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Abstract: Background: The host response in culture-negative sepsis (CnS) has been marginally
explored upon emergency department (ED) admission. It would be of paramount importance to
create a clinical prediction rule to support the emergency department physician in identifying septic
patients who can be treated with antibiotics immediately without waiting time to draw cultures if they
are unlikely to provide useful diagnostic information. Methods: A multivariable logistic regression
analysis was applied to identify the independent clinical variables and serum biomarkers of the
culture-negative status among 773 undifferentiated septic patients. Those predictors were combined
to build a nomogram predictive of CnS. Results: The serum concentrations of six biomarkers, among
the eight biomarkers assayed in this study, were significantly lower in the patients with CnS (449)
than in those with culture-positive sepsis (324). After correction for co-variates, only mid-regional
proadrenomedullin (MR-proADM) was found to be independently correlated with culture-negative
status. Absence of diabetes, hemoglobin concentrations, and respiratory source of infection were the
other independent clinical variables integrated into the nomogram—its sensitivity and specificity
for CnS were 0.80 and 0.79, respectively. Conclusions: Low concentrations of MR-proADM were
independently associated with culture-negative sepsis. Our nomogram, based on the MR-proADM
levels, did not predict culture-negative status with reasonable certainty in patients with a definitive
diagnosis of sepsis at ED admission.

Keywords: sepsis; culture-negative sepsis; biomarkers; emergency department; C-reactive protein;
lactate; procalcitonin; mid-regional proadrenomedullin; soluble triggering receptor expressed on
myeloid cell-1; presepsin; soluble phospholipase A2 group IIA and soluble IL-2 receptor α

1. Introduction

According to the Surviving Sepsis Campaign guidelines, one of the first measures to
improve the outcome of sepsis is the administration of intravenous antimicrobials as soon
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as possible and within 1 h of its recognition. Blood cultures should be obtained before
starting antibiotics if doing so results in no substantial delay in their administration [1].
Antimicrobials are increasingly used in the pre-hospital setting [2]; thus, at emergency
department (ED) admission, blood cultures are frequently obtained during concurrent
antibacterial therapy. Moreover, in clinical practice, if blood cultures are difficult to draw
(e.g., shock), priority is given to antibiotics. On the one hand, such an aggressive approach
has improved the outcome of sepsis [1], but, on the other hand, it has rendered microbio-
logical diagnosis even more challenging since blood culture yield seems to be affected by
concomitant antimicrobial administration [3–5].

Blood culture-negative status is becoming increasingly common [6]. Many factors
other than concurrent or previous antibacterial therapy have been implicated in its genesis,
such as sepsis mimickers; infections caused by fastidiously growing bacteria; and non-
culturable bacteria, viruses, and fungi [2,6–17]. The understanding of culture-negative sepsis
(CnS) becomes even more complex when the definition of negative cultures—historically,
the byword for blood culture negativity in the sepsis literature—is extended to all cultures.
In fact, based on the assumption that the rate of sampling of any biological sample other
than blood cannot be deduced in nearly all the studies conducted in this field [2,6–14,16,17],
it becomes impossible to exclude that CnS could be the result of insufficient work with
respect to culture-positive sepsis (CpS). Finally, given the above limitations, the inflam-
matory status of the host has only been retrospectively and marginally explored in the
two groups [2,10,12,13,15]. Therefore, in this secondary analysis of a multicenter prospec-
tive cohort study involving 1132 adult patients with suspected sepsis in the ED, we
aimed to:

-establish whether culture-negative status is characterized by unique features of the
host response

-evaluate whether a new clinical prediction rule could properly identify CnS among
patients definitively diagnosed with sepsis.

2. Methods

A secondary analysis was performed using data from the “Need Speed Study”
database [18], which was a multicenter prospective study that aimed to derive and validate
a predictive algorithm that could robustly differentiate sepsis from non-infectious systemic
inflammatory response syndrome (ni-SIRS) at ED admission. The original study was con-
ducted from 15 March 2013 to 15 March 2015. A total of 1132 patients with suspected sepsis
fulfilling the Sepsis-2 criteria were enrolled in 5 Italian EDs. In brief, at the end of clinical
work-up or death, patients were categorized as having sepsis, ni-SIRS, or debatable SIRS
(d-SIRS). The source, etiology, and severity of sepsis were adjudicated according to a pre-
defined classification system (see Supplementary Materials). The following cohorts were
excluded from this sub-analysis: ni-SIRS, d-SIRS, septic patients with incomplete clinical
data, septic patients in whom at least two sets of blood cultures were not drawn at ED
admission, patients with a diagnosis of non-bacterial sepsis, and patients with a diagnosis
of sepsis due to atypical bacteria originating from the lower respiratory tract (Figure 1).

