Skip to main content
. 2022 Mar 14;10(3):e33182. doi: 10.2196/33182

Table 2.

Predicting performance for the best model for each study in a holdout internal or external validation data set (N=12).

Type of cancer and study Outcome Training sample Validation sample Mortality rate (%) Algorithm AUROCa Accuracy Sensitivity Specificity PPVb NPVc Calibration Benchmark, model (Δ AUROC)
All cancer

Manz et al [37] 180-day death N/Ad 24,582 4.2 GBTe 0.89 f 0.27 0.99 0.45 0.97 Well-fit

Parikh et al [39] 180-day death 18,567 7958 4.0 RFg 0.87 0.96 0.99 0.51 Well-fit at the low-risk group LRh (0.01)

Bertsimas et al [50] 180-day death 14,427 9556 5.6 GBT 0.87 0.87 .60 0.53 LR (0.11)

Elfiky et al [43] 180-day death 17,832 9114 18.4 GBT 0.83 Well-fit
Gastrointestinal cancer

Arostegui et al [46] 1-year death 981 964 5.1 DTi 0.84 Well-fit

Biglarian et al [47] 1-year death 300 136 37.5 ANNj 0.92 0.80 0.85 CPHk (0.04)l
Patients with bladder cancer

Klén et al [48] 90-day death 733 366 4.4 Regularized LR 0.72 ACCIm univariate model (0.05)
Patients with liver cancer

Chiu et al [49] 1-year death 347 87 17 ANN 0.88 0.89 0.50 LR (0.08)

Zhang et al [40] 1-year death 230 60 23.9 ANN 0.91 0.91 0.90 0.83 0.86
Patients with spinal metastasis

Karhade et al [41] 30-day death 1432 358 8.5 BPMn 0.78 Well-fit

Karhade et al [42] 1-year death 586 145 54.3 SGBo 0.89 Well-fit

Karhade et al [36] 1-year death N/A 176 56.2 SGB 0.77 Fairly well-fit

aAUROC: area under the receiver operating characteristic curve.

bPPV: positive predictive value.

cNPV: negative predictive value.

dN/A: not applicable.

eGBT: gradient-boosted tree.

fNo data available

gRF: random forest.

hLR: logistic regression.

iDT: decision tree.

jANN: artificial neural network.

kCPH: Cox proportional hazard.

lSignificant at the α level defined by the study.

mACCI: adjusted Charlson comorbidity index.

nBPM: Bayes point machine

oSGB: stochastic gradient boosting.