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Abstract

Consistent identification of neurons in different experimental modalities is a key problem in 

neuroscience. Although methods to perform multimodal measurements in the same set of single 

neurons have become available, parsing complex relationships across different modalities to 

uncover neuronal identity is a growing challenge. Here we present an optimization framework 

to learn coordinated representations of multimodal data and apply it to a large multimodal 

dataset profiling mouse cortical interneurons. Our approach reveals strong alignment between 

transcriptomic and electrophysiological characterizations, enables accurate cross-modal data 

prediction, and identifies cell types that are consistent across modalities.

The characterization of cell types in the brain is an ongoing challenge in contemporary 

neuroscience. Describing and analyzing neuronal circuits using cell types can help simplify 

their complexity and unravel their role in healthy and pathological brain function1-6. This 

has prompted major consortia such as the BRAIN Initiative Cell Census Network (BICCN) 

to seek a comprehensive characterization of cell types and their function7. However, the 

effectiveness of such approaches is predicated on the existence of cellular identities that 

manifest consistently across different observation modalities, and our ability to identify 

them. Although single-cell RNA sequencing (scRNA-seq) experiments have uncovered 

a detailed transcriptomic organization of cortical cells in the mouse brain8,9, emerging 

experimental techniques now enable concurrent characterization of multiple aspects of 

neuronal identity and function7. For example, MERFISH10 can provide paired in situ 

measurements of anatomy and gene expression of multiple neurons in intact tissue, and the 

Patch-seq protocol11 can characterize morphology, electrophysiology, and gene expression 
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of single neurons in tissue slices. Aligning modalities in such paired reference datasets 

offers the opportunity to move towards a unified, multimodal view of cellular diversity 

and potentially enable translation of individual measurements across modalities with high 

fidelity.

Aligning multimodal data for cell-type research is challenging due to the complexity 

of biological relationships between modalities, difficulties in measuring signal and 

quantifying noise in each modality, and the high-dimensional nature of measurements. 

We present a deep neural network-based methodology referred to as coupled autoencoders 

to perform alignment for paired datasets, demonstrate its utility for the multimodal cell-

type identification problem, and provide an unsupervised, data-driven characterization of 

GABAergic cell type diversity, which has been a central problem in neurobiology5,12-14. 

Classical approaches to group GABAergic cells on the basis of anatomy, physiology, and 

so on alone typically disagree on both the number and identity of cell types5, presumably 

as the relative importance of the features within an observation modality is unknown. Yet, 

unequivocal identification of interneurons is essential to elucidate the brain circuits that they 

participate in. Moreover, discordant results cast doubt on the hypothesis that neurons have 

unique identities, whereby different experiments reveal different facets of those identities, 

potentially through complicated transformations and noise processes. Here we focus on the 

two modalities with the largest number of paired samples in a recent Patch-seq dataset14. 

There are neither overlapping features nor known associations across the two modalities. 

Using the fact that the same samples are measured in each modality, our goal is to formulate 

cell identities that are consistent across these modalities.

Results

Coupled autoencoders consist of multiple autoencoder networks, each of which comprises 

encoder and decoder subnetworks. These subnetworks are nonlinear transformations that 

project input data into a low-dimensional representation and back to the input data space 

(Fig. 1a). In learning these transformations, the goal is to simultaneously maximize 

reconstruction accuracy for each data modality as well as similarity across representations 

for the different modalities. In particular, hyperparameter λ (Methods) controls the relative 

importance of achieving accurate reconstructions versus learning representations that are 

similar across modalities.

If a common latent representation exists across transcriptomic and electrophysiological 

measurements that captures salient characteristics of neurons in the individual data 

modalities, an important consequence will be that unimodal electrophysiological 

measurements of interneurons can be used to predict gene expression and vice versa. 

This ability to translate measurements across modalities may enable researchers to 

test cell-type-specific hypotheses without performing costly and potentially intractable 

multimodal experiments. The ability to align these modalities would strongly support the 

hypothesis that molecular and electrophysiological properties of individual neurons are 

closely related, reflecting attributes of a common cell type, albeit through a complicated 

mapping. Importantly, although linear transformations15,16 can align the major cell classes 
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to some extent, a more detailed alignment of features and cell types may require nonlinear 

transformations.

