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Deep Generative Learning-Based 1-SVM Detectors
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Detection Using Blood Tests
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Abstract— A sample blood test has recently become an
important tool to help identify false-positive/false-negative real-
time reverse transcription polymerase chain reaction (rRT-PCR)
tests. Importantly, this is mainly because it is an inexpensive
and handy option to detect the potential COVID-19 patients.
However, this test should be conducted by certified laboratories,
expensive equipment, and trained personnel, and 3–4 h
are needed to deliver results. Furthermore, it has relatively
large false-negative rates around 15%–20%. Consequently,
an alternative and more accessible solution, quicker and
less costly, is needed. This article introduces flexible and
unsupervised data-driven approaches to detect the COVID-19
infection based on blood test samples. In other words, we address
the problem of COVID-19 infection detection using a blood
test as an anomaly detection problem through an unsupervised
deep hybrid model. Essentially, we amalgamate the features
extraction capability of the variational autoencoder (VAE) and
the detection sensitivity of the one-class support vector machine
(1SVM) algorithm. Two sets of routine blood tests samples
from the Albert Einstein Hospital, São Paulo, Brazil, and the
San Raffaele Hospital, Milan, Italy, are used to assess the
performance of the investigated deep learning models. Here,
missing values have been imputed based on a random forest
regressor. Compared to generative adversarial networks (GANs),
deep belief network (DBN), and restricted Boltzmann machine
(RBM)-based 1SVM, the traditional VAE, GAN, DBN, and RBM
with softmax layer as discriminator layer, and the standalone
1SVM, the proposed VAE-based 1SVM detector offers superior
discrimination performance of potential COVID-19 infections.
Results also revealed that the deep learning-driven 1SVM
detection approaches provide promising detection performance
compared to the conventional deep learning models.

Index Terms— COVID-19, deep learning, generative models,
routine blood tests, unsupervised anomaly detection.

I. INTRODUCTION

COVID-19, also called SARS COV-2, is a new virus
pandemic fronted our world since the end of 2019. The
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virus starts to spread quickly with a high contagion rate until it
becomes a global pandemic. Governments have taken several
drastic measures to cope with the spread of the COVID-19
infection, including the quarantine of hundreds of millions
of residents worldwide. On July 16, 2021, the World Health
Organization (WHO) reported 188 655 968 confirmed cases of
COVID-19, including 4 067 517 deaths. As of July 14, 2021,
a total of 3 402 275 866 vaccine doses were administered. Nev-
ertheless, a high number of asymptomatic cases are reported
due to the COVID-19 symptomatology, making it challenging
to discriminate between COVID-19 positive from negative
individuals [1]. Much efforts have been made to mitigate
and slowdown COVID-19 transmission by developing several
techniques for different applications, such as wearing mask
detection [2], COVID-19 spread forecasting [3], and chest
X-ray diagnosis [4].

Accurate tests are essential for identifying positive
COVID-19 cases and treating contaminated cases, which
helps mitigate the pandemic [5]. Indeed, real-time reverse
transcription polymerase chain reaction (rRT-PCR) becomes a
standard for COVID-19 diagnosis [6], [7]. Even the RT-PCR
test is needed to deal with the COVID-19 pandemic; it is
still limited to certified laboratories, expensive equipment,
and trained personnel, and 3–4 h needed to deliver results
[6], [7]. Besides, this test can miss detecting fully symptomatic
COVID-19 infected patients [8]. In other words, it has rel-
atively large false-negative rates around 15%–20% [8]–[10].
Furthermore, it has relatively large false-negative rates
[9], [10]. Therefore, alternative and more accessible, and
accurate solutions are needed.

