constitutive
expression may have evolved from the initial transcriptional
responses of sensitive P. falciparum parasites to the artemisinins.

Results
Transcriptome of the P. falciparum population in the GMS
2016–2018. The main purpose of this study was to identify specific
genes, presumably acting in concordance with the PfK13 mutations,
whose expression activity mediates/contributes to the physiological
state that enables the parasite cell to withstand the parasiticidal effects
of artemisinins. We conducted transcriptome analysis of P. falci-
parum parasites derived from the blood of patients with uncompli-
cated P. falciparum infections in 13 field sites across 6 GMS countries
(Fig. 1a and Supplementary Table 1). These samples were collected
during a large clinical treatment trial (TRACII) carried out from 2016
to 2018 that also characterized the spread of artemisinin resistance in
the GMS2. We isolated total P. falciparum RNA from the patients’
blood samples and performed both DNA microarray and Next
Generation Sequencing (RNA-seq) analysis42. Overall, we analyzed
577 samples collected at study enrolment to characterize the baseline
transcriptomic profiles (baseline, (bl)0 h sample set) (Supplementary
Fig. 1a). For 459 (of the 577) patients, samples were also collected 6 h
after administering an ACT to characterize the transcriptional
response of P. falciparum parasites to the artemisinin in vivo (tran-
scriptional response, (tr)6 h sample set) (Supplementary Fig. 1b).
While the DNA microarray was used to generate the transcriptomes
for all collected samples, there were sufficient levels of parasite
mRNA to perform RNA-seq-based transcriptome analyses for 188
and 159 of the (bl)0 h and (tr)6 h samples respectively42 (Supple-
mentary Fig. 1c, d).
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From the (bl)0 h sample set, we established the distribution of
the P. falciparum life cycle developmental stages in the peripheral
blood including the asexual IDC stages expressed as hours post
invasion (hpi) and the fractions of sexual stages (gametocytes)40

(Supplementary Fig. 2 and Supplementary Data 1). The (bl)0 h
sample set represented synchronized ring stage parasites
between 6 and 20 hpi, with ≤ 5% of the overall parasitemia
corresponding to gametocytes. Principle component analysis
(PCA) of the (bl)0 h transcriptome revealed parasite hpi composed
the major transcriptome difference across samples as it is strongly
correlated (Spearman rho= 0.87) with the first principal
component (PC1) accounting for up to 32% of the overall

transcriptome variation (Supplementary Fig. 3a). A significant
non-linear relationship was observed between the hpi and
expression (p < 0.001) of most of the studied genes measured by
DNA microarrays (70%) and RNA-seq (62%, Supplementary
Fig. 4). In contrast to the PC1, none of the subsequent top 2 to 12
PCs (each contributing > 1% of the overall transcriptome
variation) correlated with any epidemiological variables (i.e. patient
sex, age and time of collection etc.) and molecular biology
parameters (i.e., RNA yield, quality assessments etc.) suggesting
that the generated dataset was largely unaffected by the
methodological approach or epidemiology aspects of the study
(Supplementary Fig. 3a). The t-distributed stochastic neighbour

Fig. 1 Transcriptome of TRACII P. falciparum parasite population and a schematic illustration of the TPAS methodology. a Geographic distribution of all
samples used in this study. Pie charts represent the proportion of slow (PC½ > 5 h) and fast (PC½ < 5 h) clearing parasites, or lineages in categories based
on PfK13 mutations and plasmepsin II/III copy numbers (WT, KEL1 only, KEL1PLA1, other PfK13 MUT and unknown). On the right, 577 samples before drug
treatment are plotted to display two main clusters formed by the eGMS or wGMS parasites geographical distribution using t-SNE algorithm based on the
top 2-12 PCs. b TPAS explanation using an example gene of PHISTa (PF3D7_1372000). The expression-hpi/age relationship is shown as the raw
expression level (log2 ratio) plotted against the estimated hpi for the microarray data on the left (577 samples) and RNA-seq data on the right
(188 samples) with purple dots representing resistant parasites (PC½ > 5 h), black circles for susceptible parasites (PC½ < 5 h) and black dotted lines for
the loess curve using all dots. The expression-resistance relationship is represented by the expression residuals plotted against the PC½ for each data set.
The density plots at the bottom represent 100 times permutation result within lineages for the FPR calculation. c Workflow of FDR and FPR estimation for
the TPAS. The null p distribution was built using permutated resistance status (PC½ values) across parasite samples within lineages for FPR estimation and
between lineages for multiple testing correction.
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embedding (t-SNE) method using the PC2-12 revealed two major
parasite groups which separated according to the geographic
regions: western GMS (wGMS) and eastern GMS (eGMS) (Fig. 1a).
This grouping pattern also corresponds to the prevalence of
artemisinin resistance in the eGMS that is demarcated by the
expansion of the P. falciparum lineage carrying the PfK13 C580Y
mutation (named KEL1 lineage or PfPailin) of which 76% also
carried multiple copies of plasmepsin II (KEL1PLA1, Fig. 1a)2.
PfK13 wild type parasites from the eGMS did not exhibit any
strong association with either group, which further strengthens
this model (Supplementary Fig. 3a). Altogether these results
suggest that the selective sweep of the PfPailin or KEL1PLA1
lineage(s) in the eGMS over the last 5–7 years43 is mirrored by
transcriptional convergence with the eGMS parasites that is
distinct from the wGMS. This transcriptome pattern is pre-
sumably either contributing to the resistance mechanism and/or
alleviating a fitness cost to support its selection.

Transcriptome-phenotype association study of artemisinin
resistance. In human genetics, TWAS typically combine GWAS of
a studied phenotype on one side and independent datasets linking
DNA elements with transcription on the other36,37. By the virtue of
being a unicellular organism, in P. falciparum, we can correlate
transcriptional differences with the studied phenotype (here arte-
misinin resistance) directly; the approach we term Transcriptome-
Phenotype Association Studies (TPAS) (see “Methods”). First, we
conducted TPAS analysis on the (bl)0 h samples in order to identify
genes whose steady state mRNA levels correlated with the level of
artemisinin resistance represented by PC½. For this we applied a
generalized additive model to relate each gene’s expression to the
PC½ with a loess function along hpi (example in Fig. 1b). In this
model, the expression residuals reflect the relative mRNA abun-
dance unaffected by hpi and thus can be directly correlated to
PC½2. To control for multiple testing in correlating between
mRNA levels and PC½ values for the whole transcriptome, we
calculated the false discovery rate (FDR) for each gene based on
1000 permutations (Fig. 1c). The expression-resistance association
could also represent an expression-lineage relationship since the
artemisinin resistance status is confounded with K13 lineages that
77% of the susceptible (PC½ < 5 h) samples were from the WT
parasites in wGMS and 95% of the resistant (PC½ < 5 h) samples
were from the K13 mutant in eGMS (Fig. 1a). Due to this homo-
geneity, expression-resistance associations will have a lineage effect
if we use the entire data set for TPAS analysis or lose power if we
test only within sub geographical region (w/eGMS). To overcome
this, we estimated false positive rates (FPR) for each gene to control
the type I error by repeating the analysis 100 times with randomly
generated permutations (Fig. 1c), a method commonly used in
human genetics studies44,45. In each permutation, the lineage
structure was maintained and PC½ values were randomized
amongst the parasites within each lineage. Subsequently FPR was
calculated based on the null p distribution reflecting the probability
of expression-resistance association caused by expression-lineage
relationship. FPR < 0.05 (95% confidence) was applied to define
robust expression-resistance associations beyond parasite lineage
effect. By this we aimed to eliminate expression-lineage associations
and identified transcripts whose expression levels are associated
strictly with the PC½. One of the clearest examples was PHISTa
(PF3D7_1372000) which displayed a strong association with arte-
misinin resistance at p= 7.06E-27 (FDR= 0) with FPR= 0
(Fig. 1b, for more examples see Supplementary Fig. 5).