2.1. Definitions

CpS was defined as sepsis in which one or more viable bacteria were cultured in blood
(BSI) or in other biological specimens of the suspected source of infection (i.e., positive
cultures other than blood [PCOTB]). Blood culture-negative sepsis included CnS and sepsis
with PCOTB (i.e., all septic patients with negative blood cultures). CnS was defined as
sepsis in whom bacterial cultures were negative in both the blood and biological specimens
of the suspected source of infection. Comorbidities and organ dysfunctions were defined
as reported in the Supplementary Materials.
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2.2. Biomarkers Assay

At ED admission, the serum concentrations of C-reactive protein, procalcitonin, lactate,
soluble phospholipase A2 group IIA (sPLA2GIIA), presepsin, soluble IL-2 receptor α

(sIL2Rα), and soluble triggering receptor expressed on myeloid cell-1(sTREM-1) were
assayed as previously reported [18]. Mid-regional proadrenomedullin (MR-proADM) was
measured by an automated Kryptor analyzer (Kriptor Brahms AG, Hennigsdorg Germany).
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Figure 1. Flow chart of enrollment in this study. List of abbreviations: non infective SIRS = ni-SIRS,
d-SIRS = debatable SIRS, M-infections = microbiologically documented infections (definition available
in the Supplementary Materials), C-infections = clinically documented infections (definition available
in the Supplementary Materials), BC=blood cultures, PCOTB = positive cultures other than blood,
and BSI = bloodstream infections.

2.3. Outcomes

The primary outcome of the study was to identify the independent biomarkers of
CnS and to relate their serum concentrations with the reasons for culture-negative status.
Secondary outcomes were to derive a nomogram predictive of CnS and to evaluate its
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performance in identifying culture-negative status among patients definitively diagnosed
with sepsis at ED admission.

2.4. Statistical Analysis

For descriptive statistics, categorical data were summarized as absolute frequencies
and percentages, and continuous data were summarized as medians with interquartile
ranges. A Pearson’s chi-square test was used to analyze the categorical variables and the
Mann–Whitney test was used to analyze the continuous variables. The variables were
further examined for association with CnS by univariable logistic regression analysis. The
unadjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated.
Starting from a full multivariable model containing all candidate predictors with an unad-
justed p value ≤ 0.1, a selection procedure was applied based on finding the best subset of
parameters [19] and a nomogram predictive for CnS was created (the details are available
in the Supplementary Materials). To specifically evaluate the additive diagnostic value
of MR-proADM, the discrimination power of two nested models (with or without the
biomarker) was quantified using C statistics (area under the receiver operating characteris-
tic curve [AUROC]), and the De Long test was calculated to compare values. According
to the Youden Index method, a cut-off was determined, and sensitivity, specificity, posi-
tive predictive value, and negative predictive value were calculated. Finally, the adjusted
ORs of the biomarkers associated with the three cultural statuses (CnS, PCOTB, and BSI)
were estimated by means of multinomial multivariable models, and the distribution of
biomarkers across groups was visually represented through a violin plot. All tests were
two-tailed and a p value less than 0.05 was considered statistically significant. All analyses
were performed using IBM SPSS statistic 24 software and R software, R Core Team (2019),
using the libraries “rms,” “Hmisc,” “bestglm,” “OptimalCutPoints,” and “ggplot2.”

3. Results

The present study included 773 patients who received a definitive diagnosis of sepsis
at the end of clinical follow-up among the 859 enrolled in the original study (Figure 1).
The baseline characteristics of the 449 CnS patients and 324 CpS patients are described
in Table 1.

Table 1. Characteristics at baseline.

