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Abstract

Artificial intelligence has become a popular field of research with goals of integrating it 

into the clinical decision-making process. A growing number of predictive models are being 

employed utilizing machine learning that includes quantitative, computer-extracted imaging 

features known as radiomic features, and deep learning systems. This is especially true in brain-

tumor imaging where artificial intelligence has been proposed to characterize, differentiate, and 

prognostication. We reviewed current literature regarding the potential uses of machine learning-

based, and deep learning-based artificial intelligence in neuro-oncology as it pertains to brain 

tumor molecular classification, differentiation, and treatment response. While there is promising 

evidence supporting the use of artificial intelligence in neuro-oncology, there are still more 

investigations needed on a larger, multi-center scale along with a streamlined and standardized 

image processing workflow prior to its introduction in routine clinical decision-making protocol.

Introduction

Artificial intelligence (AI)-based analysis of imaging data has revolutionized the field of 

noninvasive biomarker discovery. It relies on using radiologic images as mineable databases 

with quantitative radiomic or texture features that can be learned and/or predict clinically 

significant output1. Machine learning (ML) and deep learning are subsets of AI, each with 

unique qualities that allow for computerized image analysis.

Radiomics

Radiomics is most currently described as the “high-throughput extraction of quantitative 

features that result in the conversion of images into mineable data and the subsequent 

analysis of these data for decision support”2. While the concept of data mining is not novel, 

and nor is it based in AI, the recent advances in ML has made possible radiomic feature 

extraction with subsequent image analysis. More specifically, ML can extrapolate the mined 
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data to produce clinically significant prediction models and classifiers through computer 

algorithms1. While the scope of this article centers around the use of AI in neuro-oncology 

imaging, the combination of radiomics and AI is applicable to a wider range of systems and 

pathology.

Radiomics can be further subdivided into feature-based or deep learning-based radiomics, 

based on the method of radiomic feature acquisition. In feature-based radiomics, 

predetermined features are mathematically extracted from specific region-of-interest (ROI) 

and are commonly referred to as “handcrafted” or “hand-engineered” features1. These 

radiomic features are then selected based on feature selection algorithms. In contrast, 

deep learning-based radiomics involves training computer models from the generated data, 

through learning algorithms and advanced statistics, to extract pertinent radiomic features3. 

It stands to reason that feature-based radiomics is limited by finite mathematics-based 

relations when compared to deep learning-based radiomics, which is continuously refined 

with each data entry. Handcrafted features also require standardization of technique, image 

preprocessing and ROI selection, leaving it exposed to variations in image acquisition, data 

analysis and generalizability. Due to the predetermined nature of handcrafted features, they 

are better suited for smaller data sets, which could explain their prevalence in literature.

Deep learning-based radiomics seeks to imitate the function of the human brain by using 

artificially constructed neural networks. These neural architectures, such as convolutional 

neural networks (CNNs) find the most relevant features from the input data, which are used 

for pattern recognition or the classification of non-linear data. Individual neural layers with 

linear/nonlinear activation functions learn the representation of imaging data with various 

levels of abstraction, after which the layers are then stacked and connected for classification 

and output4. Each hidden layer within the network is responsible for data from one level - 

for example, the first level may represent edges in an image oriented in a specific direction, 

while the second layer could be responsible for motif detection in the observed edges, and 

the third could recognize objects from the ensembles of motifs5. The extracted features 

can be processed by the network itself for analysis of performance and classification, or 

they can undergo model generation through a similar process as feature-based radiomics 

by using different classifiers such as support vector machines (SVM), regression models or 

decision trees3. While feature-based radiomics requires image preprocessing, the opposite 

might be true for deep learning as standardization may have a negative impact by removing 

information. Due to the self-learning aspect of deep neural networks, it is more likely to 

have poor performance on smaller datasets, which is one of the reasons that most studies 

utilize feature-based radiomics to test their hypothesis1.

Characterization of brain tumors

Over 150 different brain tumors have been described based on histopathological 

characteristics. The gold-standard for their characterization requires histopathological 

analysis by retrieving tumor samples from biopsy6. However, due to the heterogeneity 

of some tumors, their inaccessible location, or the patient’s clinical status, noninvasive 

radiological characterization of the brain tumors will be ideal. AI is a promising tool that 
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serves to compliment, and possibly replace, the need for invasive biopsies by combining 

radiomic and non-radiomic features to characterize brain tumors1.

Brain tumor classification

Gliomas are the most common brain tumor and can be divided into grades based on 

recently modified WHO criteria. In 2016, the WHO introduced molecular markers in 

conjunction with histopathology to characterize gliomas based on potential malignancy, 

where a designation of grade II confers lowest risk of malignancy and grade IV confers the 

highest7. Grade II and III gliomas can be characterized as low-grade gliomas (LGG) with 

the most favorable outcomes, whereas grade IV gliomas are considered high-grade gliomas 

(HGG) and are associated with poor outcomes. The accurate and efficient classification of 

gliomas is paramount in planning appropriate treatment and follow up, and the introduction 

of molecular and genomic markers in their classification has introduced novel applications 

for ML.

MRI is the mainstay of brain tumor imaging. In a study by Cho and colleagues8, the 

investigators sought to use handcrafted feature-based radiomics to classify glioma grades. 

They utilized cases from the Brain Tumor Segmentation 2017 Challenge (BraTS 2017), and 

analyzed each case with multi-modal MRI including T1-weighted, T1-contrast enhanced, 

T2-weighted and FLAIR images (Table 1). They identified a total of 468 radiomic 

features from three different ROIs, from which they isolated five relevant features using 

the minimum redundancy maximum relevance algorithm. The five narrowed features 

then served to build three classifier models including logistics, SVM, and random forest 

classifiers. The results suggested that tumor morphological property features, including 

spherical disproportion and compactness, along with grey level co-occurrence matrix 

(GLCM) features, which represent texture, were most effective at discriminating LGG from 

HGG. On average, the classifiers graded gliomas with an accuracy of 93%, sensitivity of 

98%, specificity of 79% and receiver operating characteristics (ROC) area under the curve 

(AUC) of 94%. Sun and colleagues9 demonstrated the use of least absolute shrinkage and 

selection operator (LASSO) to select the most predictive radiomics features for glioma 

grading. They calculated a radiomics score (Rad-score) and built a logistic regression 

model to investigate correlation between glioma grade and Rad-score. They performed 

retrospective analysis on 146 glioma patients using 5 radiomic features selected by LASSO, 

with AUC for glioma grading to be 0.919 (Table 1). These studies demonstrate the use of 

multiple classifiers in accurately characterizing glioma grades.

Sudre and colleagues10 evaluated the role of dynamic susceptibility contrast (DSC)-MRI-

based radiomics in classifying gliomas across their WHO grades II-IV and their isocitrate 

dehydrogenase (IDH) mutation status. DSC-MRI data from 333 patients from 6 different 

tertiary centers was processed for normalized leakage-corrected relative cerebral blood 

volume (rCBV) maps. A random forest algorithm was used to predict glioma grades and 

mutation status using extracted and selected features. Their results showed that shape, 

distribution, and texture features were significantly different across mutation status. WHO 

grade II vs. III differentiation was driven primarily by shape features whereas grade III 

vs. IV was mainly differentiated with texture and intensity features. In their study, 71% of 
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the cases were correctly predicted based on mutation status, and 53% of the cases were 

correctly stratified based on WHO grades (Table 1). Tian and colleagues11 compared the 

utility of single sequence MRI to multiparametric MRI, as well as comparing the efficacy of 

histogram parameters and texture features in glioma grading.

