Table 3.
The Model development processes and evaluations used in the included studies.
| Type and study | Data preprocessing | Model optimization | Interpretation | |||||||
|
|
Numeric variables | Categorical variables |
Missing data | Feature selection |
Hyperparameter value selection |
Generalizability consideration |
|
|||
| Type 1b | ||||||||||
|
|
Sena et al [38] | Normalization | N/Aa | NRb | None | Software default | 10-fold CVc | VId | ||
|
|
Nilsaz-Dezfouli et al [45] | NR | NR | NR | VI | Grid search | 5×5-fold CV | VI | ||
| Type 2a | ||||||||||
|
|
Parikh et al [39] | NR | NR | Constant value imputation | Zero variance and between-variable correlation | Grid search | 5-fold CV | VI and coefficient | ||
|
|
Klén et al [48] | NR | NR | Complete cases only | LASSOe LRf | NR | NR | VI | ||
|
|
Karhade et al [42] | NR | NR | missForest multiple imputation | RFg | NR | 3×10-fold CV | VI, PDPh, and LIMEi | ||
|
|
Karhade et al [41] | NR | NR | Multiple imputation | Recursive feature selection | NR | 10-fold CV | NR | ||
|
|
Arostegui et al [46] | Discretization | One-hot encoding | Constant value imputation | RF variable importance | Software default | Bootstrapping | VI and decision tree rules | ||
|
|
Bertsimas et al [50] | NR | NR | Optimal impute algorithm | None | NR | NR | VI and decision tree rules | ||
|
|
Chiu et al [49] | NR | NR | Complete cases only | Univariate Cox proportional hazard model | NR | NR | VI | ||
|
|
Zhang et al [40] | Normalization | One-hot encoding | NR | Forward stepwise selection algorithm | NR | 10-fold CV | VI | ||
|
|
Biglarian et al [47] | NR | NR | NR | None | NR | NR | NR | ||
| Type 2b | ||||||||||
|
|
Elfiky et al [43] | NR | NR | Probabilistic imputation | None | Grid search | 4-fold CV | VI | ||
|
|
Hanai et al [44] | Standardization | NR | NR | Between-variable correlation and PIMj | NR | 5-fold CV | VI | ||
| Type 4 | ||||||||||
|
|
Manz et al [37] | NR | NR | Constant value imputation | N/A | N/A | N/A | VI and coefficient | ||
|
|
Karhade et al [36] | NR | NR | missForest multiple imputation | N/A | N/A | N/A | NR | ||
aN/A: not applicable.
bNR: not reported.
cCV: cross-validation.
dVI: variable importance.
eLASSO: least absolute shrinkage and selection operator.
fLR: logistic regression.
gRF: random forest.
hPDP: partial dependence plot.
iLIME: local interpretable model-agnostic explanation.
jPIM: parameter-increasing method.