Characteristics CnS
(n = 449)

CpS
(n = 324) Un p Un OR

Male, n (%) 246 (54) 172 (53) 0.639

Median age (IQR) 82 (73–88) 79 (72–85) 0.156

Median Charlson comorbidity index (IQR) 3 (1–4) 3 (1–4) 0.736

Diabetes, n (%) 63 (14) 70 (21) 0.006 0.592
(0.407–0.862)

Chronic heart failure, n (%) 121 (27) 63 (19) 0.016 1.528
(1.082–2.158)

Previous acute myocardial infarction, n (%) 114 (25) 59 (18) 0.019 1.528
(1.074–2.176)

Solid cancer, n (%) 33 (7) 30 (9) 0.339

Haematologic cancer, n (%) 12 (3) 10 (3) 0.733

Chronic liver disease, n (%) 33 (7) 28 (9) 0.511

Chronic pulmonary disease, n (%) 140 (31) 62 (19) <0.001 1.915
(1.361–2.693)

Chronic kidney disease, n (%) 82 (18) 64 (19) 0.602

Dementia, n (%) 136 (30) 96 (30) 0.843
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Table 1. Cont.

Characteristics CnS
(n = 449)

CpS
(n = 324) Un p Un OR

Chronic rheumatologic disease, n (%) 16 (3) 14 (4) 0.591

AIDS, n (%) 2 (0) 0 (0) 0.999

Antibacterials within 30 days from ED admission ˆ, n (%) 129 (29) 108 (33) 0.171

Patients untreated with antibacterials during their stay in
ED *, n (%) 26 (6) 6 (2) 0.009 3.257

(1.325–8.009)

Prosthetic devices, n (%) 52 (11) 74 (23) <0.001 0.443
(0.300–0.653)

Median body temperature (◦C), (IQR) 37.5 (36.6–38.2) 37.8 (36.7–38.2) 0.331

Meadian mean arterial pressure (mmHg), (IQR) 86 (76–95) 85 (75–93) <0.001 1.019
(1.009–1.029)

Median heart rate (beats/min), (IQR) 100 (90–110) 104 (78–120) 0.912

Median respiratory rate (breaths/min), (IQR) 24 (20–28) 24 (21–32) 0.361

Median Glasgow Coma Scale (IQR) 15 (15–15) 15 (15–15) 0.183

Median white blood cell count x1000/mm3 (IQR) 12.5 (9.0–16.4) 13.4 (9.8–18.5) 0.025 0.806
(0.629–1.001) *

Median hemoglobin (g/L) (IQR) 12.6 (11.0–13.8) 11.6 (10.6–13.0) <0.001 1.249
(1.159–1.346)

Median platelets count x1000/mm3 (IQR) 222 (160–298) 215 (151–300) 0.330

Median serum urea (mg/dL) (IQR) 43 (30–63) 46 (30–74) 0.033 0.996
(0.993–1.000)

Median creatinine/mg/dL) (IQR) 1.0 (0.8–1.6) 1.1 (0.9–1.7) 0.039 0.873
(0.768–0.993)

Median sodium (mEq/L) (IQR) 137 (134–140) 135 (133–138) <0.001 1.052
(1.025–1.079)

Median potassium (mEq/L) (IQR) 3.9 (3.5–4.4) 3.9 (3.5–4.4) 0.631

Median AST (U/L) (IQR) 24 (17–36) 27 (19–59) 0.910

Median ALT (U/L) (IQR) 17 (11–29) 23 (12–41) 0.456

Median total bilirubin (mg/dL) (IQR) 0.9 (0.6–1.4) 0.9 (0.7–1.4) 0.152

Median INR (IQR) 1.1 (1.0–1.3) 1.37 (1.17–3.2) 0.223

Median fibrinogen (mg/dL) (IQR) 478 (382–637) 495 (378–668) 0.340

Biomarkers

Median C-reactive protein (mg/dL) (IQR) 81 (31–170) 127 (53–215) <0.001 0.769
(0.678–0.872)

Median lactate (mg/dL) (IQR) 14 (9–19) 14 (10–21) 0.103

Median procalcitonin (ng/mL) (IQR) 0.51 (0.16–2.43) 1.12 (0.29–9.51) <0.001 0.698
(0.619–0.787)

