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Abstract 

Background:  Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders character‑
ized by ineffective haematopoiesis and immune deregulation. Emerging evidence has shown the effect of bone 
marrow (BM) endothelial progenitor cells (EPCs) in regulating haematopoiesis and immune balance. However, the 
number and functions of BM EPCs in patients with different stages of MDS remain largely unknown.

Methods:  Patients with MDS (N = 30), de novo acute myeloid leukaemia (AML) (N = 15), and healthy donors (HDs) 
(N = 15) were enrolled. MDS patients were divided into lower-risk MDS (N = 15) and higher-risk MDS (N = 15) groups 
according to the dichotomization of the Revised International Prognostic Scoring System. Flow cytometry was 
performed to analyse the number of BM EPCs. Tube formation and migration assays were performed to evaluate the 
functions of BM EPCs. In order to assess the gene expression profiles of BM EPCs, RNA sequencing (RNA-seq) were 
performed. BM EPC supporting abilities of haematopoietic stem cells (HSCs), leukaemia cells and T cells were assessed 
by in vitro coculture experiments.

Results:  Increased but dysfunctional BM EPCs were found in MDS patients compared with HDs, especially in patients 
with higher-risk MDS. RNA-seq indicated the progressive change and differences of haematopoiesis- and immune-
related pathways and genes in MDS BM EPCs. In vitro coculture experiments verified that BM EPCs from HDs, lower-
risk MDS, and higher-risk MDS to AML exhibited a progressively decreased ability to support HSCs, manifested as 
elevated apoptosis rates and intracellular reactive oxygen species (ROS) levels and decreased colony-forming unit 
plating efficiencies of HSCs. Moreover, BM EPCs from higher-risk MDS patients demonstrated an increased ability to 
support leukaemia cells, characterized by increased proliferation, leukaemia colony-forming unit plating efficiencies, 
decreased apoptosis rates and apoptosis-related genes. Furthermore, BM EPCs induced T cell differentiation towards 
more immune-tolerant cells in higher-risk MDS patients in vitro. In addition, the levels of intracellular ROS and the 
apoptosis ratios were increased in BM EPCs from MDS patients, especially in higher-risk MDS patients, which may be 
therapeutic candidates for MDS patients.
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Background
Myelodysplastic syndromes (MDS) refer to a group of 
heterogeneous myeloid clonal disorders characterized by 
abnormal development of myeloid cells, which manifest 
as ineffective haematopoiesis and a tendency to trans-
form into acute myeloid leukaemia (AML) [1–3]. The 
pathogenesis of MDS is complex and diverse and includes 
inherent genetic abnormalities in myeloid progenitor 
cells, changes in the bone marrow (BM) microenviron-
ment, and chronic immune stimulation [1, 4, 5]. Current 
strategies to treat MDS rely on allogeneic haematopoietic 
stem cell transplantation (allo-HSCT), hypomethylating 
agents, immunosuppressive therapy and chemotherapy 
[6–9], which have not achieved satisfactory clinical effi-
cacy [10, 11]. Taking allo-HSCT as an example, only 40 
to 50% of patients survive for 5 years [12, 13]. Therefore, 
further study of MDS pathogenesis is urgently needed to 
provide new treatment strategies for MDS patients.

The growth and spread of malignant clones represent 
the dominant pathophysiological process of MDS [14, 
15]. With disease progression, malignant cells gradu-
ally replace normal haematopoietic stem cells (HSCs) 
and eventually dominate the BM [16, 17]. Progression 
of MDS to AML is thought to result from a shift from 
apoptosis to proliferation of these malignant clones [18]. 
As another important pathogenic mechanism of MDS, 
immune deregulation has been shown in a great number 
of MDS patients [19, 20]. For example, T helper (Th) 17 
cells were increased in lower-risk MDS, and regulatory T 
cells (Tregs) were increased in higher-risk MDS [21, 22], 
which suggests that progression is facilitated by immune 
suppression. Therefore, understanding the mechanisms 
of ineffective haematopoiesis and immune deregulation 
in MDS patients is of considerable importance.

Emerging evidence has shown important roles of the 
BM microenvironment in regulating haematopoiesis and 
immune balance [23–25]. Previous murine studies [24, 
26, 27] and our previous studies [28–30] have reported 
that endothelial progenitor cells (EPCs) are an impor-
tant component of the normal BM microenvironment to 
support HSCs. However, Sophia et  al. reported that 
increased BM EPCs may contribute to inferior haemat-
opoietic function in a MDS murine model [31]. In vitro 
experiments have shown a poor ability of endothelial 
colony forming cells from the peripheral blood of MDS 
patients to support HSCs [32]. These evidences suggest 

that EPCs demonstrate inferior supporting ability to nor-
mal HSCs in MDS whereas the supporting abilities in 
patients with different stages of MDS remain to be com-
prehensively depicted. In terms of malignant cells, intrin-
sic apoptotic signals like clonal chromosomal changes or 
gene mutations contribute to progression to AML [16]. 
However, extrinsic apoptotic signals which are related to 
immune and microenvironment are also considered the 
pivotal reasons of the  transformation of clonal progeni-
tors from MDS to AML [1]. Mice transplantation experi-
ment proved that leukemia-derived endothelial cells are 
capable of giving rise to AML in normal mice [33]. How-
ever, the supporting abilities of BM EPCs to malignant 
cells in MDS remain unclear. Furthermore, although nor-
mal human EPCs exhibit immunosuppressive properties 
[34–36], the immunomodulatory effect of BM EPCs has 
not been reported in MDS patients.