Next, we applied the above TPAS method to the DNA
microarray-derived data of 577 (bl)0 h samples and RNA-seq-
derived data of 188 (bl)0 hr samples separately. We observed good
correlation (Spearman rho= 0.68) between the TPAS results

obtained from these two platforms (Supplementary Fig. 6). Merging
the two results, we identified 69 upregulated and 87 downregulated
transcripts whose levels were significantly associated with artemi-
sinin resistance (FDR < 0.05, corresponding to p < 1e−10 in
microarray, p < 1e−6 in RNA-seq, note: these criteria were
subsequently used to define the ARTP, Fig. 2a). Out of these, 60S
ribosomal protein gene, L35ae (PF3D7_1142600), PHISTa
(PF3D7_1372000) erythrocyte membrane protein PfEMP3
(PF3D7_0219000), and PF3D7_1328400, BEM46
(PF3D7_0818600), and PF3D7_1012000 showed the strongest
correlations with PC½ for up- and downregulated genes,
respectively. Overall, both the upregulated and downregulated
genes contribute to a broad but defined set of biological functions
previously linked with artemisinin resistance such as protein and
REDOX metabolism, digestive vacuole- and mitochondrial-linked
biological functions, host cell remodelling etc. (Supplementary
Data 2, also see below). When compared to the transcripts
identified by the same approach in parasites collected during
TRACI (between 2011–2013)41, we observed a significant overlap
(binomial test p < 1e−9) in upregulated and downregulated genes,
including the PHISTa, KAHRP, FIKK, ATG5, and FKBP35 (for full
list see Supplementary Data 2). For further analysis, we term the
transcriptional variations of the 156 selected genes (69 upregulated
and 87 downregulated) the artemisinin resistance-associated
transcriptional profile (ARTP) and investigate further its biological
relevance for the putative artemisinin resistance mechanism. We
also show that the individual components of the ARTP can be used
to predict/diagnose artemisinin resistance either individually or in
combinations (Fig. 2a). Specifically, the receiver operating char-
acteristic (ROC) curve combining the 156 ARTP genes was able to
distinguish between resistant and susceptible parasites in the
studied dataset with a high level of sensitivity (0.88) and specificity
(0.7) which is close to the performance of the C580Y mutation
(sensitivity= 0.75 and specificity= 0.91).

Artemisinin resistance-associated transcriptional profile. Next,
we aimed to investigate the utility of the ARTP as a marker of the
spread and evolution of artemisinin resistance in the GMS and
possibly beyond. Hence, we conducted a clustering analysis to the
323 resistant parasite samples (PC½ > 5 h). Specifically, the
Ward’s method was applied for clustering based on the Euclidean
distance matrix of similarity of the ARTP formed by the 156
transcript levels in each of the (bl)0 h samples. This approach
identified six clusters that displayed a distinct geographical seg-
regation (hypergeometric test p < 0.05) (Fig. 2b). It yielded two
main clades with high relatedness between cluster 1 (Pursat) and
2 (Ratanakiri) on one side and the rests of the sites in clusters 3–6
including, Phusing (4) and Binh Phuoc (5) and Pailin (3). The
majority of the 323 samples were from KEL1PLA1 lineage (216/
323, 67%) with the remainder made up of 36 (11%) from KEL1,
19 (6%) from other lineages, and 52 (17%) from unknown
lineages. No lineage bias was observed with any cluster. To fur-
ther investigate the impact of population-driven genetic factors,
population structure of the entire GMS samples was analyzed by
PLINK46 and visualized using UMAP47. The UMAP-2 clearly
distinguishes the eGMS parasites from the wGMS and UMAP-1
mainly reflects the genetic differences among parasites within
each region (Fig. 2b). Either the UMAP-1 or UMAP-2 lack sig-
nificant correlation to the individual clusters that suggest the
genetic differences differentiating the eGMS from wGMS or the
population substructure is not a significant confounding factor
for the ARTP differential expression. To strengthen the validity of
this observation we compared the genetic differences to the
transcriptional differences between clusters. The ratio of average
distance was calculated between within-cluster individuals and
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between-clusters individuals genetically and transcriptionally
separately (see “Methods”). Here the genetic distance ratios are
consistently ~1 across the cluster 1–6 which contrasts the tran-
scriptional distance ratios that were 0.7 in average, ranging from
0.5 to 0.8 (Fig. 2b). This further indicates that the individual
clusters are defined by their transcriptional characteristics but
indistinguishable genetically. Moreover, no correlation was
observed between the ARTP transcriptional clusters and pre-
viously reported subpopulations which reflect the founder
population effect of the KEL1PLA1 parasites expansion43

(Fig. 2b). Taken together, the results from the UMAP analysis, the
genetic/transcriptional distance ratio, and the funder

subpopulation associations suggest that the ARTP represents
transcriptional re-tuning of at least 156 genes that is largely
independent of background genetic differences. Although, the
ARTP seems to function mainly in conjunction with the non-
synonymous PfK13 SNP, it is feasible to speculate that this
expression profile could drive (at least to some degree) resistance
to artemisinins even in an PfK13-independat manner.

In vivo transcriptional response of P. falciparum to ACTs. To
complement the baseline TPAS, we evaluated the (tr)6 h sample
set to assess transcriptional responses of P. falciparum exposed to