MRI sequences used included pre and post contrast T1-weighted, T2-weighted, multi-b-

value diffusion-weighted, and 3D arterial spin labeling sequences. SVM-based recursive 

feature was used to isolate optimal features, which was then used to establish classifiers. 

They were able to differentiate LGG from HGG with 96.8% accuracy, and grade III from 

grade IV glioma with 98.1% accuracy. Moreover, their results suggested that texture features 

were more effective at grading gliomas than histogram parameters in terms of accuracy, 

sensitivity, specificity and AUC. The results also suggested that multiparametric MRI was 

superior to single sequence MRI, with T1-weighted contrast enhanced (89.2% accurate), 

DSC (86.9% accurate) and T2-weighted (86.5% accurate) being the most accurate sequences 

(Table 1). Huang and colleagues12 supported these results as they investigated the role of 

different MRI sequences in grading gliomas using radiomics. Their results demonstrated 

that radiomics analysis based on multiparametric MRI can accurately grade gliomas, with 

T1-weighted contrast enhanced images being the most effective in isolation but improved 

when combined with clinical features. These studies did not utilize separate validation 

cohorts, however, and due to the imbalance and limited sample size, significant variance 

in the models’ performance in a separate validation cohort cannot be excluded. Hsieh and 

colleagues13 sought to mitigate variations in scanning and image acquisition by converting 

texture features in MR imaging to intensity-invariant ones. They created a computer-aided 

detection (CAD) model using intensity-invariant MR images to differentiate between LGG 

and GBM. They collected MRI datasets from the cancer genome atlas (TCGA) and the 

cancer imaging archive (TCIA)14, and transformed ROI texture features into a local binary 

pattern (LBP), which transformed local textures in MR imaging to intensity-invariant ones. 

From LBP, they could extract and combine histogram moments and texture into a logistic 

regression model classifier used for predicting glioma grade. The CAD performance showed 

an accuracy of 93%, sensitivity of 97%, and a NPV of 99%, compared to conventional 

texture features, which showed an accuracy of 84%, sensitivity of 76% and a NPV of 89%.

While these studies demonstrate the utility of standard, handcrafted radiomic features for 

glioma grade prediction, Gutta and colleagues15 investigated whether the use of deep 

convolutional neural networks (CNN) would significantly improve glioma classification. 

They retrospectively analyzed 237 patients with gliomas using multiparametric MRI, after 

which the images were resampled, registered, skull-stripped, and segmented to extract the 

tumors using automatic segmentation via a cascade of CNNs proposed by Wang et al16. 

The learned features from the trained CNN were then used to predict glioma grade, and its 

performance was compared with standard ML approaches including SVM, random forests 

and gradient boosting trained with radiomic features. Their results demonstrated an average 

accuracy of 87% in predicting glioma grade when utilizing learned features extracted from 

CNN, compared to an accuracy of 64% when using the top-performing ML model. These 

findings are in accordance with previous studies that used CNNs to classify glioma grades 

with accuracies ranging from 71% to 96%17–19.
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Novel methods to distinguish between LGG and HGG based on conventional MR images 

using CNNs have been proposed. Zhuge and colleagues20 proposed two such methods for 

glioma grading. Both methods rely on 3D tumor segmentation using a modification of 

the U-Net model and tumor classification based on segmented brain tumor, however the 

first method uses the mask R-CNN21 model for tumor grading while the second method 

uses a 3D volumetric CNN (called 3DConvNet) on ROIs for segmented tumor grading. 

These methods were subsequently tested on the TCIA and BraTS datasets. The R-CNN 

resulted in a sensitivity of 93.5%, specificity of 97.2% and accuracy of 96.3% while the 

3DConvNet showed a sensitivity, specificity, and accuracy of 94.7%, 96.8%, and 97.1%, 

respectively. Ozcan and colleagues22 also trained a fully automatic custom CNN from 

scratch and compared its performance in glioma grade prediction with pretrained models 

including AlexNet, GoogLeNet, and SqueezeNet. Their results suggest a comparable or even 

enhanced performance compared to pretrained models based on five-fold cross-validation of 

104 pathology-proven cases. These studies advocate for the use of CNNs for glioma grading 

in conjunction with, and in certain circumstances, instead of, surgical biopsies.

Zhang and colleagues23 demonstrated the utility of Diffusion Tensor Imaging (DTI) in 

extracting radiomic features pertinent to glioma grading. This retrospective study utilized 

pre-trained CNNs as well as traditional radiomic features to extract features from manually 

selected tumor regions in DTI images. When differentiating LGG vs. HGG using a 

combination of FA and MD, they found accuracy, sensitivity, and specificity of 94%, 98% 

and 86%, respectively. When differentiating grade III from IV using the same combination, 

they achieved an accuracy, sensitivity, and specificity of 98%, 98% and 100%, respectively. 

They also suggested that deep radiomic features derived from CNN exhibited superior 

prediction of glioma grade than handcrafted features. Takahashi and colleagues24 also 

support the use of DTI in glioma grading as they created an accurate ML model using 

6 features extracted from ADC and mean kurtosis (MK) images using SVM that had 

accuracies of 91% and 93% respectively.

Pyka and colleagues25 evaluated the utility of amino acid positron emission tomography 

(PET) with [18F]-fluoroethyl-L-tyrosine (FET) tracer in differentiating between WHO grade 

III and IV gliomas. The FET PET-based metabolic tumor volume combined with textural 

features derived from GLCM were used to result in a diagnostic accuracy of 85%. Other 

groups investigating the role of nuclear medicine in grading gliomas had similar results26. 

Studies investigating the role of AI in predicting glioma grade are summarized in Table 1.

Predicting 1p/19q co-deletion status and IDH genotype in gliomas

The introduction of molecular biomarkers and genotypic parameters in the grading of 

gliomas has added a layer of objectivity to diagnosis in hopes of increased homogeneity 

and narrower definitions of glioma classification. The two molecular genetic features to 

highlight in the classification of gliomas are the IDH genotype, and loss of heterozygosity 

of the 1p/19q chromosome arms7. Specifically, IDH mutant gliomas, usually astrocytomas 

without 1p/19q co-deletions or oligodendrogliomas harboring 1p/19q co-deletions, have a 

significantly better prognosis in comparison with IDH wildtype gliomas, or GBM3. To 

minimize invasive procedures in gathering tissue samples for histological evaluation, the 
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role of radiomics has been evaluated to predict these molecular biomarkers in patients with 

gliomas.

Jian and colleagues27 conducted a systematic review and meta-analysis to investigate the 

use of ML in predicting molecular markers for glioma grading. They identified 512 studies 

until April 2020, of which 44 met inclusion criteria. Of the 44 studies, 32 studies extracted 

radiomics features such as texture, intensity, and tumor shape, seven studies utilized deep 

learning, and 5 studies exclusively used quantitative parameters such as MR spectroscopy 

or Visually Accessible Rembrandt Imaging (VASARI) features. Random forest and SVM 

were the most common classifiers utilized. They applied 18 studies on training datasets 

and found that the pooled sensitivity and specificity of predicting IDH mutation was 88% 

and 86%, respectively with an AUC of 0.92. The pooled sensitivity and specificity of the 

12 studies applied on the validation sets were 85% and 83%, respectively with an AUC 

of 0.90. Six studies investigating 1p/19q codeletion reported training results with a pooled 

sensitivity and specificity of 83% and 76%, respectively with AUC of 0.83. Validation 

performance across five studies yielded a pooled sensitivity of 70%, specificity of 72% and 

AUC of 0.75. Bhandari and colleagues28 conducted a similar systematic review where they 

investigated the use of MRI radiomics in predicting IDH and 1p/19q status of LGG. They 

selected 14 journal articles out of 532 based on inclusion criteria. Their results suggested 

that optimal classification of 1p/19q status occurred with texture-based radiomics and had a 

90% sensitivity and 96% specificity. The most accurate classifier for predicting IDH status 

used conventional radiomics in combination with CNN derived features as this exhibited a 

94.4% sensitivity and 86.7% specificity. However, examining deep features exclusively was 

found to be superior in predicting other genotypic mutations29. The stark limitation in both 

these systematic review meta-analyses is the relatively high heterogeneity in both studies 

with Bhandari and colleagues noting Higgins I2 heterogeneity of 88.55% and 86.19% in 

predicting IDH and 1p/19q status, respectively. This can be explained by the variation in 

radiomic pipelines, and manual segmentation.