Therefore, the current study was performed to explore 
the functions of BM EPCs in MDS patients, includ-
ing lower-risk MDS and higher-risk MDS patients. The 
number and functions of BM EPCs from MDS patients, 
de novo AML patients and healthy donors (HDs) were 
analysed. Bulk RNA sequencing (RNA-seq) was used to 
further explore the expression profile of BM EPCs, and 
in  vitro coculture strategies were used to evaluate the 
abilities of BM EPCs to regulate haematopoiesis and 
immunity. Our aim was to provide a potential therapeu-
tic strategy for MDS patients.

Methods
Patients and controls
Patients with MDS (N = 30) and de novo AML (N = 15) 
were enrolled. Newly diagnosed MDS patients (N = 30) 
were divided into lower-risk MDS (N = 15) and higher-
risk MDS (N = 15) groups (Additional file  1: Table  S1) 
according to the dichotomization of the Revised Inter-
national Prognostic Scoring System (IPSS-R) [37]. AML 
patients were diagnosed with de novo M2 (N = 8), M4 
(N = 2) or M5 (N = 5) disease [38]. Bone marrow cells 
from allogenetic transplantation donors (N = 15) were 
used as normal controls. The age of lower-risk MDS 
(51.3  years, range 29–69), higher-risk MDS (48.4  years, 
range 24–68), AML (51.2  years, range 26–64) patients 
and HDs (49.5 years, range 29–64) showed no significant 
differences.

Conclusion:  Our results suggest that dysfunctional BM EPCs are involved in MDS patients, which indicates that 
improving haematopoiesis supporting ability and immuneregulation ability of BM EPCs may represent a promising 
therapeutic approach for MDS patients.

Keywords:  Myelodysplastic syndromes, Endothelial progenitor cells, Haematopoiesis, Immune regulation
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Isolation, cultivation, and characterization of primary BM 
EPCs
As previously reported [28–30, 39, 40], BM mononuclear 
cells (BMMNCs) were isolated by density gradient cen-
trifugation using lymphocyte separation medium (GE 
Healthcare, Milwaukee, USA). Precultivated BM EPCs 
were characterized by staining with mouse anti-human 
CD45 (BD Biosciences, San Jose, USA), CD34 (BioLeg-
end, San Diego, USA), CD133 (Miltenyi Biotec, Bergisch 
Gladbach, Germany), and vascular endothelial growth 
factor receptor 2 (VEGFR2, CD309) monoclonal antibod-
ies (BD Biosciences, San Jose, USA). Data were analysed 
with BD FACSDIVA v8.0 Software (BD Biosciences).

BMMNCs (5 × 106 per well) were cultured in fibronec-
tin-precoated (Sigma, St. Louis, USA) 6-well culture 
plates with EGM-2-MV-SingleQuots (Lonza, Walkers-
ville, USA) and 10% foetal bovine serum (FBS; Gibco, 
Australia) at 37 °C in a humidified incubator with 5% CO2 
for 7 days until testing.

BM adherent cells at day 7 of cultivation were further 
functionally characterized as BM EPCs for their capac-
ity to uptake Acetylated low-density lipoprotein (Ac-
LDL) and to bind Ulex europaeus agglutinin I (UEA I) 
[28–30, 40, 41]. The adherent cells were incubated with 
DiI-AcLDL (Life Technologies, Gaithersburg, USA) at 
37  °C. After 4 h, the cells were fixed with 4% prechilled 
paraformaldehyde and incubated with 10 μg/ml fluores-
cein isothiocyanate-labeled-labelled UEA I (FITC-UEA 
I; Sigma, St. Louis, USA) for 1  h. To evaluate the num-
bers of double-positive-stained EPCs, three power fields 
were randomly counted using a fluorescence microscope 
(Olympus, Tokyo, Japan).

After 7  days of cultivation, EPC identity was con-
firmed by real-time quantitative polymerase chain reac-
tion (qRT-PCR) for endothelial specific marker genes 
(VEGFR2, VE-cadherin and vWF) [41, 42].

Tube formation and migration assays
A total of 4 × 104 EPCs at day 7 of cultivation were trans-
ferred to matrigel-coated (Corning, New York, USA) 
plates and incubated for 48 h at 37  °C in 5% CO2. Tube 
formation [28, 29, 39, 40] was measured by determining 
the relative tube length per field of view using an inverted 
light microscope. All cells were counted in three random 
fields.

Cell migration [28–30, 39, 40, 43] was assayed using 
a transwell chamber (Corning, New York, USA). The 
EPCs after 7 days of culture were seeded in the upper 
chambers at a density of 4 × 104 cells per well, while 
500  μl medium was added to the lower chamber. The 
cells were cultured for 24  h, and migrated cells were 
fixed with paraformaldehyde for 30 min. Then, cells on 

the bottom surface of the membrane were stained with 
crystal violet for 20 min and counted manually in three 
random fields/sample. Cell images were obtained on a 
phase-contrast microscope (Olympus, Tokyo, Japan).

HSCs, T cells or HL‑60 cells were cocultured with BM EPCs
In order to evaluate the effect of supporting ability 
of BM EPCs to normal HSCs, T cells or HL-60 cells, 
the cultivated  BM EPCs from HDs or MDS or AML 
patients were cocultured with normal CD34+ cells, 
or normal CD3+ cells, or HL-60 cells [28–30, 40, 44]. 
HSCs or T cells were isolated from BMMNCs of HDs 
using CD34 or CD3 MicroBead kits (Miltenyi Bio-
tec, Bergisch Gladbach, Germany). Cultivated EPCs 
(described before) were plated onto gelatinized 24-well 
culture plates at 1 × 105  cells/well and cultured over-
night to achieve confluence. Then, HSCs (1 × 105 
per well) or T cells (1 × 105 per well) or HL-60 cells 
(Manassas, Virginia, USA; 5 × 104 per well) were added 
in direct contact with confluent and adherent EPCs. 
EPC-HSC cocultures were maintained in StemSpan™ 
SFEM (Stem Cell Technologies, Vancouver, Canada) 
for 5 days. EPC-T cells or HL-60 cells cocultures were 
maintained in RPMI 1640 medium supplemented with 
10% FBS for 3 days or 5 days. Appropriate controls of T 
cell culture alone were also included.