Fig. 2 Transcriptional resistance markers. a The scatter plot represents all studied genes along the genomic coordinates on the X-axis with their
resistance-association p-values displayed as -log10 p on the Y-axis. Genes passing the threshold (FDR < 0.05, FPR < 0.05) are highlighted in 69 orange
circles (upregulation) and 87 blue circles (downregulation). The ROC plot shows the ability to distinguish resistant and susceptible parasites in TRACII for
5 upregulated genes (orange) and 5 downregulated genes (blue) with the best performance. Their gene IDs are shown on the side from top to bottom for
the line from left corner to the centre of the plot. The black line with dots represents the distinguishing ability of the combination of all the 156 genes which
was calculated as the sum up of expression values of the 69 upregulations with a subtraction of the sum up of the 87 downregulations. It is compared to
the roc of randomly selected gene set on the bottom right (see “Methods”). The Venn diagrams show the overlap of TPAS results between the TRACII and
TRACI studies. b A heatmap represents the transcriptional profiles clustering for 323 eGMS (bl)0 h samples showing prolonged PC½( > 5 h) based on the
156 resistance markers. The colour (purple to blue) indicates the level of differential expression (upregulation to downregulation) in the resistant parasites.
The left dendrogram represents Ward’s clustering result and the colour bars represent the 6 clusters obtained by clustering tree cutting. On the right,
samples in each column (marked by black bars) are categorized by their respective sites or lineages, or population structure. Frames mark the
overrepresentations of categorized samples in the corresponding clusters. *p < 0.05, **p < 0.01 and ***p < 0.001. The scatter plot represents the population
structure of the whole GMS samples, and the bar plot represents the ratio of distance between within-clusters individuals and between-clusters individuals
(see “Methods”).
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ACT in vivo. The (tr)6 h parasites exhibited a tighter distribution
of the IDC stages compared to those in the (bl)0 h, falling between
8 and 14 hpi with a median ~12 hpi, which might reflect the more
rapid loss of mature ring stage parasites because of their higher
sensitivity to artemisinins (Fig. 3a and Supplementary Fig. 2)
(authors’ note). There was also a reduction (2–5%) in the fraction
of gametocytes. Comparative transcriptome analysis between the
(bl)0 h and (tr)6 h was conducted to identify transcriptional
responses for the resistant (KEL/PLA1 with PC½ > 5 h) and
susceptible (WT with PC½ < 5 h) parasites separately (for details
see “Methods”). In total, we identified 20 and 73 genes that were
induced or repressed, respectively, after 6 h in vivo treatment in
the KEL1PLA1/resistant parasites. Similarly, 33 and 106 genes
were induced or repressed, respectively, in the WT/susceptible
parasites (FDR < 0.05, corresponding p < 1e–14) (Fig. 3b). Highly
consistent results were observed between the pairwise and non-
pairwise analysis with Pearson Correlation Coefficient of the
average expression change (resistant/susceptible) being 0.99
(Supplementary Fig. 7). Given the marked differences in the hpi
distributions between the (bl)0 h and (tr)6 h parasite sets (Fig. 3a),
the non-pairwise analysis provides additional confidence for the
differential genes expression, reaching beyond the individual
strain differences. Interestingly, the susceptible and resistant
parasites exhibited distinct transcriptional responses to artemisi-
nin with a minimal (albeit statistically significant) overlap
including 12 and 34 commonly induced and repressed genes,
respectively (Supplementary Data 2). Out of these, six genes were
also downregulated in the baseline (bl)0 h sample set while the
only upregulated gene in both sample sets was PHISTa
(PF3D7_1372000). There was a skewed distribution of the (tr)6 hr
induced and repressed genes in the WT/susceptible parasites
along the distribution of the transcriptional associations of the (bl)

0 h parasites (Fig. 3c). Specifically, the 33 drug-induced genes
were ranked significantly towards upregulation in (bl)0 h and the
106 drug-repressed genes towards downregulation (FDR= 0).
Contrastingly, the (tr)6 h induced genes in the PfPailin (KEL1-
PLA1)/resistant parasites show no association with the (bl)0 h
baseline ARTP but the (tr)6 h repressed genes exhibit a moderate
overlap with upregulated genes in the (bl)0 h baseline ARTP
(Fig. 3c). This suggests that the transcriptional response of P.
falciparum to 6 h artemisinin exposure in vivo is related to the
ARTP which could be its precursor (see “Discussion”).

There were highly significant gene-by-gene overlaps between
the in vivo results and several in vitro studies of transcriptional
responses of P. falciparum to artemisinin(s) (Fig. 3d and
Supplementary Table 2). This applies to the (bl)0 h TPAS as well
as the in vivo transcriptional response of (tr)6 h parasites. There
are good agreements between these results and earlier studies of
in vitro transcriptional response of P. falciparum K1 strain
exposed to dihydroartemisinin (DHA) for 1 h48, the FCR3 strain
exposed to artesunate for 3 hours49 and the recently reported
transcriptional responses of the Dd2wt strain exposed to DHA for
6 hours50. This is consistent with our observation showing that
the basal level ARTP overlaps well with transcriptional responses
of the susceptible parasites (Fig. 3c). We also observed a limited
overlap with our previously derived in vitro P. falciparum
parasites with ring stage-specific artemisinin resistance51 suggest-
ing that additional mechanisms conferring artemisinin resistance
exist and could rise in vivo in the future.

Discussion
This study identified at least 156 genes whose altered transcrip-
tion may contribute significantly to artemisinin resistance. Arte-
misinin resistance involves a complex array of processes that have
been selected to counter the parasiticidal effect of the drug20–23.

These processes occur early in the asexual cycle and attenuate
ring stage parasite killing. We found marked overlaps between the
ARTP and the genes involved in the transcriptional response to
the direct action of artemisinin observed in vivo (Fig. 3a, b) and/
or in vitro48–51. This suggests that the mechanisms contributing
to artemisinin resistance have arisen (at least in part) from the
initial transcriptional response of P. falciparum parasites to the
direct effect of the drug in which the artemisinin induced tran-
scriptional changes became constitutive. Indeed, there are many
overlaps on the gene-by-gene level between gene expression
changes in the baseline ARTP and genes induced/suppressed by
artemisinins in vivo and in vitro (Supplementary Table 2). In
particular, we identified many determinants of protein metabo-
lism including translation, folding, and degradation that were also
found to be a part of P. falciparum response to artesunate49, and
DHA of both susceptible and resistant parasite lines
in vitro48,50,51. Notable examples include gene encoding 60S
ribosomal subunits (L24), and elongation factors EF-1-gamma
whose proteins products were found to be direct artemisinin
targets in the parasite cells52,53. Related to this, we observed
significant transcriptional changes for several determinants of
protein turnover and protein folding from which DnaJ proteins
and the T-complex-protein 1 subunit are likely to be direct
protein targets of the artemisinin drugs (Supplementary Table 2).
We also found transcriptional suppression of factors involved in
REDOX functionalities, some of which are related to mitochon-
drial functions recently shown to play a key role in artemisinin
resistance in vitro50. There was marked transcriptional activity of
genes involved in biosynthetic pathways including pyridoxine/
polyamine and purine/pyrimidine synthesis and glycolysis.
Interestingly several enzymes encoded by these transcripts were
also found to be inhibited by artemisinin directly including
ornithine aminotransferase (OAT), spermidine synthase, pyr-
uvate kinase, and hexokinase52,53. This also applies to the P.
falciparum pyridoxal kinase, PDXK, whose mammalian ortholo-
gue, was shown to interact directly and being inhibited by
artesunate54. Finally, the ARTP contains strong baseline-level
upregulations of several transcripts encoding proteins exported to
the host erythrocyte. These are implicated in host cell remodelling
and/or host-parasite interactions that are paralleled by drug-
induced transcriptional responses (Supplementary Table 2) (see
below). Taken together, these observations support a model in
which the initially adaptive transcriptional response became
constitutively expressed as a result of drug selection, predisposing
the parasite to withstand the drug’s parasiticidal effect.