Other groups have also investigated the role of radiomics in predicting genotypes of 

gliomas. Shofty and colleagues30 tested the utility of different classifiers in predicting 

1p/19q codeletion status in LGG. Their results suggested that the Ensemble Bagged Trees 

classifier has the most accurate prediction with sensitivity, specificity, and accuracy of 92%, 

83% and 87% respectively. Lu and colleagues31 proposed a three-level ML model based 

on multimodal MR radiomics to classify IDH mutations and 1p/19q codeletions into 5 

subtypes: LGG with IDH mutation and 1p/19q codeletion; LGG with IDH mutation and 

1p/19q non-codeletion; LGG with wild-type IDH; GBM with IDH mutation; and GBM 

with wild-type IDH. Using 4 binary classifiers, their results ranged in accuracy between 

87% and 96% on the training cohort, and 80% to 92% on the validation cohort (Table 2). 

Han and colleagues32 investigated the utility of combining pertinent clinical factors with 

the radiomics signature via logistic regression algorithm in differentiating 1p/19q codeletion 

genotypes. The random forest classifier was used and the results showed an AUC of 0.887 

and 0.760 on training and validation cohorts using only the radiomic signature, respectively. 

The combination of clinical features to radiomic signature did not significantly improve 

performance and yielded an AUC of 0.885 and 0.753, respectively. Zhou and colleagues33 

investigated a similar concept where they extracted histogram, shape and texture features 
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from multimodal MRIs and combined it with patient age using a random forest algorithm to 

generate a model predictive of IDH mutation status and 1p19q codeletion in LGG and HGG. 

They suggest that age offered the highest predictive value, followed by shape features. The 

overall accuracy for prediction of IDH-wild type, IDH-mutant and 1p19q codeletion, and 

IDH-mutant and no 1p19q codeletion was 78.2% (Table 2).

Groups have also investigated the use of deep learning in predicting molecular markers in 

gliomas. Chang and colleagues34 sought to train a CNN to predict underlying molecular 

genetic mutation status in gliomas and identify the most predictive imaging features in 

each mutation. The CNN algorithm was then used on 259 patients from The Cancer 

Institute Archive14 with LGG and HGG. It predicted IDH mutation with an accuracy of 

94% and AUC of 0.91 and predicted 1p/19q codeletions with an accuracy of 92% and 

AUC of 0.88. The principal component analysis of the final CNN revealed that for IDH 

mutations, the most predictive features were absent or minimal areas of enhancement, 

central areas of cysts with low T1 and FLAIR suppression, and well-defined tumor margins. 

The same analysis revealed that for 1p/19q codeletion, the most predictive features were 

left frontal lobe location, ill-defined tumor margins and larger portion of enhancement. 

Li and colleagues35 directly compared the accuracy of deep learning CNNs to standard 

radiomics in predicting IDH mutations in LGG. They used a modified CNN structure with 

6 convolutional layers and obtained image features by normalizing the information of the 

last convolutional layers of the CNN. Using the same dataset in the prediction of IDH 

mutations, the normal radiomics method had an AUC of 0.86 whereas the deep learning-

based radiomics had an AUC of 92%, which was further improved to 0.95 when based on 

multimodal MR images. Yan and colleagues36 used Bayesian-regularization neural networks 

to predict IDH mutation and compare performance of different MR parameters. They found 

that an image fusion model incorporating radiomic signatures based on contrast-enhanced 

T1-weighted imaging and apparent diffusion coefficient, had the most accurate prediction of 

IDH mutations with an AUC of 0.884. Whereas the contrast-enhanced T1-weighted images 

had the most favorable performance in predicting 1p/19q codeletion status with an AUC 

of 0.815. Eichinger and colleagues37 evaluated the utility of DTI features to predict IDH 

genotype in LGG. They used a single hidden layer neural network trained on texture features 

generated from preoperative B0 and fractional anisotropy (FA) to predict IDH status. Their 

results showed prediction accuracy of 92% in training data and 95% in the validation cohort. 

The ten most important features for prediction comprised tumor size and both B0 and FA 

texture information.

Literature also advocates for the use of nuclear medicine in predicting molecular genotype. 

Lohmann and colleagues38 investigated the potential of O-(2-[18F]fluoroethyl)-L-tyrosine 

(FET) PET radiomics based on textural features in conjunction with static and dynamic 

parameters of FET uptake for prediction of the IDH genotype. A total of 84 patients 

were scanned using either a standard scanner or high-resolution hybrid PET/MR scanner. 

Independent of scanner type, their results suggested significantly improved diagnostic 

accuracy in predicting IDH genotype when combining PET parameters with textural 

features, compared to textural features alone, with the highest diagnostic accuracy being 

93% while using the hybrid PET/MR scanner. Additionally, Zaragori and colleagues39 

investigated the utility of 18F-FDOPA PET imaging in conjunction with MRI to predict 
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IDH mutation and 1p/19q status. They extracted a set of 114 features, which included 

conventional static features, dynamic features and other radiomic features, from ML models 

used to predict IDH and 1p/19q codeletion status. The most accurate models were able 

to predict IDH mutation and 1p/19q codeletion status with an AUC of 0.83 and 0.72, 

respectively. Feature importance, assessed using SHapley Additive exPlanation (SHAP) 

values, suggested that dynamic features were the most important features in the model to 

predict IDH mutations while other radiomics features were the most important in predicting 

1p/19q codeletion status. Table 2 summarizes the studies that investigated the utility of AI in 

prediction IDH and 1p19q codeletions status.

Predicting MGMT promoter methylation status in GBM

The epigenetic silencing of the O6-methylguanine-DNA methyltransferase (MGMT) DNA-

repair gene via promoter methylation decreases DNA repair. Multiple studies have shown 

this silencing to be associated with significantly longer survival in patients with GBM 

who are being treated with alkylating agents40,41. The following section reviews literature 

pertinent to noninvasively predicting MGMT promoter methylation status in patients with 

GBM.