Intracellular reactive oxygen species (ROS) levels
To detect ROS levels of HSCs and precultivated EPCs [28, 
29, 40], HSCs were stained with CD34, and BMMNCs 
were stained with the aforementioned EPC markers and 
incubated with 10  μM 2ʹ,7ʹ-dichlorofluorescein diace-
tate (DCFH-DA, Byotime, Shanghai, China) at 37 °C for 
15  min. All data were analysed on BD FACSDIVA v8.0 
Software (BD Biosciences).

To detect ROS levels on day 7 of cultivated BM EPCs, 
adherent cells were incubated with 1 μg/ml DCFH-DA at 
37 °C for 20 min. Images were obtained in three random 
fields/sample using a fluorescence microscope (Olym-
pus, Tokyo, Japan). The fluorescence intensity of ROS 
was analysed via the mean grey value using ImageJ 1.52v 
(National Institutes of Health, Bethesda, USA).

Apoptosis ratio analysis
To detect the apoptosis ratio, HSCs, precultivated EPCs 
or HL-60 cells were incubated with Annexin-V (Bio-
Legend, San Diego, USA) and 7-amino-actinomycin D 
(7-AAD; BD Biosciences, San Jose, USA) for 10  min at 
room temperature and then analysed on BD FACSDIVA 
v8.0 Software (BD Biosciences).
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Colony‑forming unit (CFU) and leukaemia colony‑forming 
unit (CFU‑L) assays
CFUs were assayed using MethoCult™ H4434 Classic 
(Stem Cell Technologies, Vancouver, Canada). After 
5  days of coculture, 2 × 103 CD34+ cells or 2 × 103 
HL-60 cells were plated in 24-well plates and cultured 
for 14  days. Colony-forming unit erythroid (CFU-E), 
burst-forming unit erythroid (BFU-E), colony-forming 
unit-granulocyte/macrophages (CFU-GM), and col-
ony-forming unit-granulocyte, erythroid, macrophage 
and megakaryocyte (CFU-GEMM) measurements for 
CD34+ cells [28, 30, 44] and CFU-L measurements for 
HL-60 cells [45] were scored.

Analysis of T cell subsets
After 3  days of coculture, CD3+ T cells were stimu-
lated with a cell stimulation cocktail (eBioscience, San 
Diego, USA) to induce CD3+ T cell activation and 
cytokine secretion. Lymphocyte subpopulations were 
quantified via flow cytometry as previously described 
[46–49]. Th1, Th2, Th17 cells, and Tregs were iden-
tified as CD3+CD8−IFN-γ+, CD3+CD8−IL-4+, 
CD3+CD8−IL-17A+, and CD3+CD8−CD25+Foxp3+ 
populations, respectively. The details of antibodies were 
in Additional file 1: Table S2.

5‑Ethynyl‑20‑deoxyuridine (EdU) assay
HL-60 cells were harvested after coculture with EPCs 
and then incubated with 50 μM EdU (RiboBio, Guang-
zhou, China) in 48-well plates for 1  h at 37  °C. Then, 
according to the manufacturer’s instructions, the 
nuclear fluorescence intensity was analysed on BD 
FACSDIVA v8.0 Software (BD Biosciences).

RNA‑seq and data analysis
RNA-seq analyses were performed to analyse the 
7-day cultivated BM EPCs from HDs, lower-risk 

MDS, higher-risk MDS or AML patients. The acces-
sion number of whole transcriptome RNA-seq data 
is GSE197907. Differential gene expression (DEGs), 
principal component analysis (PCA), hierarchical clus-
tering analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment plot were executed by 
the DESeq2, clusterProfiler, pheatmap, and ggplot2 
packages in R (1.16.1). The top 20 up and down regu-
lated genes in higher-risk MDS BM EPCs than lower-
risk MDS BM EPCs were list in Additional file  1: 
Table S3 and in AML BM EPCs than higher-risk MDS 
BM EPCs were list in Additional file 1: Table S4. Gene 
set enrichment analysis (GSEA) analysis was performed 
with respect to MSigDB (version 5.1) genesets C5 GO 
biological processes [50].

qRT‑PCR
For qRT-PCR, RNA was extracted using the RNeasy Mini 
kit (QIAGEN, Dusseldorf, Germany). One microgram of 
RNA was reverse transcribed into cDNA by the RT rea-
gent Kit with gDNA Eraser (TaKaRa, Otsu, Japan). The 
mRNA levels of VEGFR2, VE-cadherin, VWF, CASP2, 
CASP3, BAX, CCNE1, MCL1, TP53, CDKN1A, CXCL12, 
KITLG, NFKB1, HAVCR2, CIITA, and LGALS9 were 
detected by the SYBR-Green qRT-PCR kit (Thermo 
Fisher Scientific, Waltham, USA). The levels of the afore-
mentioned genes were evaluated after normalization to 
the 18S mRNA level [30]. All sequences of primers were 
list in Additional file 1: Table S5.

Statistical analysis
Analyses were performed using GraphPad Prism 6.0. Sta-
tistical analyses were performed using Mann–Whitney 
U test. The relative mRNA analyses and paired analyses 
were using Wilcoxon matched-pairs signed rank test. 
The results are expressed as the means ± SEM, and P-val-
ues < 0.05 were considered statistically significant.