Functional assignments of the transcriptional markers of both
the ARTP and in vivo induced artemisinin responses revealed by
this study support their role in key biological processes aligned
with both PfK13-dependent and independent mechanism(s) of
artemisinin resistance suggested by previous in vitro studies
(summarized in Fig. 4). First, PfK13, the key causal factor in
artemisinin resistance, was shown to localize predominantly to
the cytostomes, possibly regulating endocytosis of hemoglobin55.
PfK13 mutations lead to a reduced rate of endocytosis and thus
hemoglobin digestion, which in turn lessens the bioactivation of
artemisinin as a result of lower levels of Fe2+ in the parasite
cytoplasm. We observed baseline upregulation of factors involved
in hemoglobin degradation and their suppression in sensitive
parasites after 6 h in vivo treatment. Second, reductions of the
PfK13 protein levels, resulting from the mutations, were also
shown to suppress the proteotoxic shock and subsequent cell
death normally induced by artemisinins56,57. This suppression
can be reversed by proteasome inhibitors in both P. falciparum58

and P. berghei59. We found marked transcriptional suppression of
protein synthesis, folding, and turnover including the core sub-
units of the proteasome (Supplementary Data 2 and Fig. 4).
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Finally, PfK13 SNP-driven reduction of hemoglobin digestion
and thus cytoplasmic amino acid levels can be mitigated by
upregulation of nutrient permeable channels (NPC) of the
parasitophorous vacuolar membrane60. Here we observed upre-
gulation of at least one of the NPC encoding gene, exp1, that has
the potential to alleviate fitness cost caused by the PfK13

mutations. In addition to transcriptional characteristics traced
directly to PfK13 function, we observed transcriptional variability
of factors involved in transcription, mRNA processing, ribosomal
biogenesis (RiBi), translation, translational translocation, and
protein transport (Supplementary Table 2 and Supplementary
Data 2). This is also consistent with our earlier TPAS study of the
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TRACI samples where we observed upregulation of the UPR that
is canonically related to proteotoxic shock response40,41. Third,
PfK13 was also shown to function as an adaptor for the cullin3-
RING-E3 ubiquitin ligase targeting a specific set of proteins for
proteasome-mediated degradation61. Mutated forms of PfK13 fail
to recognize their targets including phosphoinositide 3-kinase
(PI3K), which subsequently leads to an increase in PI3P vesicles
that alters the rate of hemoglobin endocytosis62. A set of genes
involved in vesicular trafficking and the underlying lipid meta-
bolism was also found to be transcriptionally associated with
artemisinin resistance in this study (Supplementary Table 2 and
Fig. 4). Fourth, PfK13 mutations appear to mediate rewiring of

the P. falciparum metabolic programme to higher levels of
survival50. This involves mainly induction of mitochondrial
processes including damage sensing and oxidative stress response
that counteract artemisinin induced oxidative and alkylation
activity58. In line with this, induced oxidative stress response was
also detected in two independently derived in vitro P. falciparum
artemisinin-resistant lines51,63. One of the chief functions of the
parasite mitochondria lies in regeneration of ubiquinone, a
necessary ECT component in pyrimidine biosynthesis pathways64

which was also shown to be altered by PfK13 mutations50. Here
we observed transcriptional variations of multiple REDOX and
mitochondria-related factors including purine/pyrimidine

Fig. 3 In vivo transcriptional response to artemisinins. a The principal components space of PC1 vs. PC2 was constructed by the PCA on reference
transcriptomes of the laboratory strain 3D7 at ring stage and gametocyte stages (average of the day 5th–12th). It was used to visualize transcriptome
differences driven by parasite age/hpi or developmental stage (asexual/sexual). The 577 (bl)0 h (black circles) and 459 (tr)6 h (purple circles) samples are
projected onto this space to show their age differences. The density plot represents the estimated hpi distribution for (bl)0 hr (grey) and tr)6 hr (purple)
parasites. b Volcano plot represents each gene’s association p value of differential expression against the average expression fold change between the (tr)

6 h and (bl)0 h parasites for the susceptible group (left, WT with PC½ < 5 h) and the resistant group (right, KELPLA1 with PC½ > 5 h) respectively. c Genes
differentially expressed as upregulation/induction (orange) and downregulation/repression (blue) are marked along the rank of their association to PC½
(from TPAS). Markers associated with PC½ positively (purple) or negatively (black) are marked along the rank of their differential expression levels (from
b). GSEA was applied to estimate the FDR for ranking bias to either side of upregulation/induction or downregulation/repression. d Bar plots represent
significant overlaps between our in vivo study and other independent in vitro studies, In vivo: baseline TPAS analysis ((bl)0 h, 156 resistant markers, grey);
post-treatment differentially expressed genes ((tr)6 h/(bl)0 h) in susceptible (turquoise) and resistant parasites (yellow) group, In vitro: transcriptional
response to DHA treatment in the K1 rings48; Artesunate treatment in the FCR3 strain49; DHA treatment in the Dd2 R539T or WT stain50; differential
expression at the baseline level between the PfK13 MUT and WT stains50 as well as that between lab-derived ART-resistant and ART-sensitive 3D7 ring
parasites51. Stars mark intersections having > 3 genes with hypergeometric test p < 0.05. .
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synthesis pathway-related markers (OPRT, and HGPRT) sup-
pressed in susceptible parasites but also several downregulated
transcripts pertaining to ECT (SDHB, CytC) and TCA-
metabolism (Supplementary Data 2). Fifth, several genes encod-
ing proteins exported to the host cell cytoplasm were found
amongst the transcriptional resistance markers. These include
several members of the FIKK and PHIST gene families that are
mostly implicated in host-cell remodelling affecting rigidity and/
or cytoadhesion of the infected RBCs65–68. This could suggest
that altered host-parasite interactions might contribute to arte-
misinin resistance; albeit indirectly by reducing parasite clearance
by the spleen. Given the functional diversification of the FIKK
and PHIST as well as other P. falciparum gene families annotated
as exported proteins their direct role in artemisinin resistance
mechanisms cannot be ruled out. Several of the exported proteins
factors as well as many of the above-mentioned biological path-
ways have been recently linked with artemisinin resistance in a
large-scale P. falciparum piggyBac-transposon mutant screen69.
Altogether these observations support the majority of previous
studies implicating a wide spectrum of biological functions dis-
covered by in vitro experiments to play specific roles in artemi-
sinin resistance in vivo.

