Skip to main content
. 2022 Feb 7;10(2):394. doi: 10.3390/biomedicines10020394

Table 1.

Image input model architecture optimization—evaluation metrics with mean and standard deviation with 95% confidence interval.

w/
Model Acc. AUC Precision Recall
NOR LAD LCX RCA
VGG16 0.670 ± 0.030 1.000 ± 0.000 0.873 ± 0.036 0.807 ± 0.064 0.913 ± 0.024 0.720 ± 0.039 0.674 ± 0.020
ResNet50V2 0.827 ± 0.007 1.000 ± 0.000 0.927 ± 0.026 0.903 ± 0.024 0.950 ± 0.000 0.836 ± 0.012 0.831 ± 0.12
Xception 0.850 ± 0.023 1.000 ± 0.000 0.940 ± 0.023 0.907 ± 0.033 0.963 ± 0.007 0.855 ± 0.009 0.851 ± 0.011
Inception
ResNetV2
0.857 ± 0.035 1.000 ± 0.000 0.957 ± 0.013 0.943 ± 0.017 0.96 ± 0.011 0.847 ± 0.012 0.840 ± 0.012
DenseNet121 0.843 ± 0.007 1.000 ± 0.000 0.953 ± 0.007 0.920 ± 0.023 0.953 ± 0.007 0.851 ± 0.014 0.831 ± 0.012
InceptionV3 0.876 ± 0.025 1.000 ± 0.000 0.958 ± 0.019 0.944 ± 0.024 0.970 ± 0.011 0879 ± 0.020 0.873 ± 0.025
w/o
VGG16 0.250 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.085 ± 0.043 0.252 ± 0.004
ResNet50V2 0.854 ± 0.013 1.000 ± 0.000 0.952 ± 0.004 0.908 ± 0.010 0.966 ± 0.005 0.856 ± 0.017 0.852 ± 0.015
Xception 0.856 ± 0.005 1.000 ± 0.000 0.954 ± 0.021 0.928 ± 0.016 0.968 ± 0.004 0.857 ± 0.006 0.855 ± 0.005
Inception
ResNetV2
0.872 ± 0.010 1.000 ± 0.000 0.950 ± 0.015 0.924 ± 0.017 0.976 ± 0.010 0.875 ± 0.009 0.872 ± 0.010
DenseNet121 0.890 ± 0.014 1.000 ± 0.000 0.978 ± 0.007 0.936 ± 0.025 0.966 ± 0.012 0.893 ± 0.010 0.889 ± 0.013
InceptionV3 0.900 ± 0.012 1.000 ± 0.000 0.966 ± 0.010 0.948 ± 0.014 0.978 ± 0.010 0.903 ± 0.011 0.899 ± 0.012

Acc.: Accuracy, AUC: The area under the ROC curve, NOR: Normal, LAD: Left anterior descending, LCX: Left circumflex artery, RCA: Right coronary artery, w/: with a dense layer, w/o: without a dense layer.