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Objectives. To compare fine particulate matter (PM2.5) concentrations in American Indian (AI)-populated

with those in non–AI-populated counties over time (2000–2018) in the contiguous United States.

Methods.We used a multicriteria approach to classify counties as AI- or non–AI-populated. We ran

linear mixed effects models to estimate the difference in countywide annual PM2.5 concentrations from

well-validated prediction models and monitoring sites (modeled and measured PM2.5, respectively) in AI-

versus non–AI-populated counties.

Results. On average, adjusted modeled PM2.5 concentrations in AI-populated counties were 0.38

micrograms per cubic meter (95% confidence interval [CI]50.23, 0.54) lower than in non–AI-populated

counties. However, this difference was not constant over time: in 2000, modeled concentrations in

AI-populated counties were 1.46 micrograms per cubic meter (95% CI5 1.25, 1.68) lower, and by 2018,

they were 0.66 micrograms per cubic meter (95% CI50.45, 0.87) higher. Over the study period,

adjusted modeled PM2.5 mean concentrations decreased by 2.13 micrograms per cubic meter in

AI-populated counties versus 4.26 micrograms per cubic meter in non–AI-populated counties. Results

were similar for measured PM2.5.

Conclusions. This study highlights disparities in PM2.5 trends between AI- and non–AI-populated

counties over time, underscoring the need to strengthen air pollution regulations and prevention

implementation in tribal territories and areas where AI populations live. (Am J Public Health. 2022;112(4):

615–623. https://doi.org/10.2105/AJPH.2021.306650)

Short- and long-term exposure to

particulate matter of aerodynamic

diameter 2.5 micrometers or less (PM2.5)

increases the risk of cardiovascular and

respiratory disease, among other health

outcomes.1–3 In the United States, socio-

economically disadvantaged commun-

ities are often exposed to higher PM2.5

exposure levels and bear a dispropor-

tionate burden of disease, even at lev-

els well below air quality standards set

by the US Environmental Protection

Agency (EPA).4,5

American Indian (AI) and Alaska

Native communities may be particularly

vulnerable to the health effects of air

pollution.6,7 These communities already

face a large disease burden attributable

to environmental pollution owing, for

instance, to extensive mining and water

contamination on reservations.8,9 The

decline in nitrogen dioxide, another cri-

teria air pollutant, was larger in both

absolute and relative terms in White

versus AI populations between 2000

and 2010.10 Little is known, however,

about the extent of particulate air pol-

lution exposure and its potential health

effects among rural Native American

communities, as most US studies of air

pollution have been conducted in urban

settings. In a cohort of all Medicare bene-

ficiaries in the continental United States,

increasing annual PM2.5 exposure was

associated with increases in all-cause

mortality from 2000 through 2012, and

this effect was higher among participants

identified as Native Americans than the

overall Medicare population.11 These
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findings suggest that Native Americans

may be more susceptible to adverse

health effects from PM2.5 exposure than

the overall Medicare population but are

limited by wide confidence intervals (CIs).

Conclusions may not be generalizable to

Native Americans not on Medicare, as

Medicare coverage for AI and Alaska

Natives is incomplete, especially on res-

ervations and in rural communities.11

Monitoring data sparsity may contrib-

ute to gaps in air pollution regulation.

As federal air quality monitors tend to

be placed in areas of higher population

density,12 insight into PM2.5 exposure

burdens in AI and Alaskan Native com-

munities is limited, in turn contributing

to the paucity of air pollution epidemio-

logical studies that include this popula-

tion. In the contiguous United States, AI

people live predominantly in the West

and often reside in sparsely populated

areas, including reservations, small

towns, and rural areas. Limited data on

ambient air pollution levels are cur-

rently available in these communities.

The use of well-validated models with

comprehensive spatial coverage may

allow the assessment of possible dis-

parities in PM2.5 concentrations in

areas lacking monitoring data.

We aimed to compare ambient PM2.5

average concentrations and trends in

AI-populated versus non–AI-populated

counties in the contiguous United States

from 2000 to 2018. To do so, we com-

pared annual PM2.5 levels predicted by a

satellite-based chemical transport model,

because of sparse data coverage via the

monitoring networks. We also compared

monitored PM2.5 concentrations in coun-

ties with available monitoring data.

