Table 2.
Predicting performance for the best model for each study in a holdout internal or external validation data set (N=12).
| Type of cancer and study | Outcome | Training sample | Validation sample | Mortality rate (%) | Algorithm | AUROCa | Accuracy | Sensitivity | Specificity | PPVb | NPVc | Calibration | Benchmark, model (Δ AUROC) | ||
| All cancer | |||||||||||||||
|
|
Manz et al [37] | 180-day death | N/Ad | 24,582 | 4.2 | GBTe | 0.89 | —f | 0.27 | 0.99 | 0.45 | 0.97 | Well-fit | — | |
|
|
Parikh et al [39] | 180-day death | 18,567 | 7958 | 4.0 | RFg | 0.87 | 0.96 | — | 0.99 | 0.51 | — | Well-fit at the low-risk group | LRh (0.01) | |
|
|
Bertsimas et al [50] | 180-day death | 14,427 | 9556 | 5.6 | GBT | 0.87 | 0.87 | .60 | — | 0.53 | — | — | LR (0.11) | |
|
|
Elfiky et al [43] | 180-day death | 17,832 | 9114 | 18.4 | GBT | 0.83 | — | — | — | — | — | Well-fit | — | |
| Gastrointestinal cancer |
|
||||||||||||||
|
|
Arostegui et al [46] | 1-year death | 981 | 964 | 5.1 | DTi | 0.84 | — | — | — | — | — | Well-fit | — | |
|
|
Biglarian et al [47] | 1-year death | 300 | 136 | 37.5 | ANNj | 0.92 | — | 0.80 | 0.85 | — | — | — | CPHk (0.04)l | |
| Patients with bladder cancer | |||||||||||||||
|
|
Klén et al [48] | 90-day death | 733 | 366 | 4.4 | Regularized LR | 0.72 | — | — | — | — | — | — | ACCIm univariate model (0.05) | |
| Patients with liver cancer | |||||||||||||||
|
|
Chiu et al [49] | 1-year death | 347 | 87 | 17 | ANN | 0.88 | — | 0.89 | 0.50 | — | — | — | LR (0.08) | |
|
|
Zhang et al [40] | 1-year death | 230 | 60 | 23.9 | ANN | 0.91 | — | 0.91 | 0.90 | 0.83 | 0.86 | — | — | |
| Patients with spinal metastasis | |||||||||||||||
|
|
Karhade et al [41] | 30-day death | 1432 | 358 | 8.5 | BPMn | 0.78 | — | — | — | — | — | Well-fit | — | |
|
|
Karhade et al [42] | 1-year death | 586 | 145 | 54.3 | SGBo | 0.89 | — | — | — | — | — | Well-fit | — | |
|
|
Karhade et al [36] | 1-year death | N/A | 176 | 56.2 | SGB | 0.77 | — | — | — | — | — | Fairly well-fit | — | |
aAUROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dN/A: not applicable.
eGBT: gradient-boosted tree.
fNo data available
gRF: random forest.
hLR: logistic regression.
iDT: decision tree.
jANN: artificial neural network.
kCPH: Cox proportional hazard.
lSignificant at the α level defined by the study.
mACCI: adjusted Charlson comorbidity index.
nBPM: Bayes point machine
oSGB: stochastic gradient boosting.