Huang and colleagues42 aimed to build a radiological model based on standard MR 

sequences to detect MGMT methylation status in gliomas using texture analysis. They 

generated a combined model using the top five most effective texture features (selected 

from a total of 396 features) in each MR sequence to predict MGMT methylation status in 

a GBM dataset and an overall glioma dataset. Their model predicted MGMT methylation 

status with a 90.5% sensitivity and a 72.7% sensitivity (AUC=0.818) in the GBM dataset, 

and a 70.2% sensitivity and a 90.6% specificity (AUC=0.833) for the glioma dataset. Li 

and colleagues43 sought to build a reliable radiomics model from conventional MRI for the 

prediction of MGMT promoter methylation sequence in GBM patients. They retrospectively 

extracted 1,705 multiregional radiomics features, and isolated six features using ML-based 

algorithm, Boruta, to build a random forest classification model that predicted MGMT 

status, which they tested on a primary cohort of 133 patients, and a validation cohort of 

60 patients. Their model predicted MGMT promoter methylation status with an accuracy 

of 80% (AUC=0.88). Combining clinical features with radiomics features did not improve 

prediction performance. Xi and colleagues44 investigated a similar hypothesis but utilized 

LASSO to isolate 36 radiomics features that were based on conventional MRI. Twenty GBM 

patients were in the validation cohort, and their results suggest that the best classification 

system for predicting MGMT promoter methylation status combined T1, T2, and contrast-

enhanced T1 weighted imaging features, which had an accuracy of 86.6% in the validation 

cohort, and 80% in the test dataset. Vils and colleagues45 utilized data from the DIRECTOR 

trial46 to investigate the role of radiomics in predicting MGMT status for patients with 

recurrent GBM. Contrast-enhanced T1-weighted images were used to extract 180 features, 

after which principal component analysis was used to perform radiomic feature selection. 69 

patients enrolled into the DIRECTOR trial served as the training cohort and 49 independent 

patients served as the external validation cohort. Their model predicted MGMT status with 

an AUC of 0.67 on the training dataset, and an AUC of 0.673 for the validation cohort. 

Recently, Le and colleagues47 hoped to improve accuracy of radiomics-based models in 
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predicting MGMT status by investigating a radiomics-based eXtreme Gradient Boosting 

(XGBoost) model in IDH1 wildtype mutation GBM patients. XGBoost is widely used 

in competitions due to its potential of controlling overfitting. They extracted radiomic 

features from multimodality MRI and tested with F-score analysis to identify important 

features to improve the model. They tested MGMT status prediction of their model on 53 

patients, and the results identified nine radiomic features with and AUC of 0.896. Crisi 

and colleagues48 evaluated whether radiomic features from DSC-MRI would have sufficient 

strength to predict MGMT methylation status in GBM patients. Their results found 14 

radiomic quantitative imaging features that helped differentiate between non-methylated and 

methylated MGMT sequences, which they used to build a perceptron deep learning model 

to classify MGMT status into 3 groups: unmethylated MGMT promoter sequence (< 10% 

methylated), intermediate-methylated sequence (between 10% and 30% methylated), and 

methylated MGMT promoter sequence (>29% methylated). Their model classified MGMT 

status into these groups with an AUC, sensitivity, and specificity of 0.84, 75% and 85%, 

respectively.

The use of deep learning to predict MGMT promoter methylation status has also been 

evaluated. Chang and colleagues34 sought to train a CNN that could independently predict 

MGMT promoter methylation status in gliomas. They retrospectively obtained MRI data 

from The Cancer Imaging Archive14 for 259 patients with LGG and HGG. Their feature 

analysis found that for MGMT status, the most predictive features were a heterogenous, 

nodular enhancement; the presence of an eccentric cyst; mass-like edema with cortical 

involvement and slight frontal and superficial temporal predominance. Their CNN model 

predicted MGMT status with an accuracy of 83%.

Korfiatis and colleagues49 compared three different residual deep neural network (ResNet) 

architectures in their ability to predict MGMT status in GBM patients without the need for 

a distinct tumor segmentation step, eliminating extensive image preprocessing. The three 

ResNet architectures consisted of 18 layers (ResNet18), 34 layers (ResNet30), and 50 layers 

(ResNet50). Accuracy was based on the model’s ability to classify each slice as no tumor, 

methylated MGMT, non-methylated. Their results showed that ResNet50 was the most 

predictive of MGMT status with an accuracy of 95% during the validation phase, and an 

accuracy of 97% during the test phase. Lu and colleagues50 found the optimal cutoff of 

MGMT promoter methylation status to be 12.75%, based on prediction of overall survival. 

They used top radiomic features based on MRI, Visually Accessible Rembrandt Images 

(VASARI) features and clinical features to build multiple ML models that predict MGMT 

status. Their models had accuracies ranging from 45% to 67%.

Current literature also evaluates the use of radiomics based on nuclear medicine images 

in predicting MGMT methylation status. Qian and colleagues51 investigated the use of 

radiomic features derived from 18F-DOPA PET imaging in predicting MGMT promoter 

methylation status. Using features extracted from HGG contour based on a tumor-to-normal 

hemispheric ratio >2.0 with a random forest model, they achieved an accuracy of 80% for 

predicting MGMT status. Kong and colleagues52 evaluated the use of radiomic features 

extracted based on 18F-fluorodeoxyglucose (FDG) PET images in predicting MGMT 

promoter methylation status. They used a 3D ROI and extracted 1561 radiomics features, of 
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which five features were selected for the radiomics signature. The radiomics signature was 

evaluated independently, and in combination with clinical features referred to as a fusion 

signature. Their results show that the radiomics signature alone produced the most accurate 

prediction of MGMT promoter methylation status with the AUC reaching 0.94 and 0.86 

in the primary and validation cohorts, respectively. Table 3 summarizes the studies that 

investigated the role of AI in predicting MGMT methylation status in patients with glioma.

Differentiation of different tumor types

The high soft-tissue contrast seen in MRI allows it to be used as the primary imaging 

modality in differentiating brain tumors. However, multiple tumor types have similar 

appearance on MRI. GBM and metastases are the two most common brain tumors 

and are treated differently with maximal tumor resection followed by radiotherapy and 

temozolamide, and stereotactic radiosurgery, respectively. Unfortunately, both brain lesions 

present similarly on conventional brain MRI making clinical differentiation difficult. 

Furthermore, advanced MRI features have shown utility in differentiating GBM and 

metastases, no individual finding has enough evidence to drive clinical decision-making53. 

Multiple studies have demonstrated the use of machine-based learning to isolate pertinent 

radiomic features and classifiers, and evaluate brain lesions to differentiate between GBM 

and metastases1,3,54. The same approach can be taken to further differentiate the subtypes 

of metastatic brain lesions55. Some studies also compared practicing neuroradiologists to 

the best-performing ML classifiers in characterizing tumor type, and the results showed 

significantly better performance by the ML classifiers51,53. Table 4 summarizes the utility of 

MRI in ML models to differentiate between various brain tumors53–62.

The role of AI in Digital Pathology Images

While much of this article has focused on the noninvasive applications of AI in neuro-

oncologic imaging, it is important to note the utility of deep learning-based radiomics 

for the digital analysis of histopathology slides. Pei and colleagues63 used a deep neural 

network-based classification method that fuses molecular and cellular features to grade 

gliomas in 549 patients from TCGA dataset. Their model had an accuracy of 93.8% in 

differentiating between HGG and LGG, and an accuracy of 74% in differentiating grade 

II vs. grade III gliomas (the 74% accuracy outperforms current state-of-the-art methods 

in classifying grade II vs. grade III gliomas). While Pei and colleagues segmented slides 

to analyze specific ROIs, Im and colleagues64 used deep-learning to analyze whole-slide 

images and classify glioma grades and subtypes. Their model had an accuracy of 87.3% 

of diffuse glioma subtype classification. These studies highlight the utility of deep learning 

in analyzing histopathology. Further work needs to be done investigating the use of AI in 

digital pathology images in conjunction with noninvasive techniques discussed previously to 

maximize accuracy in glioma grading.

Prognostication

We have discussed the utility of AI in predicting molecular biomarkers such as IDH 

mutation, 1p/19q codeletion, and MGMT promoter methylation status, and their effects on 

patient prognosis. In this section, we highlight studies conducted by groups that evaluate the 
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use of other prognostic markers in ML to determine prognosis of patients with brain tumors, 

particularly GBM, which is the most common and most aggressive primary brain tumor with 

a median survival between 12 and 15 months65.