Developing accurate and fast procedures to identify infected
people is undoubtedly essential to guarantee reliable control
of COVID-19 spread. Recently, several machine learning-
based strategies by routine blood tests have been introduced
in the literature to mitigate the shortcomings of RT-PCR
tests. For instance, Alves et al. [11] proposed a machine
learning-based approach to deal with COVID-19 screening in
routine blood tests. Results reveal that a random forest (RF)
classifier achieved the best performance in identifying the
confirmed cases based on supervised learning (i.e., accu-
racy 0.88, F1-score 0.76, and area under curve (AUC)
0.86). Also, they proposed a decision tree-based approach to
explain the model and could be helpful for the health teams.
In [12], ensemble learning-based methods have been applied
to identify COVID-19 infected patients based on routine blood
tests. Notably, a two-step model termed ERLX is proposed;
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the RF, logistic regression (LR), and extra trees have been
first applied, and their prediction outputs are used as input
to XGBoost for improving the discrimination capability of
XGBoost to identify COVID-19 cases. Results indicate the
better classification performance of the ERLX compared to
the other investigated classifiers. Wu et al. [13] proposed
a COVID-19 infection detection-based RF algorithm using
the blood test data through supervised learning. The study
in [14] presented a COVID-19 infection diagnosis by applying
machine learning algorithms to blood tests data with robust-
ness to domain shifts. We compared several machine learning
models in this study, such as self-normalizing neural networks,
K-nearest neighbor (kNN), LR, SVM, RF, and XGB. They
show that the XGB and RF exhibited better performance for
COVID-19 diagnosis compared to the other models. It has
been suggested to evaluate the model performance regularly
to avoid a high misclassification rate. To this end, the model
needs to be retrained after a certain time interval for exploiting
newly collected samples. In [15], five supervised machine
learning classifiers, including SVM, RF, kNN, LR, and Naive
Bayes (NB), have been employed to discriminate infected
COVID-19 cases healthy persons based on the blood test data.
It has been concluded that machine learning classifiers can
be particularly helpful in developing countries or countries
facing increased infections. A set of machine learning models,
including kNN, LR, NB, RF, extremely randomized trees,
and decision tree, were evaluated in [16] and [17] to clas-
sify the infected cased with COVID-19 based on the blood
test. We used a features selection approach to address the
classification problem and identify patients who are either
positive or negative to COVID-19. This study showed the
feasibility of employing machine learning based on blood tests
analysis as an inexpensive option to the rRT-PCR for detecting
COVID-19 positive cases. This can be used as support for
the countries having deficiencies of rRT-PCR reagents and
limited specialized laboratories. Yang et al. [18] evaluated
four supervised machine learning methods for COVID-19
infection detection; the models adopted are gradient boost-
ing decision tree (GBDT), RF, LR, and DT. They trained
these models in a supervised way to classify the COVID-19
infection cases—results show that the models reached an
AUC of 0.854. The extreme gradient boosting machine is
used in [19] to identify the infected cases of COVID-19;
we performed a features selection and trained the proposed
approach in a supervised manner. This study reported that
the proposed approach reached a diagnostic accuracy similar
and probably equivalent to RT-PCR and chest CT studies.
In [20], COVID-19 infection detectors based on data from the
peripheral blood of patients have been proposed. Specifically,
several supervised machine learning models, including DT,
RF, SVM, kNN, neural network, and variants of gradient
boosting machines, have been applied to predict COVID-19
patient outcomes. It has been shown that this approach can
be used to recognize infected patients with COVID-19 who
are at high risk of mortality, which enables optimizing hospi-
tal resources for COVID-19 treatment. Banerjee et al. [21]
proposed supervised machine learning models to identify
SARS-CoV-2 positive patients from full blood counts without

knowledge of symptoms or history of the individuals. To this
end, RF and Lasso-based regularized generalized linear models
and NN have been adopted. Of course, this approach could
significantly improve the initial screening for patients since
PCR-based diagnostic tools are limited. In [22], an approach
for predicting COVID-19 PCR positivity is presented using
blood count components and patient sex. This decision support
tool exhibited an optimized sensitivity of 93%. Furthermore,
Schwab et al. [23] considered five machine learning models
(i.e., LR, NN, RF, SVM, and gradient boosting) to identify
infected patients with COVID-19 based on routinely collected
blood analysis data from a cohort of 5644 patients.

Note that all the above-mentioned approaches are based
on shallow machine learning models, trained in a super-
vised learning approach. This study aims to develop unsuper-
vised deep learning-driven approaches to detect COVID-19
infection based on blood test samples. This is the first
study presenting unsupervised detectors to identify infected
COVID-19 patients using blood test samples to the best
of our knowledge. All the above-mentioned methods are
designed based on supervised machine learning models where
labeled data are required. Importantly, this study investigates
the COVID-19 infection detection using a blood test as an
anomaly detection problem through an unsupervised deep
hybrid model. Overall, the contribution of this article is
threefold.

1) This study addresses the problem of COVID-19
infection detection using blood test data as an anomaly
detection problem. To this end, at first, the variational
autoencoder (VAE) deep learning model is constructed
using only anomaly-free data (without COVID-19
cases), and the VAE’s extracted features are used as
input for the one-class support vector machine (1SVM)
to discriminate between the infected and noninfected
COVID-19 patients. In terms of the methodology, our
proposed VAE-1SVM approach is a fully unsupervised
approach and different from the approach combining
VAE and SVM for binary classification in [24]. Cru-
cially, the method presented in [24] is a supervised
approach, where the SVM is trained with labeled data,
and training data contain both healthy and cancer sam-
ples. In training, the SVM classifier tries to find the
appropriate hyperplane to separate these two classes
using the labeled data. In short, this supervised approach
needs labeled data to ensure a suitable classification.
Note that the proposed VAE-1SVM approach is trained
in an unsupervised manner without labeling the training
data. To be more explicit, the 1SVM is trained in an
unsupervised way using features extracted by the VAE
encoder. The principal purpose of the 1SVM procedure
is to discriminate infected from noninfected COVID-19
patients by building a hyperplane. Notably, the adoption
of VAE as a features extractor is motivated by its
capability to sufficiently extract the relevant nonlinear
information hidden in blood test data without any prior
assumption on data distribution. VAE combines the
suitable characteristics of the variational inference (VI)
and AE, allowing effective learning of important low-
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dimensional and hidden features in data. The significant
advantages of VAE over the traditional AE-based mod-
els [25] consists in its ability to alleviate the overfitting
problem by incorporating a regulation mechanism in the
training stage. More specifically, the regularization term
enhances the ability of the generative models to sample
data points utilizing learned data distribution represented
in the latent space. In addition, we employed a 1SVM
algorithm to separate normal and abnormal features
because of its assumption-free and suitable ability to
consider nonlinear features. Indeed, 1SVM maps the
VAE’s features in a higher feature space through kernel
trick, which helps to solve linearly nonseparable cases.
Accordingly, amalgamating the advantages of the VAE-
driven feature extractor and the 1SVM-based detector
will undoubtedly enhance COVID-19 infection detection
based on blood test data.