METHODS

We conducted our analysis at the

county level, which serves as the most

relevant unit of analysis to inform regu-

latory action. Public policies can be

enacted at the county level, but imple-

mentation is not feasible at finer resolu-

tions, such as the census tract or zip

code level. There is currently no formal

definition for AI counties. Thus, we used

various sources to inform 3 classification

schemes to characterize counties and

county equivalents (henceforth referred

to collectively as “counties”) with a sub-

stantial AI population. We classified coun-

ties as “AI-populated” if they fit at least 1

of the following criteria: (1) had greater

than 5% population that self-identified

as AI or Alaska Native alone in the 2010

Census (“census” classification)13; (2) con-

tained at least 20% of their areas in a

federally recognized tribal entity, defined

as federally recognized reservations, off-

reservation trust lands, and Census Okla-

homa Tribal Statistical Areas (“Tribal

entity” classification)14; or (3) were previ-

ously classified as a rural AI county in a

cluster analysis of US counties using

k-means clustering (“rural cluster”

classification).15

We included this binary AI county type

classification (yes/no) as the primary pre-

dictor variable of interest in all models.

Details on the number of AI- and non–

AI-populated counties by classification

are provided in Table A (available as a

supplement to the online version of this

article at http://www.ajph.org). We

restricted our main analysis to the 48

contiguous states and the District of

Columbia, totaling 3108 study counties.

Air Pollution Data

We estimated the PM2.5 concentrations

used in this analysis at the county level

from both a satellite-based model and

ground-monitoring data. Using PM2.5

monitoring data allows researchers to

capture ground truth concentrations

where data are available, whereas

modeled PM2.5 provides more compre-

hensive spatial coverage across the

entirety of the contiguous United

States. We estimated annual county-

level PM2.5 from a satellite-based sur-

face PM2.5 model (henceforth referred

to as “modeled PM2.5”), which provided

comprehensive nationwide annual

mean concentrations at approximately

a 1 kilometer3 1 kilometer grid resolu-

tion.16 The model interprets satellite

retrievals of aerosol optical depth using

its geophysical relationship to PM2.5, as

simulated by the GEOS-Chem chemical

transport model. The resulting geo-

physical PM2.5 surface is then cali-

brated using ground-based monitors

via a geographically weighted regres-

sion.16,17 We estimated county-level

modeled PM2.5 concentrations for

every study year by averaging the PM2.5

concentrations in all grids with their

centers contained in each US county.

To gain insights into PM2.5 concen-

trations in counties with adequate

monitoring, we obtained annual PM2.5

concentrations measured by all avail-

able monitors (henceforth referred to

as “measured PM2.5”); to do so, we

used a federal reference method or a

federal equivalent method from the

EPA Air Quality System Database and

Interagency Monitoring of Protected

Visual Environments Rural Monitoring

program between 2000 and 2018.

These monitors collected data on a

daily, 3-day, or 6-day schedule. We

excluded PM2.5 monitors from analy-

ses that had valid measurements for

less than 75% of annually scheduled

sampling days in our eligibility criteria

when estimating county-level average

measured PM2.5. We assessed meas-

ured PM2.5 in counties with more

than 1 monitor by averaging the con-

centrations of all available monitors
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in the county boundaries for each

study year.

Covariates

We obtained population density and

median household income at the

county level from the 2010 decennial

US Census. We used these variables to

estimate differences in air pollution

estimates between AI- and non–AI-

populated counties that were inde-

pendent of how populated the counties

were and their socioeconomic status.

Given the highly skewed distribution of

these variables (population density and

income) across US counties, we used

deciles of their distribution as categori-

cal variables in the regression models.

Statistical Analysis

We used linear mixed effects regres-

sion to compare mean annual PM2.5

concentrations in AI- versus non–AI-

populated counties. Our main analysis

included 2 regression models, with

either modeled or measured PM2.5 as

the response variable. Both models

included random intercepts for each

state to account for potential within-

state correlation of monitoring sites

and nested random intercepts for

counties in states to account for poten-

tial correlation of observations over

time in counties.