Since its emergence in 2009, artemisinin resistance exerted
strong selection effects on the GMS P. falciparum population due
to a continuous drug pressure resulting from intensive high-
coverage treatment programmes implemented by all countries in
the region11,43,70. There is now a clear distinction between the
P. falciparum population in the wGMS (Myanmar, Thai-
Myanmar border, and Bangladesh) and eGMS (Cambodia Laos
and Southern Vietnam), the latter of which likely provided the
supporting genetic background for artemisinin resistance40.
Moreover, substantial founder population effects were detected in
eGMS also likely as a result of drug selection71. The main
example represents the recent selective sweep of the KEL1/PLA1
parasite line throughout eGMS during 2013–2016; prior to the
TRACII epidemiological survey11,43. Indeed, the TRACII P. fal-
ciparum cohort used in this study reflected both the w/eGMS
segregation and KEL1/PLA1 selection sweep. This provided us
with the unique opportunity to study artemisinin resistance-
associated transitional changes at its origin, but also presented a
major challenge due to the complex population structure. To
overcome this, we implemented multiple steps during data ana-
lysis. In addition of the FPR-based differential gene expression
pipeline (Fig. 1b, c), we carried out multiple confounding factor
evaluations including tSNE and PCA with the whole tran-
scriptome dataset (Supplementary Fig. 3) and subsequently
UMAP, genetic/transcriptional distance ratio, and the Hamilton’s
founder subpopulation with the ARTP (Fig. 2b). Notwithstanding
the possible weakness of each analytical method, the combination
of these provides a strong confidence that identified 156 genes can
be linked to putative multifaceted artemisinin resistance
mechanism. However, it is feasible to expect that there are more
genes contributing to artemisinin resistance that were not
uncovered by this work. This is likely due to the challenging
nature of the TRACII epidemiological datasets that is character-
ized by a strong population structure (Fig. 1a) that forced us to
develop a highly stringent bioinformatics pipeline to overcome
this confounding factor. As a result, we focused on transcriptional
changes of individual genes instead of gene groups capturing
entire biochemical and cellular pathways that were a subject of
our previous TPAS studies with TRACI cohort40,41. In the
TRACI dataset, we identified inductions of multiple pathways
related to the UPR and REDOX metabolism and suppression of
multiple processes facilitating the parasite developmental pro-
gression (deceleration of the IDC). These results were reproduced
in the TRACII only partially. However, multiple genes related to

UPR, REDOX as well as IDC progression identified amongst the
ARTP genes signal that these pathways still play a key role in
artemisinin resistance. Future GWAS and TPAS using broader
epidemiological cohorts will provide deeper insight into the
multifaceted artemisinin resistance mechanism relevant to clinical
settings.

In contrast to transcriptome-based analyses, GWAS have until
now failed to identify such factors making limited observations of
direct links between the molecular effectors of artemisinin resis-
tance in vivo; with the exception of the PfK13 SNP32. Although it
is still possible that more mutations in the coding regions may
contribute to artemisinin resistance they were not detected
because of typical sample size limitations of GWAS39; in the
context of a highly complex P. falciparum population structure in
the GMS71. Our result strongly suggests that many causative
mutations might be situated within DNA regulatory elements
affecting the regulation of gene expression. It was previously
shown that the majority of sequence polymorphisms in P. falci-
parum occurs in the noncoding regions accumulated particularly
around core promoter regions as Insertion/Deletion within Short
Tandem Repeats (STR)72. The high AT content (~85%) of the P.
falciparum noncoding regions hampered most whole-genome
sequencing efforts on field samples done up until now. However,
the results of this study make a case for synergizing GWAS and
TPAS (combined into eQTL studies) as a potential strategy to
monitor the spread and evolution of malaria drug resistance in
the future genomic epidemiological surveys.

Methods
Ethics statement. All the samples used in this study were collected with written
informed consent from the patients or their legal guardians. All protocols were
approved by the appropriate national ethics committees or the Oxford Tropical
Research Ethics Committee.

In vivo sample collection. All samples used in this study were collected from
patients involved in Tracking Resistance to Artemisinin Collaboration 2 (TRAC2),
a multi-site trial that took place between Aug 7, 2015, and Feb 8, 2018. The total
number of 1100 patients with uncomplicated Plasmodium falciparum malaria were
recruited in eight countries. In the presented study 680 patients’ samples from 6
countries and 13 sites across Southeast Asia Greater Mekong Region were analyzed
(Ramu in Bangladesh; Thabeikkyin, Pyay, Pyin Oo Lwin and Ann in Myanmar;
Phusing and Khun Han in Thailand; Pailin, Pursat, Ratanakiri, and Preah Vihear in
Cambodia; Sekong in Laos; Bin Phuoc in Vietnam). All details regarding samples
collection, site locations, inclusion criteria, parasitemia assessment, and given
treatments were published previously2. In brief, samples were collected from
venous blood of malaria-infected patients at admission to the clinic (Hour 0, 0 h)
and 6 h after their respective treatment (Hour 6, 6 h). Depending on their location,
patients were randomly assigned different double or triple Artemisinin Combi-
nation Therapy (ACT) as follows: Thailand, Cambodia, Vietnam, and Myanmar -
dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus meflo-
quine; Cambodia - artesunate-mefloquine or dihydroartemisinin-piperaquine plus
mefloquine; Laos, Myanmar, Bangladesh - artemether-lumefantrine or artemether-
lumefantrine plus amodiaquine. Following collection, blood was subsequently
depleted of plasma and buffy coat. Hour 0 samples were additionally purified from
white blood cells (WBC) using CF11 columns using the Worldwide Antimalarial
Resistance Network (WWARN) protocols. 0.2–0.5 mL of packed red blood cells
(pRBC) from each sample was homogenized by mixing with 10 volumes of TRIzol
(Invitrogen), frozen at −80 °C, and then shipped to Nanyang Technological Uni-
versity, Singapore.

RNA isolation. All clinical samples mixed with TRIzol were supplemented with 5
volumes of chloroform (Merck) and processed as per the manufacturer’s instruc-
tions to obtain phase separation. Top (aqueous) phase was mixed 1:1 (v/v) with
100% analytical grade ethanol (Merck) and RNA was extracted using the Direct-
Zol-96 extraction kit (Zymo) following the manufacturer’s guide. For this study, we
have adopted the RNA extraction kit to a high-throughput EVO 200 robotic
platform (Tecan). RNA integrity was assessed using Agilent Bioanalyzer (RIN)
(Agilent), concentration was measured using Qubit RNA Broad Range kit (Invi-
trogen) and RNA contamination was estimated with Nanodrop (Thermo Fisher)42.

cDNA synthesis and microarray hybridization. For each sample, 250 ng of total
RNA was used for subsequent reverse transcription reaction followed by 19 rounds
of PCR amplification using modified Smart-Seq2 method73. In brief, oligo-dT30
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(IDT Asia) was used as a primer to enrich for mRNA and avoid ribosomal rRNA
amplification (AAGCAGTGGTATCAACGCAGAGTACT30VN; V=A,C,G;
N=A,C,G,C). The amplified product was purified using Ampure XP magnetic
beads (Beckman Coulter) on Microlab Nimbus robotic platform (Hamilton) and
100 ng of cDNA was used for subsequent 10 rounds of amplification to generate
aminoallyl-coupled cDNA for the hybridizations74,75. 17ul (~5 µg) of each Cy-5-
labelled (GE Healthcare) cDNA of patient’s sample and an equal amount of Cy-3-
labelled (GE Healthcare) cDNA of the reference pool were then hybridized together
on our customized microarray chip using commercially available hybridization
platform (Agilent) for 20 h at 70 °C with rotation at 10 rpm. Microarrays were
washed and immediately scanned using Power Scanner (Tecan) at 10 µM resolu-
tion and with automated photomultiplier tubes gain adjustments to balance the
signal intensities between both channels. The reference pool used for microarray
was a mixture of 3D7 parasite strain RNA collected every 6 h during 48 h of the full
intraerythrocytic developmental cycle.