Prasanna and colleagues66 investigated the utility of radiomic features extracted from 

preoperative conventional MR images of the peritumoral brain zone in predicting long-term 

(>18 months) versus short-term (<7 months) survival in GBM patients. They obtained 

contrast-enhanced T1-weighted, T2 weighted, and FLAIR sequences on 65 patients from 

The Cancer Imaging Archive14 and an expert reader segmented each study as enhancing, 

peritumoral brain zone and tumor necrosis. A minimum redundancy maximum relevance 

(mRMR) feature selection scheme was employed to extract 402 radiomic features, after 

which a random forest classifier was employed to isolate the most predictive features. From 

this, they addressed two questions - what is the relative role of each region within and 

around the tumor is predicting long-term vs. short-term GBM survival; and how does the 

addition of clinical features to the radiomics model affect prediction of overall survival. The 

results showed that peritumoral radiomic features were predictive across T2 weighted, with 

a concordance index (CI) of 0.637, and FLAIR sequences (CI=0.694), and radiomic features 

from the tumor necrosis segment were the most predictive of long-term vs. short-term 

survival for contrast-enhanced T1 weighted images (CI=0.69). Peritumoral radiomic features 

when combined across multi-parametric sequences were the best at predicting long-term 

vs. short-term survival for GBM patients (CI=0.70). When clinical features were combined 

with the peritumoral radiomic features across multi-parametric sequences, the model yielded 

highest predictive accuracy of GBM survival (CI=0.735). Kickingereder and colleagues67 

conducted a similar investigation on 119 GBM patients by using multi-parametric MRI 

based radiomic features from multiregional tumor volumes. Analysis based on 11 features 

allowed stratification into either high-risk or low-risk groups for progression free survival 

with a hazard ratio of 2.28 in the validation group and predicted overall survival with a 

hazard ratio of 3.45 in the validation cohort. In alignment with the previous study, they also 

found that prediction of patient prognosis improved when radiomic features were combined 

with clinical data. Park and colleagues68 aimed to include diffusion- and perfusion-weighted 

MRI with conventional MRI to develop and validate a radiomics model for prognostication 

of patients with GBM. Radiomic features were extracted from a total of 216 patients, 

and feature selection via LASSO regression followed by calculation of radiomic score. 

A prognostic model was then developed using the radiomic score combined with clinical 

predictors. The radiomics model with clinical data performed best with a C-index of 0.74. 

External validation also showed good discrimination with a C-index of 0.70.

Tumor hypoxia is known to decrease survival in GBM patients,69 thus, Beig and 

colleagues70 investigated the use of radiomic features extracted from multi-parametric MRI 

to detect hypoxic changes that could stratify GBM patients into short-term (STS), mid-term 

(MTS) and long-term (LTS) survivors. A total of 115 different multi-parametric MR studies 

were segmented by 3 neuroradiologists and top 8 radiomic features were extracted to 

generate a hypoxia enrichment score (HES) based on 21 genes implicated in the hypoxia 

pathway for GBM71, and predict patient survival. Their results on the validation set showed 

that there was a statistically significant separation between the Kaplan-Meier survival curves 

of STS vs. LTS (p=0.0032).
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Another method by which prognosis can be stratified is through measuring the proliferative 

index of a tumor. Ki-67 is the most reliable marker of cell proliferation72 and its expression 

levels have shown to confer a worse prognosis73. Li and colleagues74 evaluated a radiomics-

based approach in predicting expression levels of Ki-67 by extracting 431 radiomic features 

from 117 patients with LGG. A group of 9 radiological features were used for the 

final model, which predicted Ki-67 expression with an accuracy of 83.3% and 88.6% 

in the training and validation sets, respectively. Of the extracted features, only spherical 

disproportion of the tumor was found to be predictive of prognosis.

True Progression (TP) vs. Pseudoprogression (PsP)

Pseudoprogression (PsP) refers to treatment-related changes that mimic the true progression 

(TP) of post-treatment GBM. This occurs primarily within the first six months after 

completion of treatment, which includes surgical excision and chemoradiation with 

temozolomide. Accurate differentiation between TP and PsP is essential for assessing 

response to treatment and patient prognosis. This section reviews the role of ML in 

differentiating TP from PsP75.

Many groups have investigated the role of feature-based radiomics in differentiating TP 

from PsP. Zhang and colleagues76 used conventional MRI sequences to extract 285 radiomic 

features that were selected through concordance correlation coefficients to construct a model 

that would differentiate TP from PsP. Using five selected radiomics features, their model 

had an overall accuracy of 73.2% in predicting TP or PsP. Kim and colleagues77 further 

incorporated diffusion- and perfusion-weighted MRI on top of conventional MR images to 

extract 6472 radiomic features from the enlarging contrast-enhancing portions of 61 GBM 

patients to predict TP vs. PsP. They used LASSO to select 12 significant radiomics features 

to build their model. This multiparametric radiomics model showed a robust performance 

in both external validation (AUC=0.85) and internal validation (AUC=0.96) cohorts for 

differentiating TP and PsP. Peng and colleagues78 directly compared the performance of a 

radiomics-based model to a neuroradiologist in differentiating between TP and PsP. Their 

radiomics-based model extracted features from T1-weighted and T2-FLAIR sequences and 

top features were entered into a hybrid feature selection/classification model – i.e., IsoSVM. 

Images from 66 patients were used for performance evaluation and the model differentiated 

between TP and PsP with a sensitivity, specificity, and AUC of 65.4%, 86.67% and 0.81, 

respectively, on the validation cohort. In comparison, the neuroradiologist was only able to 

classify 73% of the cases with a sensitivity and specificity of 97% and 19%, respectively.

The role of nuclear medicine-based radiomics in differentiating TP from PsP has also 

been evaluated in literature. Lohmann and colleagues79 investigated the potential of FET 

PET radiomics to discriminate between TP and PsP. Their study used data from 35 GBM 

patients who underwent a dynamic FET PET scan. Their final model utilized random forest 

regression for feature selection and the number of parameters was limited to three. They 

found that the diagnostic accuracy of the best single FET PET parameter (TBRmax) was 75% 

in differentiating TP from PsP. The highest accuracy was achieved by the three-parameter 

model, combining the dynamic parameter time-to-peak (TTP) with two radiomic features: 

92% on the test cohort, and 86% on the validation cohort. In another study, Lohmann 
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and colleagues80 compared the performance of contrast-enhanced MRI and FET PET in 

differentiating TP from PsP. They built radiomics-based models on both CE-MRI and FET 

PET and tested them on a cohort of 52 patients. Their results showed a diagnostic accuracy 

of 81% when using textural features extracted from contrast-enhanced MRI to differentiate 

TP from PsP. The accuracy of the FET PET model was slightly higher at 83%. The highest 

accuracy was achieved by combining contrast-enhanced MRI and FET PET features, which 

was 89%, with a sensitivity and specificity of 85% and 96%, respectively.

Groups have also investigated the role of deep learning and CNNs in differentiating between 

TP and PsP. Jang and colleagues81 used MR images from 52 GBM patients to build three 

CNN models based on a CNN-LTSM structure: model 1 combined MRI data with clinical 

features, model 2 only included MRI data and model 3 was a random forest model with 

clinical features only. Model 1 had the best performance in differentiating TP and PsP with 

an AUC of 0.83.