A further consequence of such aligned representations would be the ability to identify 

(without supervision) cell types of key classes such as GABAergic interneurons in the 

mouse visual cortex that are consistent across transcriptomic and electrophysiological 

characterizations of this neuron population. The level of agreement between those clusters 

and a reference transcriptomic taxonomy of cortical cell types8, and the degree of 

perturbation of cluster boundaries with respect to that reference taxonomy, can enhance 

both practical and conceptual aspects of our understanding of cell types.

Aligned three-dimensional representations zt and ze for the high-dimensional transcriptomic 

and electrophysiological profiles Xt and Xe obtained with coupled autoencoders are shown 

in Fig. 1b,c. Cells labeled according to the reference transcriptomic taxonomy (Extended 

Data Figs. 1 and 2) cluster together in representations of both observation modalities. 

Moreover, the representations largely preserve hierarchical relationships between cell types 

of the reference taxonomy. Representations obtained with coupled autoencoders may be 

used to perform a variety of downstream analyses on complex datasets. We considered 

supervised classification accuracy in predicting cell type labels at different resolutions (see 

Methods) of the reference taxonomy from zt and ze in Fig. 1d,e, and data reconstruction 

performance in Fig. 1f. First consider the uncoupled (λte = 0) setting in which each 

autoencoder performs nonlinear dimensionality reduction independently for its respective 

input modality. Representations based on the transcriptomic data alone (zt, λte = 0) are best 

suited for supervised cell-type classification using quadratic discriminant analysis (QDA), 

leading to 0.74 ± 0.05 accuracy for leaf node cell-type labels (Fig. 1d). This is not surprising 

as the reference transcriptomic taxonomy was derived from analyses of gene expression 

alone. Electrophysiological profiles are expected to be noisy, and of lower resolution 

compared with transcriptomic profiles17. Nevertheless, in Fig. 1e, classifiers based on 

representations of electrophysiology alone (zt, λte = 0) predict leaf node cell-type labels with 

an accuracy of 0.31 ± 0.04 (where the chance level is 0.03). To add context, a model trained 

only to classify leaf node cell types on the basis of electrophysiological profiles alone 

led to an accuracy of 0.52 ± 0.04 (see Methods). Finally, within-modality reconstruction 

accuracies of uncoupled representations provide an upper limit for both within- and cross-

modal reconstructions that may be achieved with three-dimensional representations obtained 

with coupled autoencoders.

To evaluate whether complicated, nonlinear transformations underlie the relationship 

between the transcriptomic and electrophysiological features of neurons, we considered the 

performance of linear methods (principal components canonical correlation analysis or PC-

CCA) and coupled autoencoders with λte ∈ {0.5, 1.0} at these tasks, with the representation 

dimensionality set to three. The weak dependence on λte in Fig. 1 and Extended Data Fig. 

3 suggests that our method is robust with respect to this hyperparameter. Data augmentation 

(see Methods) further stabilizes the coupling (Extended Data Fig. 4). A latent dimensionality 

of 3 ≤ d ≤ 10 can capture the variability in the dataset (Extended Data Fig. 5). We choose 

d = 3 to minimize the number of parameters needed for downstream tasks. We note that 

the Patch-seq experiment provides—to the extent of experimental measurement—perfect 

Gala et al. Page 3

Nat Comput Sci. Author manuscript; available in PMC 2022 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knowledge of anchors between the modalities by virtue of paired measurements. In this 

setting, the popular tool Seurat18 uses a variant of linear CCA to achieve alignment, 

for which the performance is expected to be comparable with baselines considered here. 

Results in Fig. 1d-f show that coupled autoencoders learn well-aligned representations 

of transcriptomic and electrophysiology data, such that cell type labels can be predicted 

with better accuracy and the cross-modal data can be predicted more reliably compared 

with linear methods. Importantly, the within-modality reconstruction error is comparable to 

that obtained in the uncoupled setting, demonstrating that coupled representations enable 

alignment across modalities while faithfully compressing the individual data modalities.