Median sIL2Rα (pg/mL) (IQR) 13367
(9050–16817)

17510
(10635–29856) <0.001 0.588

(0.481–0.718)

Median sTREM-1 (pg/mL) (IQR) 398 (269–634) 456 (292–742) 0.101

Median sPLA2GIIA (ng/mL) (IQR) 30.8 (24.1–35.5) 32.4 (28.0–36.3) 0.002 0.600
(0.434–0.830)

Median presepsin (pg/mL) (IQR) 525 (321–918) 675 (359–1328) <0.001 0.645
(0.547–0.762)

Median MR-proADM (nmol/L) (IQR) 1.93 (1.29–3.06) 2.31 (1.45–4.13) <0.001 0.349
(0.248–0.490)
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Table 1. Cont.

Characteristics CnS
(n = 449)

CpS
(n = 324) Un p Un OR

Source of infection

Single Source, n (%) 413 (92) 266 (82) <0.001 2.375
(1.501–3.757)

-LRTI, n (%) 339 (82) 71 (27) <0.001 11.394
(7.974–16.281)

-Non LRTI, n (%) 74 (18) 195 (73)

Multiple Source, n (%) 36 (8) 58 (18)

Microbiological work up

At least one biological sample other than blood, n (%) 441 (98) 322 (99) 0.205

Median SOFA score (IQR) 3 (2–4) 3 (1–5) 0.092

List of abbreviations: CnS = culture negative sepsis, CpS = culture positive sepsis, Un = unstandard-
ised, OR = Odds ratio, IQR = interquartile, ED = emergency department, AST = aspartate aminotransferase,
ALT = alanine aminotransferase, INR = international normalized ratio, sIL2Rα = soluble IL-2 receptor α,
sTREM-1 = soluble triggering receptor expressed on myeloid cell-1, sPLA2GIIA = soluble phospholipase A2
group IIA, MR-proADM = mid-regional proadrenomedullin, LRTI = lower respiratory tract infection, and
SOFA = sequential organ failure assessment. ˆ at least one dose of antibacterials was administered within 30 days
from emergency department admission. * Log scale transformed.

Chronic heart failure, previous acute myocardial infarction, and chronic pulmonary
diseases were significantly associated with CnS (p = 0.016, p = 0.019, and p < 0.001, re-
spectively). Diabetes and prosthetic devices were more frequent in CpS than in CnS
(p = 0.006 and p < 0.001, respectively). If compared to patients with CpS, patients with CnS
received antibacterial therapy—during their stay in ED—less frequently (6 [2%] vs. 26 [6%],
p = 0.009). Lower respiratory tract infections (LRTIs) were more common in the patients
with CnS than in the patients with CpS. The other single sources of infection, grouped
as non-LRTI, were the most frequent source of infection in CpS. The median concentra-
tions of procalcitonin, sIL2Rα, presepsin, and MR-proADM were significantly lower in
patients with LRTIs than in patients with non-LRTIs (p < 0.001, p = 0.002, p < 0.001, and
p = 0.008, respectively). The proportion of patients with at least one biological sample other
than blood was similar between CnS and CpS patients (p = 0.205, Table 1). The pathogens
involved in CpS are shown in Table S1. CnS and CpS were also similar in terms of their
median Sequential Organ Failure Assessment (SOFA) score and mortality. However, CnS
and CpS were associated with specific types of organ failure (Table 2)—the former with
respiratory failure (p < 0.001), acute decompensated heart failure (0.002), and acute coronary
syndromes (0.002), while the latter with neurologic (0.002) and renal dysfunction (0.007).

The median concentrations of all the biomarkers, except lactate and sTREM-1,
were lower in CnS than in CpS (Table 1); after correction for covariates, only MR-
proADM was independently correlated with culture-negative status (see Table S2). MR-
proADM and the other independent predictors of CnS (absence of diabetes, hemoglobin
concentrations, and the lower respiratory tract as a source of infection) were used to
build the nomogram (Figure 2a).

The sensitivity, specificity, negative predictive value (NPV), positive predictive value
(PPV), negative likelihood ratio, and positive likelihood ratio of the nomogram to predict
CnS (according to a cut-off of 0.59) are available in Table S3.

