Skip to main content
. 2022 Feb 10;22(4):1333. doi: 10.3390/s22041333

Table 1.

Hyper-parameters setting of comparative RBFNN based models.

Hyper-Parameter RI-RBFNN RI-RBFNN SA-RBFNN
Epochs 100 100 100
Learning rate 0.01 0.01 0.01
Batch size 80 80 80
Number of clusters centers 15, 20, 25, 30, 35, 40 15, 20, 25, 30, 35, 40 15, 20, 25, 30, 35, 40
Number of input layer nodes 9 9 9
Number of output layer nodes 1 1 1
Number of hidden units 15, 20, 25, 30, 35, 40 15, 20, 25, 30, 35, 40 15, 20, 25, 30, 35, 40
Range of spread factors 0.16, 0.58, 0.36, 0.98, 0.47, 0.25 0.383, 0.333, 0.301, 0.274, 0.256, 0.245 Shown in Figure 4