(See figure on next page.)
Fig. 1  The number and functions of BM EPCs from patients with MDS. HD and patients with de novo AML were enrolled as controls. A, left The 
EPC phenotype was characterized by demonstrating positive expression of CD34, CD309 and CD133 by flow cytometry. The A, right percentage 
of BM EPCs in precultivated BMMNCs was analysed. B Representative images (scale bars represent 200 µm) of typical cultured BM EPCs collected at 
day 7 of culture from HDs and L-MDS, H-MDS and AML patients were characterized by double-positive staining (merged in yellow) with DiI-AcLDL 
(red) and FITC-UEA I (green) (original magnification, 10×). C Quantification of double-positive EPCs/field of view (merged in yellow) stained with 
DiI-AcLDL (red) and FITC-UEA I (green) at day 7 of culture (original magnification, 10×). D Representative images (scale bars represent 200 µm) of 
tube formation (pixels of tubes per field of view) by BM EPCs at day 7 of culture (original magnification, 10×). E Quantification of tube length (pixels 
of tubes per field of view) of BM EPCs at day 7 of culture (original magnification, 10×). F BM EPCs at day 7 of culture were cultured in a transwell 
chamber for 24 h, fixed and then stained with crystal violet. Representative images (scale bars represent 200 µm) of migrated cells on the bottom 
surface of the membrane (original magnification, 10×). G The number of migrated BM EPCs per field of view was compared (original magnification, 
10×). Three power fields were randomly counted and averaged per sample. Statistical analyses were performed using the Mann–Whitney U test. 
Data are presented as the means ± SEM (*P ≤ 0.05, **P ≤ 0.005, ***P ≤ 0.001). AML Acute myeloid leukaemia, BM Bone marrow, BMMNCs Bone 
marrow mononuclear cells, EPCs Endothelial progenitor cells, DiI-Ac-LDL DiI-acetylated low-density lipoprotein, FITC-UEA I FITC-labelled Ulex 
Europaeus Agglutinin I, HD Healthy donor, H-MDS Higher-risk myelodysplastic syndromes, L-MDS Lower-risk myelodysplastic syndromes
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Fig. 1  (See legend on previous page.)
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Results
Increased number of BM EPCs in MDS patients
The representative BM EPC phenotype was charac-
terized by CD34+CD309+CD133+ by flow cytometry 
(Fig.  1A). The percentage of BM EPCs from higher-risk 
MDS patients (higher-risk MDS BM EPCs) (Fig.  1A, 
0.19% ± 0.03% vs. 0.11% ± 0.02%, P = 0.03) was sig-
nificantly higher than BM EPCs from lower-risk MDS 
patients (lower-risk MDS BM EPCs), whereas the per-
centage of primary BM EPCs from AML patients (AML 
BM EPCs) was higher than higher-risk MDS BM EPCs 
(Fig. 1A, 0.31% ± 0.03% vs. 0.19% ± 0.03%, P = 0.002).

After 7  days of cultivation, spindle-shaped and elon-
gated BM adherent cells were further functionally char-
acterized as EPCs, which were capable of DiI-AcLDL 
uptake and FITC-UEA I binding (the typical functional 
EPC markers) [28–30, 40, 41]. Moreover, EPC iden-
tity was confirmed by qRT-PCR for endothelial specific 
marker genes (VEGFR2, VE-cadherin and VWF) in 
Additional file 1: Fig. S1. The number of double-positive 
stained AML BM EPCs was significantly higher than 
higher-risk MDS BM EPCs (Fig.  1B and C, 124.5 ± 20.3 
vs. 41.7 ± 6.3, P = 0.003). Together, increased numbers 
of BM EPCs were found in MDS patients, especially in 
more severe types of MDS.

Decreased angiogenic potential but increased migration 
ability of BM EPCs in MDS patients
To evaluate the angiogenic potential and migration of 
BM EPCs from different types of MDS patients, tube for-
mation and migration were analysed on day 7 of culture 
[28–30, 40]. Higher-risk MDS BM EPCs showed a sig-
nificantly increased tube formation ability compared with 
lower-risk MDS BM EPCs (Fig.  1D and E, 4375 ± 321 
vs.1874.7 ± 118.9, P < 0.0001) and a markedly decreased 
tube formation ability compared with AML patients 
(Fig.  1D and E, 4375 ± 321 vs. 6403 ± 370.4, P = 0.001). 

The AML BM EPCs on day 7 of culture showed increased 
migrated cells (Fig. 1F and G, 172.4 ± 29.8 vs. 82.6 ± 7.9, 
P = 0.01) compared with lower-risk MDS BM EPCs. 
These results demonstrated that the decreased angio-
genic potential but increased migration capability in BM 
EPCs from MDS patients.

RNA‑seq indicates the progressive change and differences 
of haematopoiesis‑ and immune‑related pathways 
and genes in MDS BM EPCs
To uncover the underlying mechanism of the variant dys-
functions in different types MDS BM EPCs, the lower-
risk MDS BM EPCs (N = 3), higher-risk MDS BM EPCs 
(N = 3), AML patients BM EPCs (N = 3) and primary BM 
EPCs from HDs (HD BM EPCs) (N = 3) were analysed 
via RNA-seq (Fig. 2A). The results of PCA (Fig. 2B) and 
hierarchical clustering analysis (Fig.  2C) showed that 
the entire population was clearly separated into two dis-
tinct subpopulations, HD and disease BM EPCs. More 
importantly, the heatmap (Fig.  2C) of different groups 
showed the progressive change in the total RNA expres-
sion profile of HD BM EPCs, lower-risk MDS BM EPCs, 
and higher-risk MDS BM EPCs to AML BM EPCs. There 
were 886 different genes between lower-risk MDS and 
higher-risk MDS BM EPCs (Fig.  2D) and 825 different 
genes between higher-risk MDS and AML BM EPCs 
(Fig. 2E). KEGG pathway enrichment analysis of Organ-
ismal Systems class (Fig. 2F and G) indicated that haema-
topoiesis- and immune-related pathways were enriched 
in MDS BM EPCs. For example, haematopoietic cell 
lineage was enriched in both lower-risk MDS BM EPCs 
vs. higher-risk MDS BM EPCs and higher-risk MDS 
BM EPCs vs. AML BM EPCs. Th17 and Th2 cell differ-
entiation and Th17 cell differentiation were enriched in 
higher-risk MDS BM EPCs vs. AML BM EPCs.