The comparison between CnS, POCTB, and BSI in terms of demographics, comor-
bidities, clinical variables, host response, and source and severity of infection is reported
in Table S4. In the multinomial logistic regression analysis, MR-proADM was the only
biomarker that was significantly different between all three groups independent of covari-
ates (age, diabetes, prosthetic devices, and source and severity of sepsis; Figure 3).
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Table 2. Outcome at 30 days.

Characteristics CnS
(n = 449)

CpS
(n = 324) p

Organ dysfunction *

Renal 116 (26) 113 (35) 0.007

Cardiovascular 190 (42) 93 (29) <0.001

-Narrow/broad complex tachycardia 38 (8) 25 (8) 0.790

-Atrial fibrillation 29 (6) 13 (4) 0.092

-Newly detected 10 (2) 6 (2) 0.718

-Acute decompensated heart failure 116 (26) 54 (17) 0.002

-Acute coronary syndrome 68 (15) 25 (8) 0.002

-Shock 26 (6) 16 (5) 0.606

Respiratory 271 (60) 133 (41) <0.001

Haemostasis 77 (17) 73 (22) 0.062

Haematologic 29 (6) 30 (9) 0.148

Neurologic 122 (27) 114 (35) 0.002

Liver 12 (3) 13 (4) 0.299

Median number of organ 2 (1–3) 2 (1–3) 0.053

-Multiorgan failure 4 (1) 11 (3) 0.013

Median length of hospital stay 9 (7–16) 12 (7–19) <0.001

Mortality at 30 days 88 (19) 66 (20) 0.791
List of abbreviations: CnS = culture negative sepsis, CpS = culture positive sepsis. * The definition of each organ
dysfunction and that of multi-organ failure are available in the Supplementary Materials (PDCS). A significant
trend towards a positive linear correlation between serum concentrations of MR-proADM and SOFA score
(Spearman rho = 0.478, p < 0.001) was observed (Figure S1 available in the Supplementary Materials).
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4. Discussion

The first objective of this study was to identify the independent serum biomarkers of
CnS at ED admission, when the results of cultures are usually not available. The levels of
C-reactive protein, procalcitonin, lactate, sPLA2GIIA, presepsin, sIL2Rα, sTREM-1, and
MR-proADM were measured at ED admission in 773 patients with definitive diagnosis
of sepsis; at the end of microbiological work-up, 449 and 324 of the septic patients were
deemed to be CnS and CpS, respectively. In previous studies [10,14], the analysis of the
inflammatory state of the host in patients with CnS and CpS was mainly focused on C-
reactive protein and procalcitonin—the serum concentrations of both biomarkers were
proved to be significantly blunted in CnS [10,14]. Among the eight biomarkers assayed in
our study, only MR-proADM was independently associated with culture-negative status. If
compared with CpS, CnS exhibited lower serum concentrations of that biomarker. We also
observed that only the levels of MR-proADM were significantly different between the three
cultural statuses of sepsis highlighted in this study. The concentrations of MR-proADM
increased starting from CnS (lowest levels), through POCTB (intermediate levels), and
ending with BSI (highest level; Figure 3).

To our knowledge, no studies exist that have explored the correlation of the concentra-
tions of MR-proADM with the aforementioned end points in septic patients.

Our results could be justified by several overlapping motivations. This heterogeneity
reflects the complex origin of CnS. In fact, many reasonable explanations of culture nega-
tivity have been hypothesized over time in septic patients [2,6–17]. We speculated about
the magnitude of their impact on the genesis of CnS in this study, according to the serum
concentrations of MR-proADM (Figure 4).
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4.1. Sepsis Mimickers

Among all the patients with suspected sepsis and negative cultures, 12% were not
infected (ni-SIRS), and 12% could not be infected (d-SIRS) [18,20]. The misclassification of
ni-SIRS and the quote of non-infected d-SIRS as CnS could justify the dulled concentrations
of MR-proADM in CnS [18]. However, this eventuality does not seem applicable to our
work, since ni-SIRS and d-SIRS were excluded from this secondary analysis. No studies
exist that have clearly identified and excluded both cohorts of patients (especially d-SIRS,
which are usually subjected to more levels of adjudication by experts) from the comparison
of CnS and CpS.