Limitations and Future Considerations

Early evidence for the use of ML in clinical practice shows great promise, however 

there are limitations that prevent it from becoming a routine part of clinical work up. 

One of the factors limiting the routine use of ML is the burdensome process of image 

segmentation. There is no reliable and automated tumor-segmentation algorithm currently 

used, and few studies have significant validation for their attempts at automation of tumor 

segmentation. Future studies should look to develop such algorithms as an additional benefit 

of standardizing tumor segmentation would be the quantification of tumor volumes, which 

aids in evaluating treatment response.

Studies investigating ML are also impacted by a lack of reproducibility of their results, 

which likely stems from poor standardization in image acquisition and radiomics analysis 

workflow. A systematic review suggested that the repeatability and reproducibility of 

radiomic features are sensitive to processing details at various degrees82. The complexity 

behind image processing, feature extraction and the prediction algorithms add to difficulty 

in standardization and implementation of radiomic pipelines. Future studies should focus 

on the standardization of radiomics analysis, including image acquisition and tumor 

segmentation, before validating findings on large-scale, multi-centered patient cohorts that 

will require data sharing and collaboration. The nature of AI is such that it continuously 

refines algorithms based on the availability of data, and by providing access to varied, 

complete data, generalizable algorithms can be conceived, leading to the use of ML as a 

routine clinical tool in patient diagnosis.
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ML machine learning

CNN convoluted neural network

SVM support vector machine

LGG low-grade glioma

HGG high-grade glioma

LASSO least absolute shrinkage and selection operator

GLCM grey level co-occurrence matrix

LBP local binary pattern

CAD computer-aided detection

TCGA the Cancer Genome Atlas

TCIA the Cancer Imaging Archive

GBM glioblastoma multiforme

IDH isocitrate dehydrogenase

MGMT O6-methylguanine-DNA methyltransferase

VASARI Visually Accessible Rembrandt Imaging

XGBoost eXtreme Gradient Boosting

mRMR minimum redundancy maximum relevance

TP true progression

PsP pseudoprogression
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Table 1

Studies Investigating the Role of AI in Grading Gliomas

Study Purpose Number of 
Patients

Findings

Cho et al.8 

(2018)
Grading gliomas (HGG vs 
LGG) using multimodal MRI-
based radiomics

285 (HGG n = 
210; LGG n = 
75), BraTS 
challenge 2017

• Three classifiers showed average AUC = 0.94 in 
training set, and AUC = 0.90 in test cohort

• Tumor morphological features + GLCM were most 
effective at discriminating HGG vs LGG

Hsieh et al.13 

(2017)
Grading gliomas by 
developing CAD system based 
on intensity-invariant MRI 
(achieved by converting MR 
images to local binary pattern)

107 (n = 34 
GBM; n = 73 
LGG)

• CAD system based on LBP features had accuracy = 
93%, sensitivity = 97%, NPV = 99% and AUC = 0.94

• Conventional texture features had accuracy = 84%, 
sensitivity = 76%, NPV = 89% and AUC = 0.89

Tian et al.11 

(2018)
Distinguishing HGG vs LGG, 
and Grade III vs Grade IV 
gliomas using multiparametric 
MRI and evaluate the grading 
potential of different MRI 
sequences

153 (n = 42 
Grade II; n = 33 
Grade III; n = 78 
Grade IV)

• SVM models established using 30 and 28 optimal 
features for HGG vs LGG and Grade III vs IV gliomas, 
respectively

• Differentiating HGG vs LGG accuracy = 96.8%, AUC 
= 0.987

• Differentiating Grade III vs IV gliomas accuracy = 
98.1%, AUC = 0.992

• Multiparametric MRI was more useful than histogram 
parameters or single sequence MRI

Pyka et al.25 

(2015)
Using textural FET-PET 
features for grading and 
prognostication of patients with 
HGG

113 • All FET-PET parameter differentiated between grade 
III and IV tumors (AUC = 0.775)

• Combination of texture and metabolic tumor volume 
graded HGG with an accuracy of 85% (AUC = 0.830)

Yang et al.18 

(2018)
Differentiating HGG vs LGG 
by training CNN (AlexNet & 
GoogLeNet) on MR images

113 • GoogLeNet performance: validation accuracy = 0.87, 
test accuracy = 0.91, test AUC = 0.94

• Performances improved with transfer learning and fine 
tuning of both AlexNet and GoogLeNet (validation 
accuracy = 0.87 and 0.87; test accuracy 0.93 and 0.95; 
test AUC = 0.97 and 0.97, respectively)

Gutta et al.15 

(2020)
Comparing performance of 
features learned from CNN 
with standard radiomic features 
for glioma grade prediction

237 • CNN-learned features predicted glioma grade with an 
average accuracy of 87%

• Top performing ML model (gradient boosting) 
predicted with average accuracy of 64%

Takahashi et 
al.24 (2019)

Grading gliomas (GBM vs 
LGG) using ML based on 
multiparametric MRI including 
DTI

54 (n = 14 grade 
II glioma; n = 12 
grade III glioma; 
n = 29 GBM)

• Most accurate ML model was created using 6 features 
extracted from ADC and MK images with test data 
accuracy = 0.91 and AUC 0.90

Zhang et al.23 

(2020)
Grading gliomas (LGG vs 
HGG and Grade III vs IV 
gliomas) using both deep 
neural networks and standard 
radiomics based on DTI

108 (n = 43 
LGG; n = 65 
HGG)

• Combining FA+MD had the best performance with 
accuracy = 94% and AUC = 0.93 in differentiating 
LGG from HGG; accuracy = 98% and AUC 0.99 in 
classifying grade III vs IV gliomas

• Deep learning features are more predictive of glioma 
grades than conventional texture and morphological 
features

Haubold et 
al.26 (2020)

Grading gliomas and predicting 
mutational status using FET-
PET MRI-based radiomics

42 • Differentiating LGG vs HGG AUC = 0.85

• Predicting ATRX mutation AUC = 0.85

• Predicting MGMT mutation AUC = 0.75
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Study Purpose Number of 
Patients

Findings

• Predicting IDH1 mutation AUC = 0.89

• Predicting 1p19q mutation AUC = 0.98

Zhuge et al.20 

(2020)
Automatic differentiation of 
LGG vs HGG on conventional 
MRI images by using CNNs

(TCIA LGG 
data, BraTS 
Benchmark 
2018)

• 2D Mask R-CNN based method had accuracy = 96.3%, 
sensitivity = 93.5% and specificity = 97.2%

• 3DConvNet method had accuracy = 97.1%, sensitivity 
= 94.7% and specificity = 96.8%

Ozcan et al.22 

(2021)
Compare the performance of 
custom trained CNN against 
pretrained models in predicting 
LGG vs HGG grade of gliomas

104 • Custom model predicted HGG vs LGG with an 
accuracy = 97.1%, AUC = 0.99, sensitivity = 98% and 
specificity = 96.3%

• GoogLeNet had the best performance of pretrained 
models with accuracy = 93.3%, AUC = 0.99, sensitivity 
= 98% and specificity = 89%

Huang et al.12 

(2021)
Distinguishing LGG vs HGG, 
IDH1 mutation status and 
MGMT mutation status using 
MRI-based radiomics and 
comparing the utility of each 
sequence

59 • CE-T1WI sequence performed best compared to other 
sequences alone in predicting tumor grade and IDH1 
status of glioma

• T2WI sequence performed best in predicting MGMT 
methylation status of glioma

Sun et al.9 

(2021)
Evaluating the role of logistic 
regression model based on 
radiomics to predict glioma 
grade