We adjusted for covariates in a stag-

gered manner. First, we included only

year as a categorical predictor variable

to account for possible nonlinear time

trends in PM2.5 concentrations, toge-

ther with random intercepts by county

and state in the model (model 1). We

further adjusted for population density

in model 2 and additionally for median

household income in model 3. Finally,

we additionally included interaction

terms between county type and each

year indicator in model 4. To test for

the presence of significant interaction

between county type and year, indicat-

ing changes in annual PM2.5 trends

over time by county type, we compared

the model fit of models 3 and 4 and

examined whether the interaction

term for the factor year (df5 18) was

statistically significant at a significance

level of .05.

We conducted all statistical analyses

using the R Statistical Software, ver-

sion 3.6.3.18 All data and code to run

analyses are publicly available and

can be accessed here: https://github.

com/maggie-mengyuan-li/native-air-

pollution.git.

Sensitivity Analyses

To evaluate the robustness of our

results, we conducted several sensitiv-

ity analyses. Because other factors

beyond income might be needed to

account for differences in socioeco-

nomic factors across counties more

comprehensively, we adjusted for the

Area Deprivation Index (ADI)—a marker

of socioeconomic differences widely

used in health care research—instead

of household income, in models 3 and

4.19,20 ADI uses 17 indicators of social

and material conditions reflecting edu-

cational attainment, income and pov-

erty, household composition, and

vehicle and utilities access; higher val-

ues indicate greater neighborhood

socioeconomic disadvantage.21 We

estimated mean ADI per county by

aggregating from block group ADI

national percentile rankings. We

excluded counties in the Northeastern

United States in model 3, specifically

EPA regions22 1, 2, and 3, as this region

included only 2 AI-populated counties in

the main analysis (Table B, a [available as

a supplement to the online version of

this article at http://www.ajph.org]).

Given the lack of an official definition

denoting AI-populated areas, we ran

3 separate versions of model 3

using each of the 3 criteria to classify

AI-populated counties, 1 separate ver-

sion for AI-populated counties defined

only by the intersection of all 3 classifi-

cation schemes, and 1 separate version

denoting AI-populated counties that

included all study counties in our main

analysis and additional counties with

any overlap with a federally recognized

tribal entity. We ran a restricted version

of model 4 that excluded adjustment

for median household income and

population density. We additionally

adjusted for US climate region as

defined by the National Oceanic and

Atmospheric Administration in models

3 and 4 to account for potential con-

founding by geographic area. We

restricted analyses using models 3 and

4 to rural counties, defined as micro-

politan and noncore counties by the

National Center for Health Statistics, as

82% of AI-populated counties were

classified like this in the main analysis

(Table A, a).23 Finally, given the spatial

autocorrelation of PM2.5 across coun-

ties, we conducted sensitivity analyses

including a spatial lag term in models 3

and 4 using a queen contiguity-based

spatial weights matrix.

RESULTS

Using the classification criteria previ-

ously defined, we defined 6.4% (n5

199) of the 3108 total study counties as

AI populated and the remaining 93.6%

as non–AI populated (Table 1). Counties

classified as AI populated were primar-

ily located in the Midwestern, South-

western, and Northwestern United

States, with the remaining 14 in the
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Southeast and Northeast (Figure 1). Of

the 199 counties classified as AI popu-

lated, 11.5% fulfilled the federally rec-

ognized tribal entity criteria exclusively,

33.2% fulfilled the census criteria exclu-

sively, 14.1% fulfilled all 3 classification

criteria, 1.5% fulfilled both the rural

cluster and census criteria, and 39.7%

fulfilled the census and federally recog-

nized tribal entity criteria (Figure 1).

Most counties included in our analy-

sis were rural (Table 1). Of the 199 US

counties classified as AI populated, 163

(82%) were rural, and of the 2909 US

counties classified as non–AI populated

1785 (61%) were rural. On average, in

counties classified as AI populated,

18.2% of the population was AI versus

0.6% in non–AI-populated counties.