4.2. Insufficient Work Up and Technical Issues

The results of the works conducted to explore the clinical differences between CnS
and CpS are heavily influenced by the definition of culture-negative status. Usually, CnS
is identified as sepsis with negative blood cultures [2,6–17]. In all the aforementioned
works but one [15], the rate of collection of biological samples other than blood is not clear.
However, it would be advisable to clearly state their contribution to identify the etiology in
both CnS and CpS, since it might be inferred that CnS would be the result of an insufficient
work-up with respect to CpS if the rate of collection was lower in the former. The impact
of this motivation in our study seems very limited since (1) we did not find a significant
difference in the rate of sampling of any biological samples between CnS and CpS and (2)
an insufficient work-up could not justify the blunted MR-proADM concentrations observed
in CnS. Finally, technical issues may have occurred in collecting, storing, transporting, and
processing biological samples. From this point of view, our study has a limitation because
we did not define the blood culturing methods, or the method used to detect bacteremia in
each institution. However, the occurrence of technical problems would not be explainable
by the dulled concentrations of serum MR-proADM detected in CnS.

4.3. Source of Infection

Several studies demonstrated that
-for certain sources of sepsis (e.g., LRTIs), the frequency of bacteremia was lower than

that of other sources (e.g., urinary tract infections) [21]
-if compared with bacteremic patients, non-bacteremic septic patients were associated

with lower serum levels of procalcitonin [12,13,15–17].
In this study, not only were the median concentrations of procalcitonin significantly

lower in patients with LRTIs than in patients with non-LRTIs but also those of sIL2Rα,
presepsin, and MR-proADM. Compared to CpS, the same four biomarkers were also proven
to be dulled in CnS (Table 1). Since the percentage of LRTIs was significantly higher in
CnS than in CpS (p < 0.001), we speculated that the blunted levels of procalcitonin, sIL2Rα,
presepsin, and MR-proADM found in CnS could be subordinate to the source of infection.
However, after correction for the source of infection and the other covariates, MR-proADM
was found to be independently correlated with culture-negative status (see Table S2).

4.4. Bacterial Virulence and Host Response

CnS could be caused by bacteria exhibiting weaker virulence than those causing
CpS. Therefore, compared to CpS, CnS would be associated with a lower bacterial load
at the infection site and/or a lower extent/duration of bacteremia. These assumptions
could justify both the blunted levels of MR-proADM (epiphenomenon of milder immune
system stimulation) and the negativity of cultures. Then, we theorized that the three
cultural statuses (BSI, PCOTB, and CnS) could be linked with decreasing virulence and
possibly with declining levels of MR-proADM. After correction for covariates, the median
concentrations of MR-proADM were confirmed to be significantly reduced starting from
BSI, through sepsis with PCOTB, and ending with CnS (Figure 2). This result supports
the following hypothetical relations between cultural status, bacterial virulence, and MR-
proADM levels: (1) in CnS, the virulence is so weak (lowest MR-proADM levels) that
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bacteria cannot spread to the bloodstream (negative blood cultures), but also results in
it being undetectable in samples of the source of infection; (2) in PCOTB, the extent of
virulence (intermediate MR-proADM levels) is such as to determine a low grade/transient
bacteremia, making pathogen detection only possible in samples of the source of infection;
and (3) in BSI, the high virulence expressed at the infection site by the offending bacteria
(highest MR-proADM levels) allows its high grade/sustained spread into the bloodstream,
making the pathogen simultaneously culturable in samples of the suspect source of infection
and in the blood.