In addition, the previously reported haematopoiesis- 
and immunomodulation-related genes [51–56] in BM 

Fig. 2  Transcriptome heterogeneity of BM EPCs from MDS patients identified by bulk RNA-seq. A Schematic of the experiment. BM EPCs from 
3 HDs and 3 L-MDS, 3 H-MDS, and 3 AML patients at 7 days of culture were collected, and bulk RNA-seq was performed. B PCA score plot of 
12 libraries. C Heatmap and hierarchical clustering of RNA-seq data for the HD, L-MDS, H-MDS and AML groups using the Euclidean distance. 
Distributions and quantifications of genes in BM EPCs from D L-MDS verses H-MDS and E H-MDS verses AML. The x axis shows the log2 of 
gene expression change, whereas the y axis shows the − log10 of the P value. The KEGG pathway enrichment analyses of Organismal Systems 
class of the different genes between F L-MDS vs. H-MDS and G H-MDS vs. AML are shown. The x axis shows the rich factor. H Heatmap shows 
haematopoiesis- and immune-related gene expression in bulk RNA-seq data of 12 libraries. The relative mRNA levels of I CXCL12, KITLG, NFKB1 genes 
and J HAVCR2, CIITA, LGALS9 genes in HD, L-MDS, H-MDS and AML BM EPCs were determined using qRT-PCR. The relative mRNA analyses were using 
Wilcoxon matched-pairs signed rank test. Data are presented as the means ± SEM (*P ≤ 0.05). AML Acute myeloid leukaemia, BM Bone marrow, 
BMMNCs Bone marrow mononuclear cells, EPCs Endothelial progenitor cells, HD Healthy donor, H-MDS Higher-risk myelodysplastic syndromes, 
KEGG Kyoto Encyclopedia of Genes and Genomes, L-MDS Lower-risk myelodysplastic syndromes, PCA Principal component analysis, RNA-seq RNA 
sequencing, ROS reactive oxygen species

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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EPCs were detected by RNA-seq (Fig.  2H) and verified 
by qRT-PCR. As shown in Fig.  2H–J, mRNA levels of 
haematopoiesis-related genes CXCL12, KITLG, NFKB1 
and immune-related genes HAVCR2, LGALS9, CIITA 
were increased in higher-risk MDS and AML BM EPCs 
compared with lower-risk MDS BM EPCs. These results 
suggested markedly enriched haematopoiesis- and 
immunomodulatory-related pathways and upregulation 
of related genes in higher-risk MDS BM EPCs. However, 
normal or malignant haematopoiesis-related genes could 
not be distinguished via RNA-seq analysis. Therefore, we 
further carried out in  vitro experiments to analyse the 
haematopoiesis and immunomodulatory function of BM 
EPCs from MDS patients.

Decreased ability of BM EPCs to support HSCs 
in higher‑risk MDS patients
To investigate the effects of BM EPCs on HSCs in vitro, 
we sorted CD34+ cells from BMMNCs of HDs with 
magnetic beads and cocultured them with BM EPCs. 
After 5  days, we analysed the apoptosis rates, intracel-
lular ROS levels and CFU plating efficiencies of HSCs 
(Fig. 3A). Compared with the lower-risk MDS group, the 
higher-risk MDS group exhibited a marked increase in 
the apoptosis rates of HSCs after coculture (Fig. 3B and 
C, 21.09 ± 1.21% vs. 16.79 ± 0.97%, P = 0.01). The ROS 
level (Fig. 3D, 6039 ± 654.4 vs. 4308 ± 394.7, P = 0.03) of 
CD34+ cells after coculture with AML BM EPCs was sig-
nificantly higher than that of lower-risk MDS BM EPCs. 
HSCs cocultured with higher-risk MDS BM EPCs had 
lower CFU plating efficiencies than those cocultured 
with lower-risk MDS BM EPCs (Fig. 3E), as determined 
by CFU-E, BFU-E (12.9 ± 1.67 vs. 26.9 ± 3.62, P = 0.003), 
CFU-GM, and CFU-GEMM. The AML group had lower 
CFU-E, BFU-E, CFU-GM and CFU-GEMM plating effi-
ciencies than the higher-risk MDS group. These data 
suggest that of MDS BM EPCs were less able to support 
HSCs in more severe type of MDS patients.

