Table 3.
Model | RA model | DL model | ||||
---|---|---|---|---|---|---|
Image-kinetic RA model | Image-molecular RA model | Image-kinetic-molecular RA model | Image-kinetic DL model | Image-molecular DL model | Image-kinetic-molecular DL model | |
AUROC | 0.629 | 0.755 | 0.781 | 0.707 | 0.79 | 0.832 |
(0.595, 0.663) | (0.708, 0.802) | (0.735, 0.828) | (0.654, 0.761) | (0.768, 0.812) | (0.816, 0.847) | |
Accuracy | 0.619 | 0.695 | 0.731 | 0.661 | 0.752 | 0.772 |
(0.571, 0.668) | (0.638, 0.753) | (0.678, 0.784) | (0.596, 0.725) | (0.715, 0.788) | (0.724, 0.821) | |
Sensitivity | 0.647 | 0.778 | 0.795 | 0.692 | 0.797 | 0.781 |
(0.559, 0.735) | (0.669, 0.887) | (0.703, 0.887) | (0.579, 0.806) | (0.723, 0.869) | (0.696, 0.867) | |
Specificity | 0.611 | 0.671 | 0.712 | 0.65 | 0.739 | 0.769 |
(0.537, 0.685) | (0.58, 0.762) | (0.634, 0.791) | (0.54, 0.761) | (0.681, 0.797) | (0.69, 0.849) | |
PPV | 0.329 | 0.413 | 0.451 | 0.368 | 0.473 | 0.497 |
(0.267, 0.391) | (0.333, 0.493) | (0.367, 0.536) | (0.318, 0.417) | (0.401, 0.546) | (0.408, 0.587) | |
NPV | 0.855 | 0.911 | 0.922 | 0.88 | 0.925 | 0.924 |
(0.816, 0.894) | (0.872, 0.951) | (0.888, 0.956) | (0.859, 0.902)) | (0.897, 0.953) | (0.896, 0.953) | |
P * | <0.001 | 0.118 | – | <0.001 | <0.001 | – |
P # | – | – | – | <0.001 | <0.001 | <0.001 |
Note: Data in parentheses are 95% confidence intervals. RA, radiomics analysis; DL, deep learning; AUROC, area under the receiver operating characteristics curve; PPV, positive predictive value; NPV, negative predictive value.
*P value of the comparison inside the RA models and DL models, respectively.
# P value of the comparison between the RA models and DL models, respectively.