2) This study compared the detection performance of the
VAE-1SVM detector with seven deep learning mod-
els, including generative adversarial networks (GANs),
deep belief network (DBN), and restricted Boltzmann
machine (RBM)-based 1SVM, the traditional VAE,
GAN, DBN, and RBM with softmax layer as discrimi-
nator layer, and the standalone 1SVM.

3) Two sets of routine blood tests samples from the Albert
Einstein Hospital (AEH), São Paulo, Brazil, and the San
Raffaele Hospital (SRH), Milan, Italy, are used to assess
the performance of the investigated deep learning mod-
els. We employed multivariate data for the estimation
of missing values based on the RF regressor. Results
reveal that the proposed VAE-1SVM approach offers
satisfying performance to identify potential COVID-19
infections and is consistently performed better than the
other methods.

Section II presents the dataset and briefly describes an
overview of VAE and the 1SVM algorithm. Section III
presents the proposed unsupervised VAE-based 1SVM detec-
tor. In Section IV, we assess the performance of the developed
approach using two publically datasets. Finally, in Section V,
we conclude this study.

II. DATA AND MATERIALS

This section briefly overviews the VAE model and the
1SVM classifier.

A. Data Description

In this study, two datasets of routine blood tests samples
are used to assess the performance of the investigated deep
learning models. The first set is collected from the AEH,
SãoPaulo, Brazil, and the second one from SRH, Milan, Italy.

1) Dataset 1: The first routine blood tests samples,
termed Dataset 1, are obtained from 5644 patients, includ-
ing 559 infected patients with COVID-19, who had samples
collected to perform the SARS-CoV-2 RT-PCR and additional
laboratory tests in the AEH, São Paulo, Brazil [26]. These
data are publically accessible on Kaggle website [26]. Note

Fig. 1. Distribution of the used features in Dataset 1.

TABLE I

SUMMARY OF THE FEATURES IN DATASET 1

that these data have been normalized with zero mean and
unit variance; the original data are not accessible. Dataset 1
contains 108 features; in this study, 18 important features are
used based on their relevance in indicating COVID-19 based
on reported studies in the literature [12], [21], [27], [28]. Fig. 1
shows the distribution of the 18 considered features, and the
descriptive statistics of these features are listed in Table I.
We can conclude from Table I that these datasets are non-
Gaussian distributed.

2) Dataset 2: The second data are formed of three sub-
datasets [15]. The first dataset consists of hematochemical
values from 1624 patients at the San Raphael Hospital (OSR)
collected from February to May 2020. There are 786 infected
patients (48%) and 838 uninfected patients (52%). In addi-
tion, the second datasets contain 58 cases: 29 are unin-
fected and 29 are infected with COVID-19 collected from
the Istituto Ortopedico Galeazzi (IOG), Milan, Italy, between
March 5, 2020, and May 26, 2020. The third dataset, called
the 2018 dataset, was obtained from blood samples gathered at
the OSR in November 2018 from 54 patients. These patients
are obviously uninfected from COVID-19, but 20 patients
presented pneumonia-like symptoms and there employed as
confounding cases. Different instruments have been utilized
to collect these samples for the IOG and OSR. Thus, this
composition of datasets makes Dataset 2 challenging com-
pared to Dataset 1. Here, 11 important features have been used
to detect COVID-19 infection, namely, hemoglobin (HGB),
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Fig. 2. Distribution of the used features in Dataset 2.

TABLE II

SUMMARY OF THE FEATURES IN DATASET 2

platelets (PLT1), white blood cells (WBC), lymphocytes count
(LYT), basophils count (BAT), eosinophils count (EOT), neu-
trophils count (NET), monocytes count (MOT), UREA, ala-
nine aminotransferase (ALT), and aspartate aminotransferase
(AST). Fig. 2 and Table II show the distribution of the 11 con-
sidered features in Dataset 2. Table II shows that these datasets
are non-Gaussian distributed.

B. Variational Autoencoder

It is an efficient unsupervised neural network structure
that is commonly used for generative modeling [29]. The
VAE introduction and concepts can be traced back to the
Bayesian inference. The name of VAE comes from VI, which
aims to approximate probability densities that are difficult to
compute via optimization. VAE, as a stochastic generative
model, has become a popular modeling technique for learning
underlying distributions of the input data by reconstruction and
producing new data points based on the estimated distribution.
Since its first introduction in 2014, the VAE method has
been found helpful in numerous applications, such as time-
series forecasting [30]–[32], anomaly detection [33]–[35], and
image analysis [36].

Crucially, the VAE aims to learn the probability distribution
p(y) over a multivariate variable y. Through this, two different
tasks can be accomplished. First, samples can be generated
from the distribution to create new plausible values of y.
Second, to decide whether a new vector y∗ is generated from
the learned probability distribution, VAE has been intensively
studied and widely employed to generate new data. The

Fig. 3. VAE architecture.

primary distinction of a VAE compared to an AE consists of
the encoder part and its output. Specifically, VAE is different
from AE in that the VAE outputs are the parameters of the
distribution generating the feature vector, while the AE is
producing compressed information as a vector. We can obtain
the reconstructed data by providing a randomly sampled value
from the latent distribution to the decoder, making VAE able
to reconstruct inputs and act as a generator, which is not the
case of the AE model. Of course, the trained VAE can generate
new content, which is not the case for the AE.