BM EPCs induce T cell differentiation towards more 
immune‑tolerant cells in higher‑risk MDS patients
To further investigate the immunoregulatory effects of 
BM EPCs in vitro, we sorted CD3+ cells from BMMNCs 
of HDs and cocultured them without or with HD BM 
EPCs, lower-risk MDS BM EPCs, higher-risk MDS BM 
EPCs and AML BM EPCs. After 3 days, we analysed dif-
ferences in T cell subsets after coculture or not (control 
of T cell alone cultures) (Fig.  4A). The subtypes of Th1 
cells, Th2 cells, Th17 cells and Tregs were character-
ized by positive expression of CD4+IFN-γ+, CD4+IL-4+, 
CD4+IL-17+ and CD4+CD25+Foxp3+, respectively 
(Fig.  4B). There was a markedly lower percentage of 
Th1 cells in the AML group than in the higher-risk 
MDS group (Fig.  4C, 4.86% ± 0.54% vs. 8.07% ± 0.51%, 
P = 0.004) and in the higher-risk MDS group than in 
the lower-risk MDS group (Fig.  4C, 8.07% ± 0.51% vs. 
9.95% ± 0.6%, P = 0.04). A significantly lower percentage 
of Th17 cells was observed in the higher-risk MDS group 
than in the lower-risk MDS group (Fig. 4D, 6.54% ± 0.43% 
vs. 9.35% ± 0.92%, P = 0.004) and in the AML group than 
in the higher-risk MDS group (Fig.  4D, 4.48% ± 0.58% 
vs. 6.54% ± 0.43%, P = 0.04). However, higher percent-
ages of Th2 cells (Fig. 4E, 8.77% ± 1.0% vs. 5.67% ± 0.31%, 
P = 0.02) in the higher-risk MDS group than in the lower-
risk MDS group. In addition, higher percentages of Tregs 
(Fig. 4F, 4.74% ± 0.59% vs. 3.14% ± 0.31%, P = 0.01) were 
observed in the AML group than in the higher-risk MDS 
group. As a result, the ratio of Th1/Th2 cells was mark-
edly lower in the higher-risk MDS group than in the 
lower-risk MDS group (Fig. 4G, 1.0 ± 0.1 vs. 1.81 ± 0.17, 
P = 0.004), whereas that was significantly lower in the 
AML group than in the higher-risk MDS group (Fig. 4G, 
0.51 ± 0.06 vs. 1.0 ± 0.1, P = 0.02). These data showed that 
lower-risk MDS BM EPCs regulated T cell differentia-
tion into Th17 cells, whereas higher-risk MDS and AML 
BM EPCs regulated T cell differentiation into Th2 cells 
and Tregs. Our data suggested that BM EPCs might be 

(See figure on next page.)
Fig. 3  Supporting abilities of BM EPCs from MDS patients to HSCs. A Schematic diagram of the study design for the BM EPC coculture process 
with HSCs. After 5 days of coculture, the apoptosis ratio and the quantification of the level of intracellular ROS and CFU efficiencies of HSCs were 
detected. Representative images (B) and quantification (C) of the apoptosis ratio of HSCs after coculture with BM EPCs are shown. Quantification 
(D, left) and representative images (D, right) of the ROS levels (MFI) of HSCs after coculture are shown. E The CFU plating efficiencies of HSCs, 
including CFU-E, BFU-E, CFU-GM and CFU-GEMM, after coculture with BM EPCs from HDs, L-MDS, H-MDS and AML patients. Statistical analyses 
were performed using the Mann–Whitney U test. Data are presented as the means ± SEM (*P ≤ 0.05, ** P ≤ 0.005, *** P ≤ 0.001). AML Acute 
myeloid leukaemia, BFU-E Burst-forming unit erythroid, BM Bone marrow, BMMNCs Bone marrow mononuclear cells, CFU Colony-forming unit, 
CFU-E Colony-forming unit erythroid, CFU-GM Colony-forming unit-granulocyte/macrophages, CFU-GEMM Colony-forming unit-granulocyte, 
erythroid, macrophage and megakaryocyte, EPCs Endothelial progenitor cells, HD Healthy donor, HSC haematopoietic stem cells, H-MDS Higher-risk 
myelodysplastic syndromes, L-MDS Lower-risk myelodysplastic syndromes
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inclined to induce T cell differentiation towards more 
immune-tolerant cells in higher-risk MDS patients.

Increased ability of BM EPCs to support leukaemia cells 
in higher‑risk MDS patients
To investigate the effect of BM EPCs on leukaemia cells 
in  vitro, we assessed the proliferation, apoptosis and 
CFU-L plating efficiency of HL-60 cells after coculture 
with BM EPCs (Fig. 5A). In addition, the relative mRNA 
expression levels of apoptosis- and cell cycle-related 
genes were detected in HL-60 cells after coculture. The 
EdU -positive rate of HL-60 cells was significantly higher 
in the higher-risk MDS group than in the lower-risk MDS 
group (Fig. 5B and C, 45.79% ± 1.12% vs. 36.52% ± 2.20%, 
P = 0.003). More importantly, CFU-L plating efficiencies 
were markedly increased in AML group compared with 
higher-risk MDS group (Fig.  5D and E, 374.1 ± 37.2 vs. 
257.6 ± 33.2, P = 0.04). However, the apoptotic rate of 
HL-60 cells was notably decreased in the AML group 
compared with the lower-risk MDS group (Fig.  5F, 
2.6% ± 0.52% vs. 4.38% ± 0.46%, P = 0.01). The CASP2, 
CASP3, BAX, TP53 and CDKN1A mRNA levels in HL-60 
cells were downregulated, whereas the CCNE1 and 
MCL1 mRNA levels were upregulated in the higher-risk 
MDS and AML groups than the lower-risk MDS group 
(Fig. 5G). These data suggest that BM EPCs may become 
more supportive of leukaemia cells in higher-risk MDS 
patients.

The levels of ROS and the apoptosis ratio were increased 
in BM EPCs from higher‑risk MDS patients
To further explore the internal changes in dysfunctional 
EPCs and identify underlying therapeutic targets, we 
investigated damage related pathways from the RNA-
seq data. GSEA highlighted abnormalities of mitochon-
drial signaling pathway (Fig. 6A, B), so we verified them 
by detecting ROS levels of precultivated and cultivated 
BM EPCs. The ROS level of precultivated AML BM EPCs 
was significantly higher than that in higher-risk MDS BM 
EPCs (Fig. 6C, 5369 ± 426.0 vs. 3039 ± 335.3, P = 0.0002). 