Cross-modal data prediction (Extended Data Figs. 6 and 7) is a key computational tool 

for identifying corresponding properties of cell types and guiding the design of new 

experiments. We considered a subset of genes that underlie recently discovered cell 

type specific paracrine signaling pathways in the cortex19. The Patch-seq transcriptomic 

data shows these cell-type-specific gene expression patterns (Fig. 2a). We used only 

electrophysiology features to infer the expression patterns for all genes in the cross-modal 

setting and show results for the same subset of genes as before. The striking similarity 

of these expression patterns (Pearson’s r = 0.89 ± 0.10, mean ± s.d. over cell types; Fig. 

2b and Extended Data Fig. 6) demonstrates the effectiveness of coupled autoencoders 

at the cross-modal prediction task at a granular level. Similar results were obtained for 

GABAergic cell-type marker genes (Supplementary Fig. 1). Neuropeptide precursor genes 

and their cognate G-protein-coupled receptors have widespread expression in the cortex 

and are implicated to form cell-type-specific broadcast communication networks19,20. The 

high degree of similarity in Fig. 2a,b therefore provides indirect evidence for coordination 

between intrinsic cellular electrophysiology and circuit-level neurotransmitter networks in 

the cortex (a link between electrophysiology and cell adhesion molecules was previously 

studied using scRNA-seq21).

We considered cross-modal prediction of electrophysiological features in an analogous 

manner, pooling values of the features on a per-cell-type basis, and focusing on features 

that are captured by the compressed representation well (within-modality reconstruction 

R2 > 0.42; Extended Data Fig. 7). Although the results of Fig. 1d,e already suggest that 

the electrophysiology features are not as specific to transcriptomic cell types, we can 

nevertheless identify cell type specific patterns (Fig. 2c). The cross-modal reconstruction of 

these features also matches the data (Pearson’s r = 0.98 ± 0.02, mean ± s.d. over cell types), 

reinforcing the result that gene expression can explain many intrinsic electrophysiological 

features accurately, and that coupled autoencoders are a powerful starting point to unravel 

such nonlinear relationships. Moreover, the per-feature prediction accuracy can help uncover 

the features that are important for neuronal identity (for example, Vip, Sst, Npy1r, and 

Oprd1, the up–down ratio of the action potential, and the rheobase current; Extended Data 

Figs. 6 and 7)

We directly tested the idea that pre-trained coupled autoencoders can be used to predict 

unobserved cross-modal features in independent experiments by using two recent Patch-seq 

datasets22,23, which include 107 and 524 inhibitory neurons from the mouse motor cortex, 

respectively. We applied a coupled autoencoder trained on the dataset in this work without 
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extra training to predict the transcriptomic labels and electrophysiological properties of these 

neurons from their transcriptomic profiles. The results in Supplementary Figs. 2 and 3, and 

Extended Data Figs. 8 and 9 show that this approach yields accurate prediction of cell-type 

labels and certain electrophysiological properties, despite a 5% mismatch between the gene 

lists, differences in electrophysiology protocols and brain regions.

Although clustering of individual modalities into cell-type taxonomies shows general 

correspondence, a strategy for consensus clustering is less clear. The notion of a finite set 

of cell types can be formalized as a statistical mixture model, whereby the observation 

for each cell is explained by a combination of its membership to one of a discrete 

number of types, and continuous variability around the type representative. We explored 

the extent to which such a model can explain the data consistently across modalities. We 

performed unsupervised clustering on coordinated representations obtained with the coupled 

autoencoder to explain both modalities. Figure 3a shows the distribution (32.19 ± 3.16, mean 