The meanmodeled PM2.5 concentrations

for 2000 through 2018 were 6.3 micro-

grams per cubic meter and 8.4 micro-

grams per cubic meter for AI-populated

counties and non–AI-populated counties,

respectively, whereas the corresponding

measured PM2.5 concentrations were 7.0

micrograms per cubic meter and 9.6

micrograms per cubic meter, respectively

(Table 1). Distributions for population

density, household income, and ADI by

AI-populated county type and rurality are

provided in Table 1.

Using linear mixed effects regression

models, we observed significantly lower

modeled and measured mean PM2.5

concentrations in AI- versus non–AI-

populated counties on average across

the study period (Table 2). In our fully

adjusted model with main effects only

(model 3), modeled PM2.5 was on aver-

age 0.38 (95% CI50.23, 0.54) micro-

grams per cubic meter lower, and

measured PM2.5 was on average 0.79

(95% CI5 0.33, 1.26) micrograms per

cubic meter lower in AI- than in non–AI-

populated counties (Table 2).

Overall, we observed that modeled

and measured mean PM2.5 concentra-

tions decreased in all states over time,

with high variability in the rate of decline

across states (Figure A, light-colored thin

lines [available as a supplement to the

online version of this article at http://

www.ajph.org]). Over the study period,

PM2.5 concentrations decreased more in

non–AI-populated than in AI-populated

counties across all states for both

TABLE 1— Descriptive Statistics for American Indian (AI)- and Non–AI-Populated Counties Overall and
Among Those With Monitors: United States, 2000–2018

Characteristic

All Counties Counties With Monitorsa

AI Non-AI AI Non-AI

All counties

No. of counties 199 2909 71 766

% AI population, mean (SD) 18.2 (19.9) 0.6 (0.6) 16.0 (15.1) 0.7 (0.8)

Modeled PM2.5 concentration, mg/m3, mean (SD) 6.3 (2.1) 8.4 (2.2) 6.0 (2.2) 8.6 (2.5)

Measured PM2.5 concentration,b mg/m3, mean (SD) . . . . . . 7.0 (2.7) 9.6 (2.8)

Population density, per mi2, mean (SD) 41 (116) 276 (1790) 69 (180) 787 (3400)

Median annual household income,3$1000, mean (SD) 40.4 (7.6) 44.4 (11.6) 42.0 (7.2) 49.1 (12.6)

ADI,d 25th, 75th percentiles 60.5, 83.3 56.7, 79.4 50.9, 77.3 44.5, 70.9

Rural countiesc

No. of counties 163 1785 51 245

% AI population, mean (SD) 19.7 (20.7) 0.6 (0.8) 18.5 (16.3) 0.9 (1.0)

Modeled PM2.5 concentration, mg/m3, mean (SD) 6.2 (2.0) 8.0 (2.3) 5.8 (2.1) 7.2 (2.5)

Measured PM2.5 concentrationb, mg/m3, mean (SD) . . . . . . 6.5 (2.9) 8.3 (3.1)

Population density, per mi2, mean (SD) 19 (24) 45 (99) 25 (28) 51 (51)

Median annual household income,3 $1000, mean (SD) 39.1 (7.3) 40.0 (8.1) 40.3 (7.1) 42.5 (9.6)

ADI, 25th, 75th percentilesd 64.1, 84.2 65.7, 82.5 49.5, 78.1 52.7, 78.0

Note. ADI5Area Deprivation Index; PM2.55fine particulate matter.

