Skip to main content
. 2022 Mar 24;17:1365–1379. doi: 10.2147/IJN.S344208

Table 3.

Five-Fold Cross-Validation and Testing Results for Tumor Delivery Efficiency Using Different Machine Learning and Deep Learning Models

DEmax DE24 DE168 DETlast
Model 5-Fold CV Test 5-Fold CV Test 5-Fold CV Test 5-Fold CV Test
LR
 R2 0.06 ± 0.05 0.08 0.10 ± 0.10 0.08 0.07 ± 0.03 0.06 0.07 ± 0.07 0.13
 RMSE 3.98 ± 1.03 7.56 3.89 ± 0.61 6.56 2.18 ± 0.60 3.20 3.98 ± 0.88 4.73
 MAE 2.42 ± 0.48 3.31 2.37 ± 0.24 2.70 1.29 ± 0.20 1.44 2.42 ± 0.44 2.46
KNN
 R2 0.03 ± 0.04 0.06 0.04 ± 0.04 0.08 0.03 ± 0.04 0.04 0.01 ± 0.04 0.08
 RMSE 4.05 ± 1.12 7.55 3.95 ± 0.71 6.51 2.31 ± 0.56 3.22 4.05 ± 1.01 4.77
 MAE 2.36 ± 0.47 3.51 2.31 ± 0.30 2.82 1.33 ± 0.21 1.50 2.36 ± 0.43 2.59
RF
 R2 0.19 ± 0.12 0.16 0.19 ± 0.16 0.17 0.19 ± 0.10 0.11 0.15 ± 0.16 0.29
 RMSE 3.71 ± 1.03 7.15 3.64 ± 0.62 6.18 2.06 ± 0.61 3.17 3.72 ± 0.82 4.24
 MAE 2.21 ± 0.48 2.92 2.17 ± 0.27 2.37 1.20 ± 0.21 1.30 2.22 ± 0.45 2.15
Bag
 R2 0.09 ± 0.07 0.08 0.13 ± 0.12 0.08 0.10 ± 0.06 0.04 0.09 ± 0.09 0.15
 RMSE 3.91 ± 1.06 7.49 3.86 ± 0.64 6.50 2.16 ± 0.58 3.22 3.91 ± 0.91 4.63
 MAE 2.38 ± 0.47 3.34 2.34 ± 0.25 2.66 1.27 ± 0.19 1.35 2.38 ± 0.46 2.44
Gbm
 R2 0.08 ± 0.08 0.09 0.12 ± 0.11 0.17 0.11 ± 0.06 0.05 0.08 ± 0.07 0.24
 RMSE 3.91 ± 1.03 7.48 3.81 ± 0.62 6.30 2.16 ± 0.57 3.22 3.92 ± 0.85 4.46
 MAE 2.42 ± 0.47 3.27 2.34 ± 0.26 2.60 1.30 ± 0.20 1.32 2.42 ± 0.42 2.38
R-SVM
 R2 0.02 ± 0.03 0.23 0.04 ± 0.03 0.19 0.04 ± 0.03 0.14 0.02 ± 0.02 0.25
 RMSE 4.12 ± 1.29 7.80 4.02 ± 0.87 6.76 2.28 ± 0.67 3.31 4.12 ± 1.12 4.97
 MAE 1.93 ± 0.54 2.82 1.87 ± 0.35 2.32 1.06 ± 0.24 1.22 1.93 ± 0.47 2.08
LS-SVM
 R2 0.02 ± 0.03 0.23 0.05 ± 0.03 0.18 0.05 ± 0.03 0.13 0.03 ± 0.03 0.24
 RMSE 4.12 ± 1.29 7.81 4.02 ± 0.87 6.77 2.27 ± 0.66 3.31 4.12 ± 1.12 4.98
 MAE 1.92 ± 0.54 2.83 1.86 ± 0.26 2.32 1.05 ± 0.24 1.22 1.93 ± 0.47 2.09
L2-SVM
 R2 0.07 ± 0.06 0.14 0.11 ± 0.10 0.14 0.08 ± 0.04 0.18 0.08 ± 0.07 0.19
 RMSE 4.01 ± 0.97 7.32 3.91 ± 0.59 6.37 2.23 ± 0.56 3.03 4.02 ± 0.78 4.54
 MAE 2.52 ± 0.46 3.20 2.45 ± 0.26 2.61 1.38 ± 0.19 1.37 2.52 ± 0.42 2.39
DNN
 R2 0.47 ± 0.20 0.70 0.40 ± 0.34 0.46 0.45 ± 0.24 0.33 0.35 ± 0.23 0.63
 RMSE 3.58 ± 1.35 2.38 2.75 ± 0.92 3.10 1.96 ± 1.09 1.78 3.24 ± 1.04 3.01
 MAE 2.20 ± 0.65 1.64 1.72 ± 0.50 1.84 1.10 ± 0.42 0.94 1.92 ± 0.54 1.81

Note: DEmax, DE24, DE168 and DETlast represent the maximum tumor delivery efficiency (DE), DE at 24 h, 168 h, and the last sampling time, respectively.

Abbreviations: LR, linear regression; KNN, k-nearest neighbors; RF, random forest; Bag, bagged model; Gbm, stochastic gradient boosting; R-SVM, regular support vector machine; LS-SVM, least-squared support vector machine; L2-SVM, L2-regulated support vector machine; DNN, deep learning neural network; CV, cross-validation.