RNA-sequencing. Purified 1 ng of cDNA was used to generate sequencing libraries
using Illumina Nextera XT kit as described in manufacturer’s protocol. Purified
cDNA libraries were analyzed on the Bioanalyzer High-Sensitivity DNA chips
(Agilent), subsequently pooled (20–24 samples per lane) and sequenced on Illu-
mina HiSeq4000 platform generating 150 bp paired end reads with 110 Gb data
output generated per lane.

In vitro culture. Plasmodium falciparum 3D7 strain was obtained from BEI
Resources (MRA-102) and maintained in purified human pRBC in RPMI 1640
medium (Gibco) supplemented with Albumax I (Gibco) (0.25%), hypoxanthine
(Sigma) (0.1 mM), Sodium bicarbonate (Sigma) (2 g/L), and gentamicin (Gibco)
(50 μg/L). Cultures were kept at 37 °C with 5% CO2, 3% O2, and 92% N2. Culture
media were replenished every 24 h. Freshly washed pRBC were added to the culture
when necessary. Both parasitemia and parasite morphology were assessed by
microscopic examination of blood smears stained with Giemsa (Sigma).

Intraerythrocytic asexual developmental cycle reference time course (IDC).
IDC reference time course data were obtained from the study published
previously42. In brief, prior to time-point experiment, parasites were double-
synchronized with 5% sorbitol solution to achieve a synchrony of+/−6 h and
cultured under constant agitation. For a sampling of highly synchronous parasites
during the asexual life cycle, the first time point was considered as the TP1 (Time
Point 1) when > 95% of early ring stage parasites (approx. 4 hpi) were present in
the culture. Starting from TP1, parasites were collected every 2 h for 25 successive
time points. The total of 24 time points were used here to build an asexual
reference transcriptome generated using two different platforms: microarrays and
RNA-seq.

Raw transcriptome of P.falciparum parasites. The transcriptome was generated
by quantifying the total RNAs for each parasite sample using two-colour micro-
array or RNA-seq or both. Additionally, control samples derived from ring stages
3D7 lab strain were quantified together with those clinical samples in microarray
method. It was made up of a total of 30 samples for pre-treatment and 27 samples
for post-treatment.

The raw data of microarray was acquired using GenePix Pro v6.0 software
(Axon Instruments). Then the signal intensities were Loess-normalized within
arrays followed by quantile-normalization between samples/arrays using Limma
package of R76. Missing values were assigned to weak signal probes showing
median foreground intensity less than 1.5-fold of the median background intensity
at either Cy5 (sample RNA) or Cy3 (reference pool RNA) channel. Each gene
expression was estimated as the average of log2 ratios (Cy5/Cy3) for probes
representing it.

For RNA-seq, raw reads were trimmed to remove sequencing adapters,
amplification primers, and low-quality bases from 3′ ends. HISAT2 aligner77 was
used to perform alignment to the P.falciparum genome downloaded from geneDB
database in version of March 2018. BEDTools78 was applied to calculate the read
counts for each annotated transcript based on only uniquely mapped reads with
pairs in proper orientation. At last, the transcriptional level was estimated for each
gene by calculating the Fragments per kilo base per million mapped reads (FPKM)
at the gene.

Developmental stage estimation. For each parasite sample, we estimated the
asexual age (hours post-invasion, hpi) and the proportion of gametocytes using the
method described in Zhu et al’s and Lemieux et al’s works40,79. In brief, the
expression value of a gene, Eg, is assumed as a sum of the expression in asexual
stage of hpi h, denoted as xg(h), and the average expression of sexual stages (from
the 5th to 12th day during gametocytes developing), denoted as zg, mixed in certain
proportions. The mixture model is presented in formula as:

Eg ¼ ð1� αÞ � xg ðhÞ þ α � zg þ εg ð1Þ

where α is the proportion of gametocytes to the total parasite count (sum of sexual
and asexual parasites) and the εg is the associated error term. xg(h) is estimated by

the reference transcriptome generated during asexual intraerythrocytic cycle in P.
falciparum 3D7 strain which has a total of 25 time points with 2 h intervals of 48 h,
accessible via GEO accession number GSE149865. To obtain a higher resolution of
the asexual reference transcriptome for stages estimation, 24 time points of the data
(the 9th time point removed due to its big dissimilarity to others) were interpolated
into 240 data points by smooth splines method. zg is estimated by the identical
reference gametocyte transcriptome described in Zhu et al’s work9, accessible via
GEO accession number GSE121505. In practice, samples were normalized by
control samples across batches by adding a scaling factor for each batch before
applying the prediction model. The scaling factor was estimated for each batch by
calculating the average expression difference between controls and the reference at
corresponding ages. Finally, we evaluated the log-likelihood values over a grid of
mixtures for varying the gametocyte proportion α, and hpi h, for each sample. The
results of estimated hpi and gametocytes proportion were listed in Supplementary
Data 1.

Transcriptome filtering. To achieve high quality data for the following analyses,
we pruned the sample set according to their transcriptome heterogeneity and
discarded samples with low signal intensities. In practice, outlier samples were
removed if they were distinct from the majorities with < 10 cohort samples at the
similarity threshold for grouping. The threshold was determined by the average
similarity of controls to clinical samples using Spearman’s rho. Second, we removed
samples displaying extremely low intensities (mode of the intensity < 10) of
Cy5 signal on the microarray (Supplementary Fig. 8). In addition, to reduce the
prediction errors (if any) affecting on the following study, we removed 2 samples
having very high PC½ as 13.1 and 19.3 h (>2 times Median Absolute Deviation to
the median), and 24 samples with extremely high gametocytes prediction (>18%,
3times MAD to the median) as most of the parasite samples exhibiting a low even
zero proportion of gametocytes. We found all the discarded samples at this end
mostly having a low parasitemia or high human content. Finally, with the
microarray method, we identified a transcriptome of 4779 genes presented across >
75% of the 577 samples pre-treatment and 4714 genes across 459 samples post-
treatment. Among the total of 577 pre-treatment samples and 459 post-treatment
samples, 438 samples were paired (collected from the identical patient). With the
RNA-seq method, we asked for at least 1 M uniquely mapped reads in a library to
call for the transcriptome. Overall, we identified the transcriptome of 4305 genes
with > 75% representation for 188 samples pre-treatment and 3923 genes for
159 samples post-treatment for further analyses. The data is accessible in Gene
Expression Omnibus (GEO) database via the series accession number GSE149735
for microarray and GSE169520 for RNA-seq.