The ROS level in the cultivated AML BM EPCs was 
higher than that in the cultivated higher-risk MDS BM 
EPCs, whereas the ROS level of the cultivated higher-
risk MDS BM EPCs was higher than that in the lower-
risk MDS BM EPCs (Fig. 6D, E). Moreover, the pathway 
of apoptotic nuclear changes was identified in GSEA 
(Fig.  6F). The apoptosis rate (Fig.  6G, 43.79% ± 2.77% 
vs. 20.63% ± 3.01%, P < 0.0001) was significantly higher 
in AML BM EPCs than in lower-risk MDS EPCs. The 
relative mRNA expression levels of apoptosis-related 
genes in BM EPCs were further analysed by qRT-PCR. 
The CASP2 mRNA level was significantly upregulated in 
AML BM EPCs (Fig. 6H, 6.43 ± 0.89-fold vs. 2.28 ± 0.56-
fold, P = 0.03) compared to higher-risk MDS BM EPCs. 
The CASP3 (Fig.  6H, 2.09 ± 0.26-fold vs. 0.88 ± 0.3-
fold, P = 0.03) and BAX (Fig.  6H, 2.0 ± 0.35-fold vs. 
1.08 ± 0.14-fold, P = 0.03) mRNA levels were significantly 
upregulated in higher-risk MDS BM EPCs compared 
to lower-risk MDS BM EPCs. Together, elevated levels 
of ROS and apoptosis of BM EPCs were found in MDS 
patients, especially in higher-risk MDS patients, which 
may be the underlying repair targets for MDS patients 
(Fig. 7).

Discussion
The current study firstly demonstrated increased but 
dysfunctional BM EPCs in patients with MDS. The abili-
ties of BM EPCs from higher-risk MDS patients to sup-
port HSCs decreased, whereas those from higher-risk 
MDS patients to support leukaemia cells increased. Fur-
thermore, BM EPCs might be inclined to induce T cell 
differentiation towards more immune-tolerant cells in 
more severe type of MDS patients. In addition, exces-
sive production of ROS and apoptotic pathway activation 
may be the underlying mechanisms of dysfunctional BM 
EPCs. Our data indicate that repair of dysfunctional BM 
EPCs may be a potential therapeutic approach for MDS 
patients.

Increased BM angiogenesis has been reported in MDS 
patients [32, 57–59]. Immunohistochemical studies have 

Fig. 4  Regulatory abilities of BM EPCs from MDS patients to differentiate T cells. A Schematic diagram of the study design for BM EPC coculture 
processes with T cells. After 3 days of coculture, the differentiation of T cells was analysed by flow cytometry. B The subtypes of Th1 cells, Th2 cells, 
Th17 cells and Tregs were characterized by positive expression of CD4+IFN-γ+, CD4+IL-4+, CD4+IL-17+ and CD4+CD25+Foxp3+, respectively. The 
percentage of C Th1 cells, D Th17 cells, E Th2 cells, F Tregs and G the ratio of Th1/Th2 cells after coculture without (Control) or with HD-derived, 
L-MDS, H-MDS, AML patient-derived BM EPCs for 3 days. The paired analyses were using Wilcoxon matched-pairs signed rank test. Data are 
presented as the means ± SEM (*P ≤ 0.05, **P ≤ 0.005). AML Acute myeloid leukaemia, BM Bone marrow, BMMNCs Bone marrow mononuclear cells, 
EPCs Endothelial progenitor cells, HD Healthy donor, H-MDS Higher-risk myelodysplastic syndromes, L-MDS Lower-risk myelodysplastic syndromes, 
Th T helper, Tregs Regulatory T cells, ROS reactive oxygen species

(See figure on next page.)



Page 11 of 17Xing et al. Journal of Translational Medicine          (2022) 20:144 	

Fig. 4  (See legend on previous page.)



Page 12 of 17Xing et al. Journal of Translational Medicine          (2022) 20:144 

demonstrated an increased microvessel density (MVD) 
in the biopsies of MDS patients [58–60]. The results con-
cerning the correlation between BM MVD and classifi-
cation are controversial. Some studies reported a higher 
MVD preferentially among higher-risk MDS patients 
[58, 61], while other studies failed to find such a correla-
tion [60]. Other studies regarding circulating endothelial 
cells and peripheral EPCs are consistently increased in 
MDS patients compared with normal controls [32, 57]. 
In summary, the number of BM EPCs in MDS patients 
and their correlation with the different risk degrees are 
not clear. More importantly, the functions of BM EPCs 
in patients with different risk groups of MDS are largely 
unknown. Our study firstly demonstrated increased 
BM EPCs with dysfunctions in MDS patients, especially 
more severe dysfunctions of BM EPCs in patients with 
higher-risk MDS. We speculated that the increased and 
dysfunctional EPCs in MDS patients were responsible for 
more nutrient and metabolite turnover, and may secrete 
more cytokines to better support malignant hematopoie-
sis. Based on our previous work and the current study, 
the impairment of EPCs was associated with elevated 
intracellular ROS levels and an elevated apoptosis ratio 
in MDS patients [28, 29, 39, 62]. Therefore, it is worth 
investigating the efficacy of therapeutic strategies, such 
as N-acetyl-l-cysteine (a reactive oxygen species scaven-
ger) [28, 29, 62, 63] or inhibitor of EPC-targeted apopto-
sis pathways, to improve the prognosis of MDS patients 
by enhancing BM EPCs in the future.