146 • 5 imaging features selected by LASSO were used for 
the logistic regression model and had an AUC = 0.92 
for grading gliomas

• Hosmer-Lemeshow test was used to measure accuracy 
and it showed no significant difference between the 
calibration and ideal curve (P = 0.808) indicating high 
predictive accuracy of the model

Sudre et al.10 

(2020)
Using DSC-MRI-based 
radiomics to differentiate WHO 
grades of gliomas and IDH1 
mutation status and the utility 
of each feature

333 • Shape, distribution and texture features were best at 
predicting IDH1 mutation status

• Grade II vs III differentiation was best achieved 
through shape features

• Grade III vs IV differentiation was best achieved 
through intensity and texture features

• IDH1 mutation prediction accuracy = 71%

• Glioma grade prediction accuracy = 53% (87% of cases 
received grade classification with distance less than or 
equal to 1)
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Table 2:

Studies investigating the role of AI predicting IDH mutation and 1p19q codeletion status

Study Purpose Number of 
Patients

Findings

Shofty et al.30 

(2017)
Evaluating radiomics 
classifiers and different MR 
contrasts in predicting 1p19q 
codeletion status in LGG 
patients

47 • Best classification occurred via the Ensemble Bagged 
Trees classifier with accuracy = 87%, AUC = 0.87, 
sensitivity = 92%, and specificity = 83%

Han et al.32 

(2018)
Predicting 1p19q codeletion 
status using MRI-based 
radiomic features in LGG

277 • Radiomics signature generated via random forest algorithm

• Radiomics signature independently had best performance 
in predicting 1p19q codeletion status with AUC of 0.89 
and 0.76 in training and validation cohorts, respectively

• Clinical model had AUC of 0.58 and 0.63 in training and 
validation cohorts, respectively

• Combined model had AUC of 0.89 and 0.75 in training and 
validation cohort, respectively

Zhou et al.33 

(2019)
Predicting IDH mutation and 
1p19q codeletion status based 
on MRI-based radiomics 
features in glioma patients

538 (3 
separate 
institutions)

• Model predicted IDH mutation with an AUC of 0.92 and 
0.92 in training and validation cohorts, respectively

• Overall accuracy of 3 group prediction (IDH-wild type, 
IDH mutant + 1p19q codeletion, IDH mutant + 1p19q 
non-deletion) was 78.2%

Lu et al.31 

(2018)
Predicting IDH mutation 
and 1p19q codeletion status 
based on multiparametric 
MRI-based radiomics features 
in glioma patients

456 from 
TCIA

• Binary classification of IDH and 1p19q status of gliomas 
was predicted with AUCs between 0.92 and 0.98, and 
accuracies between 87.7% and 96.1% on the training set

• Accuracies ranged between 80.0% and 91.7% on the 
validation dataset

Lohmann et 
al.38 (2018)

Predicting IDH genotype in 
gliomas using FET-PET based 
radiomics and in combination 
with textural features

84 • Prediction accuracy by combining conventional FET-PET 
parameters with textural features = 93% (sensitivity = 
91%, specificity = 94%)

• Accuracy based on FET PET standard parameters = 79% 
(AUC = 0.84)

• Accuracy based on FET PET textural features = 79% 
(AUC = 0.84)

Eichinger et 
al.37 (2017)

Predicting IDH genotype in 
LGG using DTI-based ML

79 • Single hidden layer neural network was trained on texture 
features and predicted IDH status with accuracy of 92% 
(AUC = 0.92) in training set and accuracy of 95% (AUC = 
0.95) in validation set

Chang et al.34 

(2018)
Training a CNN using MRI 
to predict IDH1, 1p19q and 
MGMT mutation status in 
gliomas

259 from 
TCIA

• Classifying IDH1 mutation status had accuracy of 94% 
(AUC = 0.91)

• Classifying 1p19q codeletion status had accuracy of 92% 
(AUC = 0.88)

• Classifying MGMT methylation status had accuracy of 
83% (AUC = 0.81)

Li et al.35 

(2017)
Predicting IDH1 status in 
LGG patients using deep 
learning-based radiomics and 
comparing performance to 
conventional radiomics

151 • AUC of IDH1 prediction using conventional radiomics = 
0.86

• AUC of IDH1 prediction using deep learning-based 
radiomics = 0.92

• AUC of IDH1 prediction using deep learning based on 
multiple-modality MR images = 0.95
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Study Purpose Number of 
Patients

Findings

Zaragori et 
al.39 (2021)

Predicting IDH and 1p19q 
mutation status in glioma 
patients using 18F-FDOPA 
PET-based radiomics

72 • Best models predicted IDH mutation and 1p19q codeletion 
with an AUC of 0.83 and 0.72, respectively

• Dynamic features were the most important in predicting 
IDH mutation (TTP = 35.5%)

• Other radiomic features were the most important in 
predicting 1p19q codeletion status (up to 14.5% of 
importance for the small zone low grey level emphasis)

Yan et al.36 

(2021)
Classifying gliomas into 
molecular groups based 
on IDH mutation, 1p19q 
codeletion and TERT 
promoter mutation status 
using advanced MRI-based 
radiomics

357 • Image fusion model incorporating radiomic signatures 
from CE-T1WI and ADC achieved AUC of 0.88 and 0.67 
for predicting IDH and TERT status, respectively

• CE-T1WI-based radiomic signature alone had best 
performance in predicting 1p19q codeletion status with 
AUC = 0.82

Fukuma et 
al.29 (2019)

Comparing MRI-based 
pretrained CNN and 
conventional radiomics in 
predicting IDH and TERT 
mutations for patients with 
LGG

164 • Prediction of IDH mutation was best using combination of 
CNN + radiomics + patient age (accuracy = 73.1%)

• Characterization of LGG into 3 molecular subtypes based 
on IDH and TERT status was best using combination 
of CNN + radiomics + patient age (accuracy = 63.1%), 
however was not significantly different from using CNN 
alone (accuracy = 62.1%)

• Prediction of TERT promoter mutation was best using 
CNN-features exclusively (accuracy = 84%)
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Table 3:

Studies investigating the role of AI in predicting MGMT promoter methylation status of glioma patients

Study Purpose Number of 
Patients

Findings

Li et al.43 

(2018)
To build a radiomics 
model from multiregional and 
multiparametric MRI to predict 
MGMT promoter methylation 
status in GBM patients

193 (multicenter) • Radiomics model with minimal set of 6 all-relevant 
features predicted MGMT status with accuracy of 80% 
(AUC = 0.88)

• Radiomics model with 8 univariately-predictive and 
non-redundant features predicted MGMT status with 
accuracy of 70% (AUC = 0.76)

• Combining clinical features with radiomic features did 
not significantly improve performance

Xi et al.44 

(2018)
To analyze utility of MRI-
based radiomics features in 
predicting MGMT promoter 
methylation status in GBM 
patients

98 (n = 48 
methylated; n = 
50 unmethylated)

• Best performance for predicting MGMT status was 
achieved by combining T1WI, T2WI and CE-T1WI 
(accuracy = 86.6%)

• Radiomic features of T1WI had accuracy of 67.6%

• Radiomic features of CE-T1WI had accuracy of 82%

• Radiomic features of T2WI had accuracy of 69.3%

Qian et al.51 

(2020)
Using 18F-DOPA PET-based 
radiomics to predict MGMT 
status in GBM patients

86 • Radiomics signature to predict MGMT methylation 
status using features extracted from GBM contour 
alone had accuracy of 80%

• Prediction accuracy was not improved with additional 
input features

Kong et al.52 

(2019)
Using 18F-FDG PET-based 
radiomics to predict MGMT 
status in diffuse glioma 
patients