PCA and population transcriptomic analysis. Principle Component Analysis
(PCA) was applied to the (bl)0 h transcriptome data set. We inspected the top 12
PCs for the following association analysis because each of the rest PCs contributed
to < 1% of the overall transcriptome variations. The top 12 PCs were tested against
all the clinical and technical factors collected during sample processing to assess the
potential environmental influence on the population transcriptomic structure. For
the factors represented in categorical variables like sampling sites, parasite lineages,
and patient’s gender, ANOVA test was used for assessing the statistical significance
of associations. For other factors in continues/discrete variables like parasitemia,
hpi and patient enrolment time etc., linear regression was used to test the statistical
relationship between each factor and each PC with Spearman’s rho calculated for
each pair of variables as well. The results are visualized in Supplementary Fig. 3a.

The regression analysis revealed that parasite age (hpi) significantly (p= 7.96e
−283) correlated to the top PC (PC1) with showing a high Spearman’s rho as 0.87
in the (bl)0 hr data set by microarray and 0.85 by RNA-seq. PCA of all samples
including both (bl)0 h and (tr)6 h resulted in similar high correlations with
displaying rho as 0.78 in microarray and 0.76 in RNA-seq (Supplementary Fig. 3b).
It indicates that hpi is the major factor distinguishing parasites transcriptome in
field. Correlation was also observed between the PC2 and the ratio of parasite to
human content; the PC6 and estimated gametocytes proportion but the Spearman’s
rho was dropped to 0.53 and 0.52, respectively. These two factors (parasite/human
ratio and gametocytes fraction) can interact with other experimental or
environmental conditions to drive the minor (compare to hpi) differences in
parasites transcriptome. For this study, we considered only hpi as the major factor
contributing to gene expression variation across nature parasites and used it as a
major predictor variable in modelling gene expression for the further regression
analysis. The potential for expression variation caused by other factors, like
sampling site and parasite lineage, are analyzed for particular genes associated to
resistance in the following studies.

To visualize the parasite population structure in a two-dimensional map,
t-distributed stochastic neighbour embedding was applied to the PC2-12 with PC1
excluded to minimize the hpi effects. It was implemented in R with the M3C
package80.

The PC space projection. We performed PCA to the reference transcriptome of
3D7 parasite stain at ring stages together with the average transcriptome of 3D7
mature gametocytes (5th–12th day during development). The resulted PC1 clearly
distinguishes the sexual and asexual stages, as well as the PC2, reflects the ring-
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stage parasite development as it obviously separates the 8 ring-stage transcriptomes
with 2 h difference in between. With the space of PC1 vs PC2, parasite age can be
visualized without bias by transcriptome projection. Therefore, we normalized all
the clinical samples to the centre transcriptome derived from the above PCA and
rotated it according to the PC1 and PC2 loadings. At last, the 577 pre-treatment
samples and 459 post-treatment samples were projected onto the PC space showing
an obvious age window shift in the parasites after drug treatment (Fig. 3a).

Population stratification. The SNP information was provided by the Wellcome
Sanger Institute. We extracted out a high-quality set of 7009 SNPs for the popu-
lation stratification analysis here. The filtering criteria are as follow: (1) each
polymorphism was covered by at least 10 reads; (2) the genotyping quality score
was greater than 30 by GATK; (3) the minor allele count was at least 5 across the
genotyped samples we studied, and the minor allele frequency was at least 0.05. (4)
Only SNPs showing two alleles with our studied samples are included; (5) only
SNPs in coding regions were included; (6) samples with more than 50% high
quality SNPs missing were removed from this analysis. At last, 7009 SNPs and 528
isolate samples were used to determine the population stratification using Plink
multidimensional scaling function with IBS pairwise distances. UMAP algorithm
was applied to visualize the result in Fig. 2b. The UMAP-2 majorly distinguished
the eGMS parasites from the wGMS and the UMAP-1 reflected the genetic dif-
ference within each region’s parasites.

To measure the genetic differences between the ARTP clusters (Fig. 2b), we
constructed the genetic distance matrix using the IBS pairwise distances. And the
pair-wise distance was calculated between individuals within each cluster and
between clusters. The ratio of the average distance between within-cluster,
D(within-cluster), and between-cluster, D(between-cluster) individuals was used to
indicate genetic differences between clusters and compare to the ratio calculated
from transcriptional distance matrix.

Transcriptome-phenotype association study. Transcriptome-phenotype asso-
ciation study (TPAS) was carried out in order to call for the marker candidates
whose mRNA levels were positively or negatively associated with artemisinin
resistance. Since parasite age contributed the most to expression variation across
clinical samples, we designed a generalized additive model with the age/hpi spe-
cified in a loess function to test the expression-resistance association over the
dynamic relationship between expression and age. The regression analysis formula
for each gene is represented as:

E ¼ β0 þ β1 � f ðhpiÞ þ β2 � hf þ ε ð2Þ

Where E denotes gene expression across samples, f(hpi) denotes the function of hpi
which is loess regression here, hf denotes the variable of PC½, β0,1,2 represents the
parameters of intercept and slopes to predict and ε is the error terms. Therefore,
the resulted p-value of this regression analysis reflects the relationship between
expression residuals of age fitting to the half-lives (PC½), alternatively the
expression-resistance association independent of age.

With this approach, we tested the expression-resistance association for all the
genes, 4779 genes with microarray and 4714 genes with RNA-seq, individually. To
correct for the multiple testing, we estimated FDR for each gene by 1000 times
permutation constructing a null p distribution based on testing the association of
expression to randomized PC½ values (Fig. 1c). In addition, to address the
cofounding relation between artemisinin resistance (PC½ > 5 h) and parasite
genetic lineage which also largely coincided with the geographical region (w/
eGMS), we estimated a FPR value for each gene to control the type I error by 100
times permutations. In each permutation, the lineage structure was maintained and
PC½ values were randomized amongst the parasites within each lineage. The
resulted null p-values reflect the significance of expression-lineage associations
independent of PC½ and the FPR calculated from the null p distribution (Fig. 1b)
reflect the probability of expression-resistance association caused by expression-
lineage relationship. At last, FPR < 0.05 (95% confidence) was applied to define the
robust expression-resistance associations beyond parasite lineage effect. We plotted
the expression residuals against the original and randomized PC½ values for
PHISTa gene (shown in Fig. 1b) to illustrate the randomization procedure, also for
three example genes with significant expression-resistance associations
(FDR < 0.05) and different levels of FPR (0.01, 0.53, and 1) together with other two
genes with FDR > 0.5 and FPR < 0.01 for reference (Supplementary Fig. 5).

We applied this approach to microarray and RNA-seq data separately. The
results agreed to each other with showing a high correlation (Pearson correlation
coefficient= 0.68) of the average expression fold change of resistant/susceptible
between the two datasets (Supplementary Fig. 6). We merged the markers defined
by microarray or RNA-seq excluding 10 genes that displayed conflicting directions
of expression changes in resistant parasite in two techniques. Finally, our approach
determined 69 genes upregulated and 87 genes downregulated in the resistant
parasites at FDR < 0.05 (corresponding p < 1e−10 in microarray, p < 1e−6 in RNA-
seq) and FPR < 0.05.

We applied the same TPAS pipeline to the TRACI data and reanalyzed
824 samples collected during 2011–1013. It resulted in 61 expression upregulation
and 63 downregulation associated to artemisinin resistance with the identical
criteria above (FDR < 0.05 & FPR < 0.05, corresponding p < 8.5e−6). This result

significantly overlaps that from TRACII with 14 upregulation and 12
downregulation in common (binomial test p < 1e−9).