Moreover, bacteremia develops not only when bacteria evade host immune defenses,
but also when inherent or acquired immune defects of immune defenses lead to a failure to
limit the bacterial spread. Preliminary studies have confirmed that the genetic make-up of
the host could play a key role in this sense [22–27]. With respect to CpS, we hypothesized
that CnS could be associated with a higher efficacy of the immune response in limiting
infection. In this case, MR-proADM levels should be inversely connected to the degree of
orchestration of the immune response. The correlation between this unique feature of the
immune response, genetic background of the host, and MR-proADM levels remains to be
defined; however, this hypothesis is supported by the fact that some comorbidities, such
as diabetes [28] (associated with a less robust immune response), seem more frequent in
the cohort with the highest median concentration of MR-proADM (i.e., BSI; see Table S4).
Since MR-proADM concentrations have already been proven to be directly linked to the
chances of culturing the offending bacteria we may speculate that: (1) in CnS, none of the
biological samples are positive due to the high efficacy of the immune response (lowest
MR-proADM) in limiting the bacterial load at the infection site, preventing bacteremia or
reducing its extent/duration; (2) in PCOTB, the immune response is able to prevent/clear
bacteremia but can’t limit the bacterial load at the infection site (intermediate MR-proADM
levels); and (3) in BSI, the immune response is so lowly orchestrated (highest MR-proADM
levels) that bacteria is culturable not only at the infection site but also in the blood.

The interplay between bacterial virulence and the efficiency of the immune response
could have an impact on the genesis of CnS. However, if the reduced concentrations of
MR-proADM were caused by bacteria with weak virulence, a highly orchestrated immune
response, or both, CnS should nevertheless be a cohort of patients with a better prognosis
than those with CpS. This hypothesis is elicited by the fact that a low concentration of
MR-proADM has been clearly associated with a favorable outcome in sepsis studies [29,30].
In our work, we did not observe a significant difference in terms of mortality between CnS
and CpS, but CnS exhibits both a lower odds of multi-organ failure and a shorter length of
hospital stay than CpS (Table 2).

4.5. Previous or Concurrent Antibacterial Therapy?

Concurrent antibacterial therapy could both obscure cultures and justify the blunted
MR-proADM levels.

Three [3–5] in four studies [31] have demonstrated that the diagnostic yield of blood
cultures is made worse by the concurrent administration of antibiotics in septic patients.
Even if we lack objective data in this study, we feel that this motivation of culture negativity
could significantly impact the genesis of the culture-negative status (94% of patients with
CnS received at least one dose of antibacterials during their stay in ED). Furthermore,
we registered whether the patients had taken at least one dose of an antibacterial within
30 days from the drawing of all cultures (roughly coinciding with ED admission). Due to
the broad time frame between the administration of antibacterial therapy and the collection
of cultures (i.e., previous), we can provide information about the impact on the diagnostic
yield of cultures for antibacterial therapy concluded at home several days before admission
or completed during any recent hospitalizations. After comparing CnS and CpS, we failed
to demonstrate that the administration of antimicrobial therapy within 30 days of ED
admission significantly reduced the chances of a pathogen being detected either in the
blood or in all cultures (p = 0.37 and p = 0.171, respectively).
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4.6. Uncommon Bacteria and Non-Bacterial Etiology

Fastidious growth of bacteria, in which prolonged incubation is necessary, and bacte-
ria that cannot be routinely cultured in blood with currently available techniques could
contribute to a culture-negative status [2,6–17]; for certain sources of infection, their involve-
ment is far from negligible [32]. Studies do not exist that have compared those etiologies
with common bacteria in terms of MR-proADM concentrations. In this study, the low
percentage of infections caused by these uncommon bacteria does not enable us to provide
convincing comparisons.

In our work, MR-proADM levels were lower in those with non-bacterial sepsis com-
pared to that in those with bacterial sepsis (28 and 339 patients, respectively, p < 0.001).
Therefore, a non-bacterial etiology is undoubtedly implicated in the genesis of CnS. Vir-
tually all non-bacterial pathogens can cause sepsis; however, only some of them are not
culturable in blood or in samples of the source of infection. Studies have not assessed the
role of MR-proADM in distinguishing bacterial sepsis from viral sepsis or sepsis caused by
non-culturable fungi/protozoa. In this study, given the small sample size of non-bacterial
etiology, its subgroups were not further compared. However, we feel that viruses can mas-
sively impact the genesis of CnS for two reasons. First, after bacteria, viruses represent the
most common etiology of community-acquired pneumonia [33], and the lower respiratory
tract is the most common source of CnS in our work. Second, the prevalence of a viral
etiology for sepsis is below expectations [34] (none of the enrolling centers used multiplex
PCR to detect respiratory viruses in patients with LRTIs at ED admission).