Overall, two neural networks are forming the VAE structure:
an encoder and a decoder (Fig. 3). The purpose of the decoder
is to learn a distribution (i.e., learn the parameters of the
distribution) over the input data, p(y|h); it can be viewed as
a Bayesian version of the principal component analysis [37].
Specifically, the encoder transforms the input data into a latent
representation with a lower dimension than the original data
(compacted and informative data) and stochastic (parameters
of a probability distribution). The decoder plays in the opposite
sense of the encoder by learning a distribution over the latent
variables, p(h|y). Specifically, the decoder tries to reconstruct
the input data by using the sampled data h from the output of
the encoder.

The encoder is generally derived by a posterior approxima-
tion of qθ (z|x), while the decoder is obtained with a likelihood
pφ(x|z), where θ and φ are the parameters of the encoder and
the decoder, respectively.

In VAE, we get input data Y and aim to find the most
suitable assignments of latent variables h, which would have
resulted in these data points. In other words, h is restricted to
follow a prior distribution pθ(h), usually normal distribution
N (0, I); the aim of the encoder is to learn the distribution of
input data (i.e., estimate the parameters of this distribution).
Mathematically, the aim is to find

pθ

(
h
∣∣y) = pθ (y, h)

pθ (y)
. (1)
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This is difficult to compute since the left-hand side in (1)
and contains pθ (y), which is intractable. Specifically, it can
be computed via marginalizing out the latent variables

p(y)

=
∫

p(y|h)p(h)dh.

=
∫∫

· · ·
∫

p(y|h1, h2, . . . , hn)p(h1, h2, . . . , hn)dh1, . . . , dhn .

(2)

Unfortunately, this integral is hard to compute. In VAE,
this can be cast into an optimization problem and then learn
the parameters of the optimization problem [38]. Specifically,
this can be solved based on VI procedures by determining an
approximation posterior qφ(h

∣∣y) [38], [39]

qφ

(
h
∣∣y) = N

(
μh, σ

2
hI

)
(3)

where μh and σ h, respectively, denote the mean and standard
deviation of qφ(h

∣∣y), which are calculated through the encoder.
Given qφ(z

∣∣x), the evidence lower bound (ELBO) is calcu-
lated as [38], [39]

logpθ (y) = E
qφ

(
h
∣∣y

)[log pθ (y)
]

(4)

= E
qφ

(
h
∣∣y

)
[

log
pθ

(
y
∣∣h)

pθ (h)

pθ

(
h
∣∣y)

]
(5)

= E
qφ

(
h
∣∣y

)
[

log
pθ

(
y
∣∣h)

pθ (h)

pθ

(
h
∣∣y) qφ

(
h
∣∣y)

qφ

(
h
∣∣y)

]
(6)

= E
qφ

(
h
∣∣y

)[log pθ

(
y
∣∣h)+log pθ(h)−log qφ

(
h
∣∣y)]

+ DKL
(
qφ

(
h
∣∣y)||pθ

(
h
∣∣y))

(7)

where DKL[.] is the Kulback–Leibler divergence of the approx-
imate qφ(h

∣∣y) from the true posterior pθ (h
∣∣y), and the first

term is the ELBO. Since the KL divergence is positive
(i.e., in (7), DKL(qφ(h

∣∣y)||pθ (h
∣∣y)) ≥ 0), then we have

logpθ (y) ≥ E
qφ

(
h
∣∣y

)[log pθ

(
y
∣∣h)+log pθ (h)−log qφ

(
h
∣∣y)]

.

(8)

The term on the right-hand side of (8), also called the
ELBO, is, therefore, the lower bound of logpθ(y), which wants
to maximize. Accordingly, to maximize logpθ (y), we can
focus on maximizing the ELBO term, which is equivalent
(but computationally tractable). The loss function of the VAE
becomes

LVAE(θ, φ; y)

= E
qφ

(
h
∣∣y

)[log pθ

(
y
∣∣h) + log pθ (h) − log qφ

(
h
∣∣y)]

(9)

= E
qφ

(
h
∣∣y

)[log pθ

(
y
∣∣h∗)]− DKL

(
qφ

(
h
∣∣y)||pθ(h)

)
. (10)

In summary, at first, the VAE model encodes input data as
a distribution over the latent space (Fig. 4). Notably, the data
points are encoded as a distribution over the latent space based
on the VAE decoder. Then, observations from the latent space
are sampled from that distribution. After that, the sampled
observations are decoded, and the reconstruction error is

Fig. 4. Illustration of the basic concept of VAE structure.

Fig. 5. Illustration of the basic concept of 1SVM procedure.

calculated. Finally, the reconstruction error is backpropagated
through the network. In the training stage, the stochastic
gradient variational Bayes algorithm is usually applied to
optimize the ELBO to determine the values of the encoder
and decoder parameters [40], [41]. For more details on the
VAE, see [38].

C. One Class SVM

The particularity of the 1SVM scheme resides in its training
with only anomaly-free observations to learn nominal behavior
in the investigated process, and no labeling is needed to
construct 1SVM. Crucially, 1SVM is an unsupervised binary
classifier [42]. 1SVM aims to determine a hyperplane as far
as possible from the origin; mainly, the hyperplane should be
as close as possible to the normal observation of the training
data points in the original space [43]. Then, it is used to
classify new testing data as comparable or different from the
training data. 1SVM has been widely employed for anomaly
detection in different applications, including photovoltaic (PV)
systems monitoring [44], obstacle detection in autonomous
vehicles [45], wastewater treatment plant monitoring
[46]–[48], and air quality monitoring [49].