aCounties with at least 1 year with monitored PM2.5 data over the study period.
bMeasured PM2.5 concentrations were only assessed in counties with monitors. Analyses involving measured PM2.5 included only counties with
monitors during the study period, whereas modeled PM2.5 analyses included all counties.
cMicropolitan and noncore counties defined by the Centers for Disease Control and Prevention National Center for Health Statistics
(i.e., nonmetropolitan counties).
dHigher values indicate higher levels of neighborhood disadvantage.
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modeled and measured PM2.5 (Figure A,

bold dashed lines). When we compared

models 3 and 4, we detected the pres-

ence of a statistically significant interac-

tion between county type and year

(P, .001). We visually compared mod-

eled and measured PM2.5 levels using

estimated values from model 4 across

county types for a hypothetical county

with a fixed population density and

median annual household income

(Figure A, bold solid lines). Using all

input data and model 4, we predicted

that across the study period, PM2.5 con-

centrations in AI-populated counties

decreased by 2.13 and 2.37 micro-

grams per cubic meter (22.7% and

23.3% relative decline) on average for

modeled and measured PM2.5, respec-

tively; in non–AI-populated counties, the

corresponding declines were 4.26 and

5.05 micrograms per cubic meter (39.2%

and 42.0%), respectively (Figure A).

Given the observed interaction, mod-

eled and measured PM2.5 (both esti-

mated and observed annual means)

were significantly lower in AI- than in

non–AI-populated counties at the

beginning of the study period, but this

difference decreased in magnitude

over time (Figure A). Adjusted mean

concentrations were 1.46 (95% CI5

1.25, 1.68) micrograms per cubic meter

lower for modeled PM2.5, and 1.83 (95%

CI51.24, 2.43) micrograms per cubic

meter lower for measured PM2.5 in

AI-populated counties versus non–AI-

populated counties in 2000 (Figure 2).

Partway through the study period, mean

PM2.5 concentrations in AI-populated

counties became significantly higher

than in non–AI-populated counties after

2012 for modeled PM2.5 and 2016 for

measured PM2.5 (Figure 2). By 2018,

adjusted modeled concentrations were

AI-Populated Counties by Classification

TRIBAL
ENTITY

23

0

CENSUS
66

RURAL
CLUSTER

0

79

AI/AN County Census Population > 5% Only 

County Area > 20% Within Federally Recognized Tribal Entity Only

Both Census and Tribal Entity Classified Only

Both Census and Rural Cluster Classified Only

Fits All Classification Schemes 

Non–AI-Populated County 

28

3

FIGURE 1— Map and Venn Diagram of American Indian (AI)-Populated Counties Across the United States: 2000–2018

Note. AN5Alaska Native.

TABLE 2— Mean Difference in Modeled and Measured PM2.5 Concentrations (lg/m3) in American Indian
(AI)-Populated vs Non–AI-Populated Counties: United States, 2000–2018

Model 1,a Mean Difference (95% CI) Model 2,b Mean Difference (95% CI) Model 3,c Mean Difference (95% CI)

Modeled PM2.5 20.56 (20.74, 20.38) 20.36 (20.52, 20.21) 20.38 (20.54, 20.23)

Measured PM2.5 21.65 (22.18, 21.13) 20.70 (21.17, 20.22) 20.79 (21.26, 20.33)

Note. CI5 confidence interval; PM2.55fine particulate matter.

aAdjusted only for year and random intercepts for counties in states.
bAdditionally adjusted for population density.
cAdditionally adjusted for population density and median household income.
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on average 0.66 (95% CI5 0.45, 0.87)

micrograms per cubic meter higher, and

adjusted measured concentrations were

on average 0.84 (95% CI5 0.24, 1.45)

micrograms per cubic meter higher in

AI-populated counties than in non–AI-

populated counties (Figure 2).

Overall, our findings comparing PM2.5

concentrations averaged over time in

AI- versus non–AI-populated counties

did not change considerably when we

adjusted for ADI instead of household

income, excluded counties in the

Northeast, defined AI-populated coun-

ties using each criteria separately and

the intersection of all 3 criteria, in-

cluded additional counties with any

overlap with federally recognized

tribal entities in our definition of

AI-populated counties, additionally

adjusted for climate region, and

restricted analyses to rural counties

(Table C [available as a supplement to

the online version of this article at

http://www.ajph.org]). Our findings

comparing PM2.5 trends over time in

model 4 remained consistent when we

adjusted for ADI instead of household

income and excluded household

income and population density, addi-

tionally adjusted for climate region, and

restricted to rural counties (Figure B

[available as a supplement to the online

version of this article at http://www.

ajph.org]). When including a spatial lag

in models 3 and 4, modeled PM2.5 was

on average much lower in AI-populated

counties compared with our main

analysis results (Table C). Mean concen-

trations were substantially lower in AI-

than in non–AI-populated counties at

the beginning of the study period, but

the mean difference by county type

was attenuated over time, with no

difference or even a potential increase

in annual PM2.5 levels in AI- versus

non–AI-populated counties by the

end of the study period (Figure B).

