Skip to main content
. 2022 Mar 11;4:782756. doi: 10.3389/fmedt.2022.782756

Table 2A.

Results of supervised learning algorithms on stress recognition in automobile drivers dataset.

Datasets Classifiers Feature Test-train split Classification accuracy Precision Recall F1-score
Stress recognition in automobile drivers dataset Logistic regression Heart rate and respiratory rate 59.3% 0.59 0.59 0.59
Gaussian Naive Bayes 56.5% 0.60 0.59 0.59
Decision tree 63.4% 0.64 0.64 0.63
Random forest 65.0% 0.65 0.66 0.65
AdaBoost 66.8% 0.67 0.66 0.65
KNN = 5 63.7% 0.63 0.63 0.63
KNN = 2 58.1% 0.60 0.57 0.56
Stress recognition in automobile drivers dataset Logistic regression Heart rate 58.4% 0.59 0.58 0.58
Gaussian Naive Bayes 56.0% 0.59 0.56 0.55
Decision tree 61.9% 0.66 0.062 0.57
Random forest 70-30 % 56.2% 0.56 0.56 0.56
AdaBoost 61.5% 0.61 0.61 0.60
KNN = 5 54.4% 0.54 0.54 0.54
KNN = 2 51.7% 0.55 0.52 0.50
Stress recognition in automobile drivers dataset Logistic regression Respiratory rate 63.2% 0.70 0.63 0.55
Gaussian Naive Bayes 63.4% 0.72 0.63 0.55
Decision tree 62.4% 0.64 0.62 0.63
Random forest 56.9% 0.57 0.57 0.57
AdaBoost 66.8% 0.66 0.67 0.67
KNN = 5 59.5% 0.59 0.60 0.59
KNN = 2 54.0% 0.58 0.54 0.53