A mapping function is employed to make the indivisible
samples in low-dimensional space easier to separate in a high-
dimensional space. Specifically, 1SVM aims to construct a
hyperplane with the maximum margin to separate the data
points from the origin (Fig. 5) as formulated by the following
equation:

min
ωγρ

(
1

2
ωT ω − ρ + 1

υl

l∑
i=1

γi

)

s.t. : ω. �(x) > ρ − γ (11)

where l is the size of training data, ω denotes a weight vector,
υ ∈ (0, 1] refers to the regularization term, and γ is the
nonzero slack variable utilized for penalizing the observation
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that may fall outside the decision boundary during the training
stage. The term ρ refers to the margin between the origin
and the mapped samples in feature space; it is also called
offset. 1SVM employs a decision function F given in (12) that
returns −1 for an anomaly and 1 for a typical data point based
on the hyperplane

F(x) = sign(ω. �(x) − ρ) (12)

where � is applied to map the data samples into a higher
dimensional feature space. The term (ρ/�ω�) defines the
hyperplane (see Fig. 5), it is, in fact, Euclidean distance from
the origin to the support vector point, and this term must be
maximized. The 1SVM quadratic optimization problem given
in the following equation:

min
ωγρ

(
�ω�2

2
− ρ + 1

υl

l∑
i=1

γi

)
. (13)

Hence, during the training, the objective function encour-
ages the maximization of the margin (�ω�2/2) − ρ and
minimizing the average of the slack variables γ . In our study,
we adopt the Gaussian radial basis function (RBF) K, defined
in the following equation:

K(
x, x �) = ��(x),�

(
x �)� = e(α�x−x� �2) (14)

where �x − x ��2 is the dissimilarity measure and α denotes
the kernel parameter.

III. METHODOLOGY

This study proposes two different frameworks for
COVID-19 infection detection (Fig. 6): an unsupervised
VAE-1SVM detector and VAE-Softmax classifier. The first
approach is based on learning the data probability distribution
of the COVID-19 blood tests data through a stochastic VI
process; the constructed model is combined with a softmax
classifier called the VAE-Softmax classifier. On the other hand,
in the second approach, we address COVID-19 infection using
blood test data as an anomaly detection problem. Specifically,
we train the model using only noninfected blood test data to
extract features that will feed the 1SVM to identify infected
cases, and we called this approach VAE-1SVM.

However, the adopted datasets in this study suffer from the
missing data problem; in order to overcome this situation,
multivariate data for estimation of missing values based on
RF regressor are used [50], [51]. This technique estimates the
missing values by considering the other variables that improve
the quality of the imputed data.

As VAE-Softmax is a relatively well-known approach, this
section will present only the VAE-based 1SVM approach.

A. Unsupervised VAE-Based 1SVM Detector

The VAE-1SVM approach amalgamates the advantages of
a deep generative model, namely, VAE, with a 1SVM detector
(see Fig. 7). The main differences between this approach and
the previous one are two folds; this approach addresses infec-
tion detection as an anomaly detection using only noninfected
data construct VAE-1SVM unsupervised detector. Specifically,

Fig. 6. Schematic representation of the proposed schemes: 1) VAE-based
softmax classifier and 2) unsupervised VAE-based 1SVM detector.

Fig. 7. Flowchart of the unsupervised VAE-based 1SVM detector.

the VAE focuses only on noninfected data; in other words,
the VIs procedure will be applied to one class of data to
learn its probability distribution to approximate it through
sampling from the latent space. Hence, after completing the
unsupervised VAE training, the latent space will be suitable
for generating data points sharing the same features of the
training data. At this stage, VAE is achieving several tasks
simultaneously, dimensionality reduction features extraction,
and encoding a new compact data representation of the original
blood test of the noninfected cases. Note that the testing
dataset, which will be used to evaluate the classification perfor-
mance of the proposed approach, comprises both infected and
noninfected observations. The resulting latent space is used
to feed the 1SVM, which is sensitive to the outlier points in
the training sets. It is expected that the VAE will improve the
1SVM capability of building a hyperplane with a maximum
margin to separate the data points (inliers) from the origin that
separates the outliers. Here, the RBF kernel is used to estimate
the probability density function (PDF) of the blood test dataset
encoded by VAE. More specifically, the 1SVM objective func-
tion is responsible for deciding whether there is a COVID1-9
infection or not. To be concise, the 1SVM is applied to the
features extracted by the VAE model (i.e., the output of the
VAE encoder) to detect the COVID1-9 infection. At first,
we train the 1SVM using the VAE discriminator output based
on training data that include only positive (noninfected) cases;
no labeling is used for constructing 1SVM. The training step
aims to find a hyperplane as close as possible to the normal
samples. Next, it is employed to assess new test samples as
similar or distinct from the training samples.
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TABLE III

HYPERPARAMETER SETTINGS OF RBM, DBN, GAN, VAE, AND 1-SVM

IV. RESULTS AND DISCUSSION

This section evaluates the proposed approach model and dis-
cusses the results using Datasets 1 and 2. In this study, we con-
duct two experiments for each dataset. The first experiment is
based on deep learning generative models (i.e., GAN, DBA,
RBM, and VAE) coupled with a softmax classifier to perform
the COVID-19 infection detection via classification of con-
firmed and clean cases. Furthermore, the second experiment
is based on hybrid models built up by stacking the already used
deep generative learning models with the unsupervised 1SVM
detector for COVID-19 infection detection. The performance
of the proposed approaches is evaluated using the standard
classification metrics: true-positive rate (TPR), false-positive
rate (FPR), accuracy, precision, F1-score, and AUC.