DISCUSSION

We compared differences in modeled

and measured PM2.5 concentrations

between AI- and non–AI-populated US

counties from 2000 to 2018. Although

we observed that PM2.5 concentrations

were lower in AI-populated counties at

baseline and on average across the

study period, this gap between AI- and

non–AI-populated counties decreased

over time. We observed higher PM2.5

concentrations in AI-populated coun-

ties than in non–AI-populated counties

after approximately 2015. In sensitivity

analyses using spatial lag linear mixed

models, we observed substantially

lower PM2.5 levels on average across

the study period in AI-populated coun-

ties. Trends over time also showed

lower concentrations in AI-populated

counties near the beginning of our

study period, although this difference

was attenuated by the end of the study

period.

We observed a larger difference on

average over the study period in annual

PM2.5 concentrations between AI- and

non–AI-populated counties for meas-

ured versus modeled PM2.5. EPA moni-

tors are not uniformly distributed and

tend to be in more populous counties
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FIGURE 2— Adjusted Mean Difference in PM2.5 Concentrations Between American Indian (AI)- and Non–AI-Populated
Counties That Are (a) Modeled, and (b) Measured: 2000–2018

Note. PM2.55 fine particulate matter. The solid line shows the effect estimates (county type coefficient1 interaction coefficient with time) of being classified
as an AI-populated county over the study period. The dashed lines show the 95% confidence intervals from model 4. The red line represents no difference
in adjusted average PM2.5 concentrations between AI and non–AI-populated counties.
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and more densely populated areas in a

county, which also tend to have higher

pollution levels than other areas in the

same county; thus, the measured PM2.5

analysis may not fully represent captur-

ing true differences in county-level

average PM2.5 concentrations by

AI-populated county type. The model,

by contrast, provided PM2.5-predicted

concentrations at a uniform spatial res-

olution, consistent with lower county-

wide average PM2.5 compared with

measured concentrations at monitor-

ing stations. Modeled data, however,

can also be affected by measurement

error, if the model yields less accurate

predictions in areas where fewer moni-

tors are available.

The varying trend in mean PM2.5

concentrations over time between

AI-populated and non–AI-populated

counties may reflect the spatial hetero-

geneity of changing PM2.5 levels across

the continental United States in the

past several decades. One study

ranked US Census tracts by PM2.5 con-

centrations in 1981 and 2016 and

found that census tracts in states bor-

dering the Great Lakes and the North-

eastern United States dropped in PM2.5

percentile rank relative to other areas;

meanwhile, the Central and Imperial

valleys of California, southwestern Ari-

zona, and areas of Oklahoma, Arkan-

sas, and Texas experienced increases

in the relative ranking of PM2.5 bet-

ween 1981 and 2016.24 However, we

found similar results after adjusting

for climate regions; future analyses

restricted to specific regions should

be considered to understand drivers

of within–climate region differential

PM2.5 trends in AI- versus non–AI-

populated counties.

Given that exposure to PM2.5 is a

modifiable risk factor for cardiovascular

disorders and other adverse health

outcomes even at levels below the cur-

rent national ambient air quality stand-

ards,25 it is important to characterize

exposure patterning over space, partic-

ularly in areas with socioeconomically

disadvantaged populations. The history

of US settler colonialism has contrib-

uted to the displacement of tribes and

forced acculturation of Native children

to Western educational and sociocul-

tural systems.26,27 These factors have

exacerbated levels of poverty, poor

health, and chronic diseases in this

population.28 To this day, access to

quality health care is still a challenge for

AI people. Most rely on Indian Health

Services as their primary health care

provider. Lack of funding has forced

Indian Health Services to regularly

operate in a “state of emergency,” with

a per capita spending on personal

health care at half the national average

expenditure.29 With potentially higher

estimated PM2.5 concentrations in

AI-populated counties than in other

counties observed in recent years, or at

least diminished differences by county

type over time, it is imperative to recog-

nize that these trends may further

increase health disparities between AI

people and other populations.