± s.d.) of optimal number of Gaussian mixture components over representations obtained 

with different network initializations. We take the ceiling of the mean (33) as the number of 

clusters that can be consistently defined with coordinated representations, and refer to this 

de novo clustering as consensus clusters. Figure 3b and Supplementary Fig. 4 demonstrate 

that the same consensus cluster can be assigned to neurons with high frequency, based on 

observing either the transcriptomic or electrophysiological (but not both) modality. Although 

the dominant diagonal of this contingency matrix indicates the success of this notion of 

consistent, multimodal cortical cell types, the off-diagonal entries point to imperfections of 

this view, either due to experimental noise and limitations of experimental characterization, 

or due to imperfection of the model itself. As a metric of the consensus between assignments 

across modalities, we calculated the ratio of clusters for which the diagonal entry of the 

contingency matrix is at least as large as the off-diagonals of the corresponding row and 

column. We obtained cref = 0.26 ± 0.01 for the reference labels, whereas we obtained ccon = 

0.87 ± 0.04 for the consensus clusters on all cells. We obtained cref = 0.26 ± 0.01 and ccon = 

0.58 ± 0.03 for the test cells (see Methods and Supplementary Fig. 4). These results suggest 

that consensus clusters can be used to produce cell-type assignments for which there is a 

better agreement across experimental modalities, compared with the reference taxonomy.

The consensus clusters are also consistent with the reference taxonomy, although not to the 

degree of all leaf node labels (Fig. 3c). This can indicate over-split (for example, Lamp5 

Plch2 Dock5, Lamp5 Lsp1), under-split (for example, Sst Calb2 Pdlim5) and not-tight (for 

example, Vip Lmo1 Myl1, Sst Mme Fam114a1) cell types in the reference taxonomy. To 

quantify the degree to which different label sets represent the underlying data, we report 

the average silhouette score for test samples (not used to train the coupled autoencoder or 

the mixture model) for each label, using zt and ze, and compare consensus clusters against 

those of the reference transcriptomic taxonomy (Fig. 3d,e). A negative silhouette score 

suggests an unreliable cluster (grayed out labels in Fig. 3b,c). Not only do consensus clusters 

capture the structure of the data better than the reference labels on zt (the average silhouette 

score is Scon = 0.24 ± 0.01 for consensus clusters and Sref = 0.14 ± 0.01 for reference 

labels; mean ± s.d. over the five best initializations), but also on ze (Scon = 0.04 ± 0.02, 

Sref= −0.13 ± 0.01). For the reference taxonomy, we repeated this analysis using standalone 

(rather than aligned) representations and for different hierarchical mergings of the taxonomy 
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with at least 33 labels, and obtained similar results (see Methods, Extended Data Fig. 10). 

These results suggest that consensus clusters are a more identifiable characterization of the 

joint transcriptomic and electrophysiological diversity of interneurons than one based on 

transcriptomics alone.

Discussion

Our analysis of what is so far the largest multimodal Patch-seq dataset of cortical 

GABAergic neurons with unsupervised clustering on coordinated representations reveals 

approximately 33 clusters that can be defined consistently with transcriptomic and 

electrophysiological measurements, providing a deeper association of these modalities than 

previously explained. Beyond inferring cell types, coupled autoencoders trained on reference 

datasets can serve as efficient translators for experiments using a single observation modality 

to infer neuronal properties in other modalities. This capability can provide indirect evidence 

for/against hypotheses that are hard to test, such as predicting the expression levels of genes 

regulating ion channels of interest, purely from observations of intrinsic electrophysiology.

An intriguing and essential issue regarding cell types is to what extent they are inherently 

discrete entities or representatives of a continuum24. A mixture model allows types 

to overlap each other in the representation space so long as the cluster centres are 

more dominant than the peripheries. With this model, mouse visual cortex interneuron 

Patch-seq data suggests the existence of 33 clusters, more than the approximately five 

well-known subclasses but less than the >50 partitions suggested by scRNA-seq data 

alone. A potential caveat is that scRNA-seq in the Patch-seq experiment is noisier 

than standalone transcriptomic measurements14. Coupled autoencoders can jointly analyze 

multiple modalities. Future work can incorporate additional observation modalities (for 

example, morphology, connectivity) to improve our understanding of neuronal identity.

Finally, dataset size plays an important role in all of our results. More samples can allow the 

use of larger representation space dimensionality and improve cross-modal data prediction. 