Note that to train the unsupervised VAE-, GAN-, RBM-, and
DBN-based 1SVM detectors, we choose randomly 80% from
the noninfected observation. The remaining data are used for
testing and contain both infected and uninfected cases. In other
words, the proposed approaches are trained based only on
data from uninfected cases. However, for the VAE-, GAN-,
RBM-, and DBN-based softmax classifiers, each dataset is
divided into two subsets: training composed of 80% (infected
and uninfected cases) and testing with 20% (infected and
uninfected cases).

A. Settings

This study evaluates the performance of four deep genera-
tive models: GAN, VAE, RBM, and DBN. Optimal parameters
of each model are carefully chosen (parameter tuning phase)
using the training data based on the grid search procedure.
Here, common settings have been used: binary cross entropy
is used as loss function, Rmsprop optimizer, batch size of
50, 2000 epochs, and learning rate of 0.001. The values of
the parameters of the investigated models in this work are
arranged in Table III.

RBM consists of two layers, the visible layer and the
hidden layer representing the latent variables representing a
compact version of the learned data probability distribution.
Note that RBM is part of undirected graph models trained in an
unsupervised way based on the Gibbs sampling algorithm that
belongs to Markov chain Monte Carlo (MCMC) techniques.
Furthermore, we added the softmax layer for the classification,
where the entire architecture (RBM + Softmax) is fine-tuned
using supervised learning. In all RBM evaluations, we found
that setting the hidden layer dimension to 20 is the best, where
the visible layer dimension is obtained based on the input size
of the dataset used.

The DBN architecture used in our experiment is composed
of two stacked RBMs, where we adopt a greedy layerwise

training approach to train the DBN model. Importantly, first,
each RBM is trained in an unsupervised way, and second,
a softmax layer is added to the stacked RBMs to form a deep
neural network model (RBM1 + RBM2 + Softmax). Then,
this new model is fine-tuned via supervised learning to adjust
and optimize the learned parameter to assign a probability
for each new observed cased to a given class (infected or
not) with COVID-19. The following configuration has been
adopted: RBM1 with 30 hidden units and RBM2 with ten
hidden units.

On the other hand, the GAN model consists of two distinct
deep neural networks: generative and discriminative. Thus, the
configuration (hyperparameters) of the two parts needs to be
determined to reach the highest classification performance.

For the GAN model, it has been based on an unsuper-
vised manner according to the zero-sum game. The zero-sum
encourages the discriminator to successfully identify real and
fake samples, whereas the generator is penalized with large
updates to generate samples similar (i.e., share the same fea-
tures space) to the training data points. Based on grid search,
we used the following settings for GAN that are adopted:
generative with (Layer 1: 18, Layer 2: 18) and discriminative
with (Layer 1: 18, Layer 2: 11). After completing the training,
the discriminative is used with a softmax to achieve the
classification task forming (discriminative + Softmax) model
trained in a supervised way.

Finally, the VAE is composed of five layers (Fig. 3): input,
intermediate, colorblackmean, variance, and Z . The input layer
dimension depends on the dataset used (18 and 20); the inter-
mediate layer is set to 30 hidden units, while mean, variance,
and Z dimensions are set to ten hidden units. As a generative
model, VAE is trained first through an unsupervised way based
on the stochastic VIs approach, where a regularized iterative
sampling is done that aims to sample during the training new
data points with the same features as the training dataset.
The VAE is combined with a softmax layer to form a deep
neural network (VAE-Softmax), trained here in a supervised
manner to fine-tune the models’ parameters learning during the
unsupervised training to deal with the classification problem,
which aims to assign a probability to each class. The 1SVM
is used as a standalone unsupervised classifier and is used
as a substitution to the softmax with only one output (1 if
the case is infected or 0 otherwise). The 1SVM has three
main parameters, and we set their values based on grid search
as follows: the RBF kernel, ν = 0.0025, and γ = 0.01.
Several kernels could be considered in designing the 1SVM
scheme. Note that there is no automatic procedure for selecting
the optimal kernel. Here, we evaluated the performance of
the 1SVM with three kernels, namely, RBF, polynomial, and
sigmoid, based on training data. Then, we used the 1SVM
with RBF kernel because it achieved the highest detection
performance. RBF kernel enables the 1SVM to perform as
a linear or nonlinear detector.

B. Experimental Results

In this study, we attempted to detect infected patients with
COVID-19 using blood test exams data. We addressed this
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problem as an anomaly detection problem, and the output
of the detectors will be infected or not infected based on
the blood test data. Here, we evaluate the efficiency of the
proposed approach that the flexibility of deep generative
models with the sensitivity 1SVM model is to deal with
COVID-19 infection detection. In this study, two approaches
to detect COVID-19 infection are adopted through a set of
considered deep generative models: VAE, RBM, DBN, and
GAN. Notably, three different approaches are considered for
probability distributions approximation.

1) Finding Nash Equilibrium in Two-Player, Zero-Sum
Games: Here, the GANs can be viewed as a zero-sum
game between two machine players, a generator and a
discriminator, constructed for learning data distribution.

2) MCMC: Here, RBM and DBNs belong to MCMC meth-
ods. In such techniques, the MCMC algorithm (Gibbs
sampling) or sampling from a probability distribution is
used in training.

