Table 11.
Model | Batch Size | Loss function | Adam | T-Acc* | SGD | T-Acc | RMSprop | T-Acc | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Epochs | Learning Rate | Epochs | Learning Rate | Epochs | Learning Rate | ||||||
VGG16 | 10 | Categorical cross-entropy | 5 | 0.0001 | 92.2 | 10 | 0.0001 | 88.9 | 5 | 0.0001 | 99.5 |
VGG19 | 10 | Categorical cross-entropy | 10 | 0.0001 | 99.1 | 10 | 0.0001 | 76.0 | 10 | 0.0001 | 99.3 |
DenseNet | 10 | Categorical cross-entropy | 20 | 0.0001 | 83.0 | 20 | 0.0001 | 83.6 | 20 | 0.0001 | 96.8 |
Inception | 10 | Categorical cross-entropy | 40 | 0.0001 | 94.0 | 30 | 0.0001 | 94.5 | 15 | 0.0001 | 98.5 |
Xception | 10 | Categorical cross-entropy | 10 | 0.0001 | 60.5 | 20 | 0.0001 | 98.5 | 10 | 0.0001 | 98.9 |
Inception-ResNet-v2 | 10 | Categorical cross-entropy | 30 | 2e – 3 | 87.9 | 30 | 2e - 3 | 84.7 | 30 | 2e - 3 | 94.1 |
EfficientNetB0 | 10 | Categorical cross-entropy | 20 | 0.0001 | 98.3 | 20 | 0.0001 | 94.7 | 20 | 0.0001 | 93.2 |
EfficientNetB4 | 10 | Categorical cross-entropy | 20 | 0.0001 | 96.1 | 20 | 0.0001 | 94.2 | 20 | 0.0001 | 94.9 |
*T-Acc means Training Accuracy