107 • Radiomics signature had the best performance with 
accuracy of 91.3% and 77.8% (AUC of 0.94 and 0.86) 
in the primary and validation cohorts, respectively

• Clinical model had accuracy 64.8% and 66.4% in the 
primary and validation cohort, respectively

• Fusion model had accuracy of 64.8% and 72.7% in the 
primary and validation cohort, respectively

Huang et al.42 

(2021)
Predicting MGMT methylation 
status in gliomas using MR-
based radiomics with textural 
features

53 • Combined radiomics model using multiparametric 
MRI predicted MGMT methylation status with AUC, 
sensitivity, and specificity of 0.82, 90.5% and 72.7%, 
respectively in the GBM dataset

• AUC, sensitivity, and specificity of 0.83, 70.2% and 
90.6% in the overall glioma dataset

Vils et al.45 

(2021)
Predicting MGMT methylation 
status using multi-center MRI-
based radiomics in recurrent 
GBM patients

69 (DIRECTOR 
trial)

• CE-T1W MRI-based radiomic model to predict 
MGMT status was established using linear intensity 
interpolation and had AUC of 0.67 in both training and 
validation cohorts

Korfiatis et 
al.49 (2017)

Comparing three different 
ResNet architectures in 
predicting MGMT methylation 
status without distinct tumor 
segmentation step

155 (n = 66 
methylated; n = 
89 unmethylated 
tumors)

• ResNet50 (50 layers) was the best performing model 
with prediction accuracy of 94.9% on test set

• ResNet34 (34 layers) achieved an accuracy of 80.7%

• ResNet18 (18 layers) achieved an accuracy of 76.8%

Le et al.47 

(2020)
Evaluating a novel radiomics-
based XGBoost model to 
identify MGMT methylation 
status in IDH1 wildtype GBM 
patients

53 • 9 radiomics features were extracted from 
multimodality MRI for model construction
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Study Purpose Number of 
Patients

Findings

• XGBoost classifier predicted MGMT status with 
accuracy of 88.7%, AUC of 0.896, sensitivity of 88% 
and specificity of 89%

Crisi & 
Filice48 

(2020)

Stratification of MGMT 
methylation status in GBM 
patients using DSC-MRI-based 
radiomics features

59 • Used 14 radiomics features to build a multilayer deep 
learning model that classified MGMT methylation 
status into 3 groups

• Their model had AUC, sensitivity, and specificity of 
0.84, 75% and 85%, respectively

Lu et al.50 

(2020)
Combining MRI based-
radiomic, semantic and clinical 
features to improve prediction 
of MGMT methylation status 
in GBM patients

181 MRI studies • Optimal cut-off value for MGMT promoter 
methylation index was 12.75%

• Their model combined radiomic, VASARI and clinical 
features to predict MGMT status and had an accuracy 
that varied between 45% and 67%
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Table 4:

Studies investigating the use of ML to differentiate between types of brain tumors

Study Purpose Number of Patients Findings

Kim et al.56 

(2018)
Differentiate GBM vs. 
primary central nervous 
system lymphoma (PCNSL) 
using multiparametric MRI-
based radiomics

143 patients (n = 
86 training; n = 57 
validation)

• 15 features used in final model

• AUC validation = 0.956

• AUC training = 0.979

Shrot et al.57 

(2019)
Differentiating different 
brain tumors using basic 
and advanced MRI-based 
radiomics

141 patients (41 
GBM, 38 METS, 50 
meningioma & 12 
PCNSL)

• Classification used morphologic MRI, perfusion 
MRI & DTI metrics

• Feature subset selection via SVMs

• Binary SVM classification accuracy ranged 
from 81.6 to 97.0

Niu et al.58 

(2019)
Differentiating between 
different meningioma 
subtypes using basic MRI-
based radiomics

241 patients (n = 
80 meningiothelial 
meningioma, n = 80 
fibrous meningioma, 
n = 81 transitional 
meningioma)

• Fisher discriminant analysis model for binary 
differentiation between meningioma types had 
accuracies between 98.8% and 100%

• Leave one out cross validation had accuracies 
between 91.3% and 100%

Nakagawa et 
al.59 (2018)

Differentiating GBM vs 
PCNSL using ML method 
based on texture features in 
multiparametric MRI

70 patients • Prediction model developed using univariate 
logistic regression and XGBoost

• rCBV offered highest AUC of 0.86 (rCBV AUC 
= 0.83; skewness of CE-T1WI AUC = 0.78)

• AUC of XGBoost was significantly higher than 
that of two radiologists (0.98 vs 0.84).

Dong et al.60 

(2019)
Differentiating between 
pilocytic astrocytoma 
(PA) and GBM using 
MRI quantitative radiomic 
features by a decision tree 
model

66 patients (PA n = 31; 
GBM n = 35)

• Subset of 12 features selected by feature 
stability and Boruta algorithm to build decision 
tree model

• Training set: accuracy = 87%; sensitivity = 90%; 
specificity = 83%

• Validation set: accuracy = 86%, sensitivity = 
80%; specificity = 91%

Zhang et al.61 

(2018)
Using MRI-based radiomics 
to differentiate between 
non-functioning pituitary 
adenoma subtypes

112 patients (training 
set n = 75; test set n = 
37)

• T1WI had AUC of 0.83 and 0.80 in training and 
test sets, respectively

• CE-T1WI features added no additional value to 
model

Chakrabarty et 
al.62 (2021)

Train a CNN to differentiate 
between tumor types 
(HGG, LGG, metastases, 
meningioma, pituitary 
adenoma, acoustic neuroma 
& healthy tissue)

1373 (BraTs, TCGA, 
LGG-1p19q dataset, 
internal and external 
dataset)

• Internal data set: sensitivities, PPVs, AUCs 
and area under the precision-recall curves 
(AUPRCs) ranged from 87%−100%, 85% to 
100%, 0.98 to 1.0, and 0.91 to 1.0, respectively

• External data set: sensitivities, PPVs, AUCs and 
AUPRCs ranged from 91% to 97%, 73% to 
99%, 0.97 to 0.98, and 0.9 to 1.0, respectively

Qian et al.53 

(2019)
To identify the optimal 
radiomic ML classifier for 
differentiating GBM vs 
METS

412 • SVM + LASSO classifier had highest prediction 
efficacy (AUC = 0.90, accuracy = 82.7%, 
sensitivity = 79.8%, specificity = 87.3%, PPV 
= 90%, and NPV = 72.9%)

Artzi et al.54 

(2019)
To differentiate between 
GBM and METS using CE-
T1WI MRI-based radiomics

439 • Best results for differentiating GBM vs. METS 
were obtained using SVM classifier which had a 
mean accuracy, AUC, sensitivity, and specificity 
of 85%, 0.96, 86% and 85%, respectively
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Study Purpose Number of Patients Findings

• Optimal differentiation of GBM and METS 
subtypes achieved using SVM classifier with 
accuracy, AUC, sensitivity, and specificities 
ranging between 75%−90%, 0.57–0.98, 11%
−100%, and 76%−99% respectively,

Kniep et al.55 

(2018)
Using multiparametric MRI-
based radiomics to predict 
tumor type in brain 
metastasis (SCLC, BC, MM, 
GC and NSCLC)

189 • AUC for predicting type of brain metastasis 
ranged between 0.64 (NSCLC) and 0.82 (MM)

• Prediction performance of classifier was 
superior to radiologists’ readings

• MM had highest increase in sensitivity (17%) 
using classifier compared to radiologists’ 
readings
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