A great deal of researches have certified the critical 
role of EPCs in regulating haematopoiesis [24, 26, 27], 
whereas Hatfield et  al. found that EPCs supported leu-
kaemia cells by directly enhancing the proliferation and 
inhibiting apoptosis of AML blasts [45]. However, it 
is unclear whether the abilities of BM EPCs from MDS 
patients to support HSCs or leukaemia cells are the same 

or different. Surprisingly, we found antipodal results 
for normal HSCs and leukaemia cells. The CFU plating 
efficiency of HSCs declined with disease progression, 
which suggested BM EPCs from patients with MDS or 
AML could not support normal differentiation of HSCs. 
On the contrary, the CFU-L plating efficiency increased, 
which implied the possible role of BM EPCs as an onco-
genic driver or facilitator of MDS. On the other hand, the 
progression of MDS is also facilitated by immune dereg-
ulation [1]. However, the correlation between BM EPCs 
and immune deregulation in MDS is largely unknown. 
Consistent with previous clinical reports of T cell sub-
types in MDS patients [21, 22], our data demonstrated 
that BM EPCs from lower-risk MDS patients regulate T 
cell differentiation into inflammatory Th17 cells but BM 
EPCs from higher-risk MDS patients regulate T cells into 
more immune tolerant cells.

We are aware that the underlying mechanism on how 
BM EPCs regulate T cells and the precise T cell subset 
need to be further explored in the future. However, our 
data indicated that the dysregulated immunomodulatory 
function of EPCs may also contribute to ineffective hae-
matopoiesis and evasion from antitumoural immunity in 
MDS. Therefore, in conjunction with existing therapies, 
improvement of BM EPCs may be a potential therapeutic 
strategy for patients with MDS.

Conclusions
In summary, the current study demonstrated that dys-
functional BM EPCs were involved in MDS patients. 
Changes in the BM microenvironment may be a pri-
mary driver of human haematological malignancies, as 
has been suggested by animal models [64, 65]. Although 
further validation is required, our findings indicate that 
improving BM EPCs may represent a potential therapeu-
tic approach for MDS patients.

(See figure on next page.)
Fig. 5  Supporting abilities of BM EPCs from MDS patients to leukaemia cells. A Schematic diagram of the study design for BM EPC coculture 
processes with HL-60 cells. After 5 days of coculture, the EdU-positive rates, apoptosis ratio and CFU-L efficiencies of HL-60 cells were detected. 
Representative images (B) and quantification of the EdU-positive rates (C) of HL-60 cells after coculture with BM EPCs are shown. Quantification 
(D) of the CFU-L plating efficiencies and representative images (scale bars represent 500 μm) (E) of CFU-L after coculture with BM EPCs are shown 
(original magnification, 4×). Three power fields were randomly counted and averaged per sample. F Quantification of the apoptosis ratio of HL-60 
cells after coculture. G The relative mRNA levels of CASP2, CASP3, BAX, TP53, CDKN1A, CCNE1 and MCL1 in HL-60 cells after coculture with BM EPCs 
were determined by qRT‐PCR. Statistical analyses were performed using the Mann–Whitney U test. The relative mRNA analyses were using Wilcoxon 
matched-pairs signed rank test. Data are presented as the means ± SEM (*P ≤ 0.05, **P ≤ 0.005, ***P ≤ 0.001). AML Acute myeloid leukaemia, BM 
Bone marrow, BMMNCs Bone marrow mononuclear cells, CFU-L Leukaemia colony-forming unit, EdU 5-ethynyl-20 deoxyuridine, EPCs Endothelial 
progenitor cells, HD Healthy donor, H-MDS Higher-risk myelodysplastic syndromes, L-MDS Lower-risk myelodysplastic syndromes
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Fig. 6  The levels of ROS and apoptosis ratio in BM EPCs from MDS patients. A and B GSEA was performed with differentially expressed genes 
in AML BM EPCs versus H-MDS BM EPCs or H-MDS BM EPCs versus L-MDS BM EPCs, highlighting enrichment in mitochondria-related signaling 
pathways. C ROS levels of precultivated BM EPCs from HD, L-MDS, H-MDS and AML patients. Representative images (D) (scale bars represent 
200 μm) of the BM EPCs at day 7 in culture after incubation with 2ʹ,7ʹ-dichlorofluorescence diacetate (original magnification, 10×). E Quantification 
of the mean ROS grey value of the BM EPCs at day 7 in culture after incubation with 2ʹ,7ʹ-dichlorofluorescence diacetate (original magnification, 
10×). Three power fields were randomly counted and averaged per sample. The mean grey value of ROS was improved in AML compared with 
H-MDS and increased in H-MDS compared with L-MDS, but the results were not statistically significant. F GSEA was performed with differentially 
expressed genes in AML BM EPCs versus H-MDS BM EPCs, highlighting the enrichment in the apoptosis signaling pathway. G The apoptosis ratio 
of precultivated BM EPCs from HDs, L-MDS, H-MDS and AML patients. H The relative mRNA levels of CASP2, CASP3 and BAX in BM EPCs at day 7 in 
culture from HDs, L-MDS, H-MDS and AML patients were determined using qRT-PCR. Statistical analyses were performed using Mann–Whitney 
U test. The relative mRNA analyses were using Wilcoxon matched-pairs signed rank test. Data are presented as the means ± SEM (*P ≤ 0.05, 
**P ≤ 0.005, ***P ≤ 0.001). AML Acute myeloid leukaemia, BM Bone marrow, EPCs Endothelial progenitor cells, GSEA Gene set enrichment analysis, HD 
Healthy donor, H-MDS Higher-risk myelodysplastic syndromes, L-MDS Lower-risk myelodysplastic syndromes, ROS reactive oxygen species
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