Skip to main content
. 2022 Mar 10;12:846775. doi: 10.3389/fonc.2022.846775

Table 3.

Performances of the integrative image-based RA and DL models.

Model RA model DL model
Image-kinetic RA model Image-molecular RA model Image-kinetic-molecular RA model Image-kinetic DL model Image-molecular DL model Image-kinetic-molecular DL model
AUROC 0.629 0.755 0.781 0.707 0.79 0.832
(0.595, 0.663) (0.708, 0.802) (0.735, 0.828) (0.654, 0.761) (0.768, 0.812) (0.816, 0.847)
Accuracy 0.619 0.695 0.731 0.661 0.752 0.772
(0.571, 0.668) (0.638, 0.753) (0.678, 0.784) (0.596, 0.725) (0.715, 0.788) (0.724, 0.821)
Sensitivity 0.647 0.778 0.795 0.692 0.797 0.781
(0.559, 0.735) (0.669, 0.887) (0.703, 0.887) (0.579, 0.806) (0.723, 0.869) (0.696, 0.867)
Specificity 0.611 0.671 0.712 0.65 0.739 0.769
(0.537, 0.685) (0.58, 0.762) (0.634, 0.791) (0.54, 0.761) (0.681, 0.797) (0.69, 0.849)
PPV 0.329 0.413 0.451 0.368 0.473 0.497
(0.267, 0.391) (0.333, 0.493) (0.367, 0.536) (0.318, 0.417) (0.401, 0.546) (0.408, 0.587)
NPV 0.855 0.911 0.922 0.88 0.925 0.924
(0.816, 0.894) (0.872, 0.951) (0.888, 0.956) (0.859, 0.902)) (0.897, 0.953) (0.896, 0.953)
P * <0.001 0.118 <0.001 <0.001
P # <0.001 <0.001 <0.001

Note: Data in parentheses are 95% confidence intervals. RA, radiomics analysis; DL, deep learning; AUROC, area under the receiver operating characteristics curve; PPV, positive predictive value; NPV, negative predictive value.

*P value of the comparison inside the RA models and DL models, respectively.

# P value of the comparison between the RA models and DL models, respectively.