Cardiovascular disease, one of the

outcomes positively associated with

exposure to PM2.5, is the leading cause

of death in AI populations and occurs

at significantly higher rates than in

White populations.30,31 Studies in the

Strong Heart Study cohort—the largest

and longest-running longitudinal study

assessing cardiovascular outcomes and

their risk factors in AI communities in

Arizona, Oklahoma, and North and

South Dakota—showcase the high bur-

den of cardiovascular disease, which is

associated with a high prevalence of

diabetes and obesity.32–35 Because

the role of air pollution in the

cardiovascular health of AI people, to

our knowledge, has not yet been eval-

uated, using the Strong Heart Study

and similar cohorts can serve as invalu-

able resources for future investigations

of health impacts associated with air

pollution in AI populations.

Limitations

There are a few limitations to this analy-

sis. Given the many modes of defining

AI populations,7 demarcating AI- or

non–AI-populated counties can only

estimate, but not fully capture, the

extent of where AI people reside. We

adjusted for population density and

median household income and ADI as

indicators of socioeconomic status to

characterize differences in PM2.5 levels

in AI- versus non–AI-populated counties

independently of these factors. How-

ever, we cannot exclude the possibility

of potential residual confounding. The

lack of PM2.5 monitors in the sparsely

populated rural United States restricts

our ability to assess measured PM2.5 in

most AI- and non–AI-populated coun-

ties. These monitors are not uniformly

distributed in space, and the somewhat

arbitrary delineation of county bounda-

ries makes the measured PM2.5 analy-

sis prone to bias because of zonation

effects of the modifiable areal unit

problem.36 Although the use of PM2.5

models provides comprehensive spatial

coverage across the United States,

there is likely some error associated

with these predictions. Future studies

should incorporate different prediction

models to perform analyses that can

further validate these findings. By

aggregating PM2.5 estimates and con-

ducting our analyses at the county

level, we cannot generalize our findings

to differences in individual exposure

levels between AI- and non-AI people.
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Our study was limited to the contigu-

ous United States, notably excluding

Hawaii and Alaska. Native Hawaii and

Alaska Native populations tend to be

more uniformly distributed across

these states,37,38 as opposed to AI com-

munities being relatively concentrated

geographically in the lower 48 states.

This difference between these 2 states

and the rest of the United States

requires a separate analysis. Poten-

tially, future studies at finer spatial res-

olutions in these areas may be able to

elucidate the pollution disparities

between these Alaska Natives and

Native Hawaiians and non-Native com-

munities. Finally, our study assessed

only total PM2.5; future studies should

evaluate potential differences in con-

centrations of PM2.5 components and

other pollutants in AI- versus non–AI-

populated counties.

Conclusions

The differential rates of PM2.5 decline

and attenuated PM2.5 differences

over time between AI- and non–AI-

populated counties necessitates fur-

ther investigation. Our findings suggest

that socioeconomically disadvantaged

communities experience dispropor-

tionate burdens of environmental haz-

ards, such as ambient air pollution,

contributing to adverse downstream

health effects.39 The substantially larger

decrease in PM2.5 concentrations in

non–AI- versus AI-populated counties

highlights a need to enhance enforce-

ment of air quality regulations and

restrictions to PM2.5 emissions on tribal

territories, surrounding regions, and

other areas with large populations of AI

people. Given current research gaps,

AI populations are likely underrepre-

sented when the EPA is considering

national ambient air quality standards.

Greater resources should be allocated

to creating mutual learning opportuni-

ties among researchers, federal and

state agencies, and local tribal govern-

ments to spur further research to

ensure that the national ambient air

quality standards are indeed protecting

everyone. Efforts should also prioritize

the establishment of more permanent

funding streams and institutional infra-

structure to promote developments of

successful long-term regulatory efforts

in tribal communities.
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