Table 3.
Five-Fold Cross-Validation and Testing Results for Tumor Delivery Efficiency Using Different Machine Learning and Deep Learning Models
DEmax | DE24 | DE168 | DETlast | |||||
---|---|---|---|---|---|---|---|---|
Model | 5-Fold CV | Test | 5-Fold CV | Test | 5-Fold CV | Test | 5-Fold CV | Test |
LR | ||||||||
R2 | 0.06 ± 0.05 | 0.08 | 0.10 ± 0.10 | 0.08 | 0.07 ± 0.03 | 0.06 | 0.07 ± 0.07 | 0.13 |
RMSE | 3.98 ± 1.03 | 7.56 | 3.89 ± 0.61 | 6.56 | 2.18 ± 0.60 | 3.20 | 3.98 ± 0.88 | 4.73 |
MAE | 2.42 ± 0.48 | 3.31 | 2.37 ± 0.24 | 2.70 | 1.29 ± 0.20 | 1.44 | 2.42 ± 0.44 | 2.46 |
KNN | ||||||||
R2 | 0.03 ± 0.04 | 0.06 | 0.04 ± 0.04 | 0.08 | 0.03 ± 0.04 | 0.04 | 0.01 ± 0.04 | 0.08 |
RMSE | 4.05 ± 1.12 | 7.55 | 3.95 ± 0.71 | 6.51 | 2.31 ± 0.56 | 3.22 | 4.05 ± 1.01 | 4.77 |
MAE | 2.36 ± 0.47 | 3.51 | 2.31 ± 0.30 | 2.82 | 1.33 ± 0.21 | 1.50 | 2.36 ± 0.43 | 2.59 |
RF | ||||||||
R2 | 0.19 ± 0.12 | 0.16 | 0.19 ± 0.16 | 0.17 | 0.19 ± 0.10 | 0.11 | 0.15 ± 0.16 | 0.29 |
RMSE | 3.71 ± 1.03 | 7.15 | 3.64 ± 0.62 | 6.18 | 2.06 ± 0.61 | 3.17 | 3.72 ± 0.82 | 4.24 |
MAE | 2.21 ± 0.48 | 2.92 | 2.17 ± 0.27 | 2.37 | 1.20 ± 0.21 | 1.30 | 2.22 ± 0.45 | 2.15 |
Bag | ||||||||
R2 | 0.09 ± 0.07 | 0.08 | 0.13 ± 0.12 | 0.08 | 0.10 ± 0.06 | 0.04 | 0.09 ± 0.09 | 0.15 |
RMSE | 3.91 ± 1.06 | 7.49 | 3.86 ± 0.64 | 6.50 | 2.16 ± 0.58 | 3.22 | 3.91 ± 0.91 | 4.63 |
MAE | 2.38 ± 0.47 | 3.34 | 2.34 ± 0.25 | 2.66 | 1.27 ± 0.19 | 1.35 | 2.38 ± 0.46 | 2.44 |
Gbm | ||||||||
R2 | 0.08 ± 0.08 | 0.09 | 0.12 ± 0.11 | 0.17 | 0.11 ± 0.06 | 0.05 | 0.08 ± 0.07 | 0.24 |
RMSE | 3.91 ± 1.03 | 7.48 | 3.81 ± 0.62 | 6.30 | 2.16 ± 0.57 | 3.22 | 3.92 ± 0.85 | 4.46 |
MAE | 2.42 ± 0.47 | 3.27 | 2.34 ± 0.26 | 2.60 | 1.30 ± 0.20 | 1.32 | 2.42 ± 0.42 | 2.38 |
R-SVM | ||||||||
R2 | 0.02 ± 0.03 | 0.23 | 0.04 ± 0.03 | 0.19 | 0.04 ± 0.03 | 0.14 | 0.02 ± 0.02 | 0.25 |
RMSE | 4.12 ± 1.29 | 7.80 | 4.02 ± 0.87 | 6.76 | 2.28 ± 0.67 | 3.31 | 4.12 ± 1.12 | 4.97 |
MAE | 1.93 ± 0.54 | 2.82 | 1.87 ± 0.35 | 2.32 | 1.06 ± 0.24 | 1.22 | 1.93 ± 0.47 | 2.08 |
LS-SVM | ||||||||
R2 | 0.02 ± 0.03 | 0.23 | 0.05 ± 0.03 | 0.18 | 0.05 ± 0.03 | 0.13 | 0.03 ± 0.03 | 0.24 |
RMSE | 4.12 ± 1.29 | 7.81 | 4.02 ± 0.87 | 6.77 | 2.27 ± 0.66 | 3.31 | 4.12 ± 1.12 | 4.98 |
MAE | 1.92 ± 0.54 | 2.83 | 1.86 ± 0.26 | 2.32 | 1.05 ± 0.24 | 1.22 | 1.93 ± 0.47 | 2.09 |
L2-SVM | ||||||||
R2 | 0.07 ± 0.06 | 0.14 | 0.11 ± 0.10 | 0.14 | 0.08 ± 0.04 | 0.18 | 0.08 ± 0.07 | 0.19 |
RMSE | 4.01 ± 0.97 | 7.32 | 3.91 ± 0.59 | 6.37 | 2.23 ± 0.56 | 3.03 | 4.02 ± 0.78 | 4.54 |
MAE | 2.52 ± 0.46 | 3.20 | 2.45 ± 0.26 | 2.61 | 1.38 ± 0.19 | 1.37 | 2.52 ± 0.42 | 2.39 |
DNN | ||||||||
R2 | 0.47 ± 0.20 | 0.70 | 0.40 ± 0.34 | 0.46 | 0.45 ± 0.24 | 0.33 | 0.35 ± 0.23 | 0.63 |
RMSE | 3.58 ± 1.35 | 2.38 | 2.75 ± 0.92 | 3.10 | 1.96 ± 1.09 | 1.78 | 3.24 ± 1.04 | 3.01 |
MAE | 2.20 ± 0.65 | 1.64 | 1.72 ± 0.50 | 1.84 | 1.10 ± 0.42 | 0.94 | 1.92 ± 0.54 | 1.81 |
Note: DEmax, DE24, DE168 and DETlast represent the maximum tumor delivery efficiency (DE), DE at 24 h, 168 h, and the last sampling time, respectively.
Abbreviations: LR, linear regression; KNN, k-nearest neighbors; RF, random forest; Bag, bagged model; Gbm, stochastic gradient boosting; R-SVM, regular support vector machine; LS-SVM, least-squared support vector machine; L2-SVM, L2-regulated support vector machine; DNN, deep learning neural network; CV, cross-validation.