Table 2A.
Datasets | Classifiers | Feature | Test-train split | Classification accuracy | Precision | Recall | F1-score |
---|---|---|---|---|---|---|---|
Stress recognition in automobile drivers dataset | Logistic regression | Heart rate and respiratory rate | 59.3% | 0.59 | 0.59 | 0.59 | |
Gaussian Naive Bayes | 56.5% | 0.60 | 0.59 | 0.59 | |||
Decision tree | 63.4% | 0.64 | 0.64 | 0.63 | |||
Random forest | 65.0% | 0.65 | 0.66 | 0.65 | |||
AdaBoost | 66.8% | 0.67 | 0.66 | 0.65 | |||
KNN = 5 | 63.7% | 0.63 | 0.63 | 0.63 | |||
KNN = 2 | 58.1% | 0.60 | 0.57 | 0.56 | |||
Stress recognition in automobile drivers dataset | Logistic regression | Heart rate | 58.4% | 0.59 | 0.58 | 0.58 | |
Gaussian Naive Bayes | 56.0% | 0.59 | 0.56 | 0.55 | |||
Decision tree | 61.9% | 0.66 | 0.062 | 0.57 | |||
Random forest | 70-30 % | 56.2% | 0.56 | 0.56 | 0.56 | ||
AdaBoost | 61.5% | 0.61 | 0.61 | 0.60 | |||
KNN = 5 | 54.4% | 0.54 | 0.54 | 0.54 | |||
KNN = 2 | 51.7% | 0.55 | 0.52 | 0.50 | |||
Stress recognition in automobile drivers dataset | Logistic regression | Respiratory rate | 63.2% | 0.70 | 0.63 | 0.55 | |
Gaussian Naive Bayes | 63.4% | 0.72 | 0.63 | 0.55 | |||
Decision tree | 62.4% | 0.64 | 0.62 | 0.63 | |||
Random forest | 56.9% | 0.57 | 0.57 | 0.57 | |||
AdaBoost | 66.8% | 0.66 | 0.67 | 0.67 | |||
KNN = 5 | 59.5% | 0.59 | 0.60 | 0.59 | |||
KNN = 2 | 54.0% | 0.58 | 0.54 | 0.53 |