3) VI: The VAE is based on the VI framework, which
approximates probability densities by optimization. The
VI was employed in various applications and tends
to be faster than traditional techniques (e.g., MCMC
sampling) [40]. The essence of VI consists of positing
a family of densities and then finding a family member
closer to the target density [40]. The Kullback–Leibler
divergence is commonly used to measure the closeness
between two distributions.

Note that for RBM- and DBN-based 1SVM, the RBM
and DBN are used as feature extractors, and the 1SVM is
applied to the output of RBM and DBN models to uncover
infected cases. Similar to VAE-1SVM, in RBM-1SVM and
DBN-1SVM, the 1SVM is first trained based on samples from
healthy cases, and then, it is used to uncover potential infected
cases in test samples.

Table IV lists the obtained validation metrics of testing
data from VAE-, GAN-, RBM-, and DBN-based softmax
schemes based on blood test Dataset 1. Note that here, the
data used include both infected and noninfected blood test
observations. We first observe that all generative models
achieve an AUC greater than 0.93. We also observe that
the VAE-based approach is the best approach for identifying
infected cases from noninfected ones in terms of all calculated
metrics. Specifically, VAE reached an AUC of 99.85% and
outperformed GAN (AUC = 99.53%) slightly, while RBM
and DBN recorded AUC of 93.53% and 94.19%, respectively
(Table IV). Moreover, VAE scored the highest classification
performance in accuracy, precision, and F1-score compared
to the other deep generative model (Table IV). Results in
terms of FPR and TPR metrics are shown in Fig. 8. Results
report the better performance of the VAE-based method by
providing the lowest FPR and the highest TPR compared to
the other models. The obtained results show the superiority
of VAE combined with softmax to deal with infection or
noninfection of COVID-19 classification task based on blood
test data obtained from more than 5000 patients. This could be
attributed to the effectiveness of the stochastic VI performed
by the VAE to explain the most variance in the blood test
data.

TABLE IV

CLASSIFICATION RESULTS OF COVID-19 BLOOD TEST USING DATASET 1

Fig. 8. Obtained FPR and TPR of GAN-, VAE-, RBM-, and DBN-based
softmax methods based on Dataset 1.

TABLE V

DETECTION RESULTS OF COVID-19 BLOOD TEST USING DATASET 1

The detection results based on the standalone 1SVM and
VAE-, GAN-, RBM-, and DBN-based 1SVM detectors are
listed in Table V. It should be noted that these detectors are
trained in an unsupervised manner where only the noninfected
blood test data are used in the training stage. Specifically,
we used 85% of the noninfected observations for training,
while the testing set contains the remaining 15% noninfected
observations in addition to the infected observations. Table V
shows that the unsupervised detectors achieved satisfactory
performances with an AUC greater than 0.943%. We also
conduct the COVID-19 infection detection based on a stand-
alone 1SVM; it achieved an acceptable performance with
AUC = 93.5%. Results demonstrate that using deep generative
models as features extractors followed by the 1SVM algorithm
offers better detection accuracy than the standalone 1SVM.
Again, in terms of all metrics calculated, the VAE-1SVM
detector is the best approach in detecting COVID-19 infection
by reaching an AUCof 99.6%. It can also be seen that the
GAN-1SVM detector achieved high efficiency and satisfying
accuracy with an AUC of 99.1% (Table V). Recall here that we
address COVID-19 infection detection based on blood tests as
an anomaly detection problem; the proposed approach hybrid
model has demonstrated a high detection performance based
on totally unsupervised learning.

Now, the efficiency of the considered methods will be
verified using Dataset 2. As described above, these data are
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TABLE VI

CLASSIFICATION RESULTS OF COVID-19 BLOOD TEST USING DATASET 2

Fig. 9. Obtained FPR and TPR of GAN-, VAE-, RBM-, and DBN-based
softmax methods based on Dataset 2.

the concatenation of three different subsets of data. These
data are collected from different geographic locations by
using different medical types of equipment. It contains fewer
samples of blood tests, about 1700, compared to Dataset 1.
This data heterogeneity makes the classification problem more
challenging.

The binary classification results of COVID-19 infection
based on VAE-, GAN-, RBM-, and DBN-based softmax
schemes when applied to blood tests Dataset 2, which consists
of infected and noninfected observation, are summarized in
Table VI. Here, the output layer of the considered generative
models consists of a softmax. It can be observed that the
overall AUC obtained is around 88% and 90%, which is
acceptable regarding the Dataset 2 heterogeneous contents
and also the unbalanced number of cases on infected and
noninfected. In this experiment part, VAE (AUC = 90%) out-
performs slightly GAN (AUC = 89.1%), RBM (AUC = 89%),
and DBN (AUC = 88.1%). Fig. 9 shows the FPR and TPR
reported by the investigated approaches. Similar conclusions
are drawn; VAE has recorded the lowest FPR 0.176 and the
highest TPR 0.849.