ROC curve. ROC curve was applied to access the ability of distinguishing the
resistance and susceptible parasites for individual expression markers, combination
of markers, and the C580Y mutation. For each gene, the sensitivity and specificity
of classifying PC½ into groups of > 5 h or < 5 h was calculated at a varied
expression threshold which has 20 data points evenly distributed from the mini-
mum to the maximum expression value observed in the studied parasites. For the
combination of markers, we use the measurement as the sum up expression values
of the 69 upregulations with a subtraction of the sum up of the 87 downregulations.
Then the varied threshold of 20 points was set similarly as the above. Since the
combination of multiple genes can always perform better than single, we also
generate ROC curve for 10 randomly selected gene sets. Each of the 10 gene sets
combined 69 genes randomly selected from genes over-expressed in resistance
parasites and 87 random under-expressed genes. The result suggests the combi-
nation of the 156 markers having the best performance comparing to each single
marker or random genes and it is the most close to the performance of the C580Y
mutation (sensitivity= 0.75 and specificity= 0.91, Fig. 2a).

ARTP clustering. To investigate the resistance-associated transcriptome structure,
we first defined the artemisinin resistance-associated transcriptional profiles
(ARTP) for each parasite sample using the 156 marker genes. To obtain expression
levels with hpi effects maximumly reduced, we second extracted out the expression
residuals from the formula (2) with the hpi function fitting only for each gene. The
expression residuals were normalized for the 323 resistant parasite samples
(PC½ > 5 h and from eGMS) against that of 104 susceptible samples (PC½ < 5 h
and from wGMS) by calculating z-scores to represent the number of standard
deviations by which the expression of the studied gene in resistant parasite was
above or below the mean in susceptible parasites. Next, Euclidean distance was
applied to the similarity matrix of ARTP to construct the sample distance matrix
and the Ward’s method was used to obtain the dendrogram of clustering tree for
the 323 resistant parasite samples (Fig. 2b). The six clusters shown in Fig. 2b were
defined by the tree cutting at the 1/6 of tree height using the “cutree” function in R
stats package.

To measure the transcriptional differences between clusters, we used the
Pearson distance of the ARTP to construct the transcriptional distance matrix. And
the pair-wise distance was calculated between individuals within each cluster and
between clusters. The ratio of the average distance between within-cluster,
D(within-cluster), and between-cluster, D(between-cluster) individuals was used to
indicate transcriptional differences between clusters and compare to the ratio
calculated from a genetic distance matrix.

In vivo transcriptional response measurement. The transcriptional response to
artemisinin was inspected for the field P.falciparum parasites by comparing the (tr)

6 h sample set to the (bl)0 h sample set. Grouping the (bl)0 h samples by lineage and
resistance status level (PC½ greater/smaller than 5 h) revealed two largest groups
which are KEL1PLA1 parasites with PC½ > 5 h (37% of the total 577 samples) and
PfK13 WT parasites with PC½ < 5 h (29% of 577). Excluding the lineage unknown
samples, all the rest groups contain < 6% of the total samples. For this study, we
performed the comparative transcriptional analysis specifically for the PfK13 WT
samples with PC½ < 5 h (the susceptible parasites) and the KEL1PLA1 samples
with PC½ > 5 h (the resistant parasites).

We adjusted the above regression model of formula (2) to better present the
data of (tr)6 h and (bl)0 h samples as:

E ¼ β0 þ β1 � f ðhpiÞ þ β2 � treatmentþ β3 � resistance statusþ ε ð3Þ

Where treatment indicates patient treatment condition which is pre-treatment ((bl)

0 h) or post-treatment ((tr)6 h), and resistance_status indicates PC½ greater/smaller
than 5 h. To discover the distinct transcriptional response for resistant and
susceptible parasites individually, we performed a comparative analysis for each
parasite group (resistant/susceptible). We aimed to define top drug-response genes
for each parasite group independent of age and batch effects (due to the collection
and transportation issue with the (bl)0 h and (tr)6 h sample set, the treatment
condition here unavoidably confounded with the batch of transcriptome
measurement). To achieve that, we first extracted the expression residuals from the
model (3) with the loess fit only which maximumly removed the expression
variations caused by age from the raw data. Second, we conducted Mann–Whitney
test on the expression residuals between treatment conditions to compare 216 (bl)

0 h to 180 (tr)6 h samples for resistant parasites and 168 (bl)0 h to 130 (tr)6 h
samples for susceptible parasites with microarray measurement. To balance the
sample size differences, subsampling was applied to 130 samples 100 times per gene
to obtain the p-value at 80% confident level. For the multiple test correction, we
calculated FDR for each gene using the distribution of 500,000 null p-values
generated from expression permutation based on all bl)0 h and (tr)6 h samples. To
control the effect of treatment/batch, the structure of the treatment condition was
maintained during each time permutation.

We repeated the same analysis with the RNA-seq data. Mann–Whitney test was
conducted to compare 67 (bl)0 h to 55 (tr)6 h samples for resistant parasites and 57 (bl)

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03215-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:274 | https://doi.org/10.1038/s42003-022-03215-0 | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


0 h to 46 (tr)6 h samples for susceptible parasites. And the p-values were obtained by
100 subsampling of 46 samples per gene. The result was merged with that from
microarray for susceptible and resistance group, respectively, at FDR < 0.05.

By this approach, we identified 20 significantly induced genes and 73 repressed
genes upon drug in the KEL1PLA1 resistant parasites and 33 induced genes and
106 repressed genes in the WT susceptible parasites (FDR < 0.05, corresponding
p < 1e−14). Significant common response genes were observed between the
resistant and susceptible parasite samples which included up to 12 induced and 34
repressed genes (Fig. 3b and Supplementary Data 2).

Statistics and reproducibility. We analyzed 577 samples pre-treatment with
459 samples post-treatment using microarray method and 188 samples pre-treatment
with 159 samples post-treatment using RNA-seq method. Due to the nature of this
study as a part of the larger clinical trial, no biological replicates were used. In this study,
binomial test or hypergeometric test was applied to the enrichment analyses; ANOVA
test, Pearson Correlation Coefficient, and linear regression were performed for asso-
ciation or correlation testing between factors. We used FDR and FPR to help control for
false positives that resulted in 156 resistance-associated marker genes defined at
FDR < 0.05, FPR < 0.05, and the corresponding p < 8.5e−6. For the differential
expression analysis, Mann–Whitney test was applied for group comparison. Differen-
tially expressed genes were defined at FDR < 0.05 and the corresponding p < 1e−14.
Subsampling method was used to balance sample size difference and the p-values were
obtained at 80% confidence level. All details regarding the statistics of this study can be
found above in the description of each respective analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data is available in the main text or the supplementary materials or from the
corresponding author upon request. All transcriptome data used in this study are
available at NCBI’s Gene Expression Omnibus (GEO) database with the series accession
number GSE149735 for microarray and GSE169520 for RNA-seq.
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