Skip to main content
. 2022 Mar 11;4:782756. doi: 10.3389/fmedt.2022.782756

Table 3.

Results of unsupervised learning algorithms on stress recognition in automobile drivers dataset.

Datasets Classifiers Feature Test-train split Classification accuracy Precision Recall F1-score
Stress recognition in automobile drivers dataset Affinity propagation Heart rate and respiratory rate 63.8% 0.65 0.64 0.62
BIRCH 54.9% 0.62 0.57 0.50
DBSCAN 53.8% 0.56 0.54 0.41
K-mean 55.7% 0.62 0.56 0.52
Mini-batch K-mean 53.0% 0.28 0.53 0.37
Mean shift 53.0% 0.28 0.53 0.37
OPTICS 54.1% 0.54 0.54 0.53
Stress recognition in automobile drivers dataset Affinity propagation Heart rate 59.7% 0.60 0.82 0.69
BIRCH 49.1% 0.66 0.49 0.38
DBSCAN 54.7% 0.30 0.55 0.39
K-mean 70-30 % 55.5% 0.61 0.55 0.53
Mini-batch K-mean 54.8% 0.61 0.55 0.52
Mean shift 54.7% 0.30 0.55 0.39
OPTICS 51.6% 0.51 0.52 0.51
Stress recognition in automobile drivers dataset Affinity propagation Respiratory rate 65.0% 0.77 0.65 0.57
BIRCH 57.4% 0.33 0.57 0.42
DBSCAN 60.6% 0.62 0.61 0.53
K-mean 59.8% 0.63 0.60 0.60
Mini-batch K-mean 60.3% 0.6 0.60 0.60
Mean shift 57.4% 0.33 0.57 0.42
OPTICS 54.6% 0.49 0.55 0.46