Skip to main content
. 2022 Mar 11;4:782756. doi: 10.3389/fmedt.2022.782756

Table 4A.

Results of supervised learning algorithms on SWELL-KW dataset.

Datasets Classifiers Feature Test-train split Classification accuracy Precision Recall F1-score
SWELL-KW dataset Logistic regression Heart rate 70-30 % 70.2% 0.70 0.70 0.64
Gaussian naive bayes 70.3% 0.70 0.70 0.64
Decision tree 74.8% 0.74 0.75 0.73
Random forest 74.8% 0.74 0.75 0.73
AdaBoost 74.6% 0.75 0.75 0.71
KNN = 5 71.8% 0.71 0.72 0.71
KNN = 2 62.7% 0.68 0.63 0.64