The secondary objective of this study was to derive a clinical prediction rule that
could predict culture-negative status with reasonable certainty since entrance into the
hospital, when the results from microbiological examinations are not available. It would be
of paramount importance to support ED physicians in the early identification of patients
with CnS. Beyond the benefit of rationalization for the use of cultures, a clinical prediction
rule for CnS may have a positive impact on the management of patients with culture-
negative status in more ways than one. First, even if it has been clearly demonstrated
that prompt administration of antibiotics improves the outcome of sepsis [1], in our study,
patients with CnS did not receive antibacterial therapy during their stay in ED more
frequently than those with CpS (Table 1). Early identification of patients with CnS may
reduce the risk of delay in the administration of this life-saving therapy. Second, CnS
represents a cohort of patients at high risk for destabilization for a potentially inappropriate
spectrum and/or a suboptimal duration of antibacterial therapy. A clinical prediction
rule for CnS could help ED physicians to identify specific trajectories of monitoring for
patients with CnS upon their admission to the hospital. Third, there was the absence
of microbiological documentation of the exposure for patients with CnS to the risk of
adverse events related to an antibacterial therapy that is exceedingly broad in spectrum
or too protracted (e.g., Clostridium difficile infections and bacterial resistance). In fact, the
relation between early antibiotic de-escalation strategies and outcomes have been explored
only in CnS. Even if the evidence was low quality, antibacterial stewardship was not
associated with worse mortality [35]. The early recognition of patients with CnS could
elicit the early de-escalation of antimicrobial therapy, limiting adverse events related to
its inappropriate use. Fourth, rapid molecular diagnostic techniques for the identification
of the offending pathogen directly from whole blood samples could provide valuable
information about the etiology of sepsis with a shorter turnaround time than conventional
cultures [36]. Unfortunately, the costs relating to their routine use in both CnS and CpS
are high [37]. A screening tool for CnS could support the ED physicians in identifying
the patients who mostly need elucidations, since, in contrast to CpS, they lack support in
defining the etiology of sepsis by conventional cultures. Given the above premises and
the epidemiological data (approximately 50% of sepsis cases are CnS [2,6–17]), a clinical
prediction rule could halve the costs related to the use of rapid diagnostic technology.

We built a nomogram to predict the pre-test probability of CnS in patients with a
definitive diagnosis of sepsis at ED admission (Figure 2a). It’s AUROC was satisfactory
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(0.84) but far from perfection. The addition of MR-proADM improved the performance
of the nomogram based only on the clinical variables (AUROC 0.82, p = 0.02). However,
even if the nomogram was enriched with MR-proADM, it exhibited low sensitivity, speci-
ficity, NPV, and PPV for CnS (0.80, 0.79, 0.71, and 0.86, respectively; Table S3). Further
studies are needed to derive and validate a clinical prediction rule that could robustly rule
in/out culture-negative status in septic patients when the results of the cultures are not
yet available.

Finally, the adoption of the SIRS criteria (Sepsis-2), instead of qSOFA (quick sequential
organ failure assessment)/SOFA score (Sepsis-3) [38], to enroll the septic patients may
seem a further limit of the study. However, this topic (Sepsis-3 vs. Sepsis-2 for early
diagnosis of infection) is still a matter of debate. The SIRS criteria were abandoned due
to the high sensitivity and low specificity for infection diagnosis [38]. Up to now, only
one work compared the performance of the Sepsis-3 with that of Sepsis-2 in predicting
infection diagnosis, which was posed at the end of clinical work-up among patients with
suspected infection. Shiraishi et al. retrospectively analyzed the data from a multicenter
prospective study [39]. Among the 1045 patients eligible, SIRS outperformed the qSOFA
score (the “quick” surrogate of SOFA score38) for predicting established infection (AUC
0.65 and 0.58, respectively). Interestingly, SIRS patients include almost all of the qSOFA
patients in that paper.

5. Conclusions

Out of the six serum biomarkers assayed in this study, only MR-proADM predicted
culture-negative status independently from covariates. If compared with PCOTB and BSI,
CnS were associated with the lowest median serum concentrations of MR-proADM. Our
multivariable nomogram, based on MR-proADM, did not predict culture-negative status
with reasonable certainty in patients with definitive diagnosis of sepsis at ED admission.
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