The final experiment aims to assess the potentials of
the deep generative models combined with 1SVM to detect
COVID-19 blood test infection using Dataset 2. Table VII
summarizes the comparative detection results of the con-
sidered models. We can see that the detection performance
is considerably enhanced compared to the previews results
given in Table VI. The AUC obtained by VAE was improved
from 90% to 99.3%; all considered deep generative models’
performances improved to an AUC greater than 96%, sat-
isfying detection results. We can see that our VAE-1SVM
detector recorded the best score with the highest detection
performance (i.e., AUC = 0.993). Furthermore, in this experi-
ment, we compared the GAN-, VAE-, RBM-, and DBN-based
1SVM detectors with the standalone 1SVM for COVID-19

TABLE VII

DETECTION RESULTS OF COVID-19 BLOOD TEST USING DATASET 2

infection detection (Table VII). Results show again that using
VAE-1SVM improves the detection quality from AUC = 96%
to AUC = 99.3% compared to the standalone 1SVM.

Overall, first, this study shows the superiority of VAE com-
bined with softmax classifier to deal with COVID-19 infection
detection through a classification approach for the two consid-
ered datasets. In short, results reveal the superior performance
of the VAE-Softmax classifier compared to GAN-, RBM-,
and DBN-based softmax classifiers. This could be attributed
to the high capability of the VAE model to extract more
relevant features compared to GAN, RBM, and DBN models
by using variational inferences to approximate COVID-19 data
probability distribution. Furthermore, it has been shown that
the VAE combined with 1SVM has demonstrated the high
capability for COVID-19 detection based on blood test data.
The superiority of the VAE-1SVM approach could be associ-
ated with the flexibility and modeling capacity of VAE, from
one side, and with the effectiveness of the 1SVM machine
learning model. Importantly, in the VAE-1SVM, by mapping
the extracted features obtained from the VAE model in a higher
space, the projected features become linearly separable, and
the detection problem becomes easy. In addition, it should
be noted that addressing the COVID-19 infection detection
as anomaly detection has improved the obtained results by
focusing on only noninfected (normal) cases to effectively
distinguish the abnormal (infected) cases.

C. Comparison With the State of the Art

Now, we compare the achieved performance of the devel-
oped VAE-Softmax and VAE-1SVM detectors with state-of-
the-art methods applied to Datasets 1 and 2 (Table VIII). The
study in [21] applied machine learning methods, including
RF, artificial neural network (ANN), LR, and Lasso-elastic-net
regularized generalized linear (GLMNET) models to predict
SARS-CoV-2 infection. ANN has achieved the best classifi-
cation results with an AUC of 0.95. In [52], five machine
learning models have been investigated for identifying the
risk of positive COVID-19: NN, RF, gradient boosting trees
(GBTs), LR, and SVM. The SVM showed the best accuracy
with an AUC of 0.85; de Freitas Barbosa et al. [17] tested
multilayer perceptron (MLP), SVM, RF, random tree (RT),
Bayesian network (BN), and NB for aiding to support the
diagnosis of COVID-19 based on blood tests. Unexpectedly,
BN achieved the highest overall accuracy of 95.159%. From
Table VIII, we note that all the above-mentioned state-of-the-
art methods are supervised machine learning methods, which
needs labeling data to perform classification. On the other
hand, the proposed VAE-1SVM detector is an unsupervised
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TABLE VIII

COMPARISON WITH THE STATE-OF-THE-ART METHODS
BASED ON DATASETS 1 AND 2

and deep learning method, allowing it to learn deeply relevant
information in blood test data. In addition, Table VIII reveals
that the VAE-based methods outperformed the state-of-the-art
methods by achieving a satisfying detection performance for
the two studied datasets.

V. CONCLUSION

Accurate detection of infected COVID-19 patients is a key
enabler for timely intervention and for mitigating the pandemic
transmission. Recently, routine blood tests have been widely
used to initial screen COVID-19 patients. This is motivated by
the relatively fast availability of blood tests in all patient care
locations with less expensive. This study attempted to detect
COVID-19 using a novel unsupervised hybrid deep learning
method based on routine blood tests. Notably, we presented the
COVID-19 detection as an anomaly detection problem without
using labeled data (i.e., fully unsupervised). The proposed
data-driven detector combines the flexibility and accuracy
of the VAE features extractor and the extended capability
of 1SVM in anomaly detection. Crucially, we applied the
1SVM detector to features extracted by VAE for detect-
ing COVID-19 cases. We assessed the proposed VAE-based
1SVM detector using two sets of routine blood tests samples:
from the AEH, São Paulo, Brazil, and the SRH, Milan, Italy.
We gave comparisons of the designed detector with seven
hybrid data-driven methods: GAN-, DBN-, and RBM-based
1SVM, and VAE, GAN, DBN, and RBM with softmax layer
as a discriminator layer as well as with the standalone 1SVM.
Results based on the two considered datasets showed that
unsupervised deep learning-based models provided satisfac-
tory detection performance. Furthermore, results reveal that the
proposed approach delivered the highest accuracy compared to
the other investigated models. Overall, results demonstrated
that unsupervised deep learning-based 1SVM detectors could
effectively identify patients with COVID-19 based on routine
blood tests data. Therefore, this study offers a promising
alternative to a more widely available identification of infected
patients with COVID-19.

In this study, applying unsupervised deep learning to routine
blood tests data was revealed to be a potential tool for
COVID-19 detection, which could be employed for supporting
clinical decisions. Note that the data used in this work are
relatively small, and it is normalized via z-normalization,
making access to values of the original features impossible.
In future work, we plan to verify the feasibility of the proposed
methods to larger sized data when it is available. Another

important direction of improvement is to fuse information
from different sources from patient history, including chest
X-rays, clinical signs, and symptoms. Thus, incorporating this
relevant information, if available, in the construction of the
proposed deep learning-driven detectors could further enhance
their detection accuracy.
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