Similarly, clustering is ill-defined for cell types with too few samples; further analysis of 

consensus or transcriptomic clusters (Fig. 3c) should take sample size into account. The 

number of cortical GABAergic interneuron types is therefore likely to grow and the number 

of consensus clusters in Fig. 3 more likely represents an under-count of the diversity when 

the notion of cell types is considered as a mixture model.

Methods

Coupled autoencoders.

Approaches to discover and extract relationships in multimodal datasets are discussed 

in the literature as cross-modal retrieval, multimodal alignment, multiview representation 

learning25-27. Deep learning methods such as DeepCCA28,29 and correspondence 

autoencoders30 are promising approaches to achieve multimodal data alignment, but 

have had limited success in associating complex neural datasets (see the Supplementary 

Information for an overview of modern data alignment approaches). Our coupled 
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autoencoder networks are related architectures with key improvements to scaling of 

representations, that are critical for the overall quality of learned representations31.

We first describe the general coupled autoencoder framework. We then show its application 

to the Patch-seq dataset. For K observation modalities, we represent the coupled autoencoder 

by

Φ = ({(ℰi, Di, αi)}1 ≤ i ≤ K, λ), (1)

where ℰi and Di denote the encoding and decoding networks, respectively, for the ith 

observation modality, αi sets the relative importance of the different modalities, and λ ≥ 0 

sets the relative importance of representation fidelity within observation modalities versus 

the alignment of different representations.

For a set of paired observations X = {(xs1, xs2, …, xsK), s ∈ S}, we define the loss due to Φ as

L(X; Φ) = ∑
s ∈ S

∑
i = 1

K
αi ‖ xsi − Di(ℰi(xsi))‖2

2 + λ ∑
i, j ∈ K,

i

‖ ℰi(xsi) − ℰj(xsj)‖2
2

fij(X) . (2)

That is, each autoencoding agent (Fig. 1a) within the coupled architecture processes a 

separate data modality and optimizes a loss function that consists of penalties for (1) the 

discrepancies between the actual input X and reconstructed input X and (2) mismatches 

between the representations learned by the different agents. A slightly more general 

treatment can be found in ref.31.

In equation (2), the functional form of the denominator fij—which scales the mean 

squared difference between representations of the same sample based on the different 

data modalities—is crucial to learn high-quality representations. Common choices for fij 

lead to pathological solutions, that is, the latent representations collapses into a zero- or 

one-dimensional space (see the propositions below). To avoid such pathological solutions, 

we propose using:

f ij(X) = min(σmin
2 (Zi), σmin

2 (Zj)) (3)

where σmin (Zi) denotes the minimum singular value of the matrix Zi, which consists of 

rows Zi(s,:) = zsi where zsi = ℰi(xsi). In practice, we perform stochastic gradient descent 

and calculate fij by its mini-batch approximation. Scaling the coupling loss term in this 

manner well-approximates whitening by the full covariance matrix and is also is practically 

important when the batch size is small or representation dimensionality is large, as well 

as in regimes in which calculating the full covariance matrix would be unreliable and 

computationally expensive.
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Representations collapse for common scaling function choices.

Proofs for the following propositions can be found in ref.31.

Proposition 1. Let fij = 1. Representations of the coupled autoencoder that minimize the loss 

in equation (2) satisfy ∥zsi∥ < ϵ for any norm ∥ · ∥, input set X, ϵ > 0 and all s,i.

Proposition 2. Let fij implement batch normalization32. Representations of the coupled 

autoencoder that minimize the loss in equation (2) satisfy ∣ zsi(m) − zsi(m̄) ∣ < ϵ for all s, i, m, 

m̄, and ϵ > 0, with probability 1.

Application to the Patch-seq dataset.

We use the fact that the same neurons were profiled with both modalities to obtain aligned, 

low-dimensional representations of the gene expression profiles and electrophysiological 

features. In the case of just these two data modalities (t and e), the loss function according to 

equation (2) consists of two reconstruction error terms and a single coupling error term. For 

a single sample s,

L((xst, xse)) = αt ‖ xst − Dt(ℰt(xst))‖2
2 + αe ‖ xse − De(ℰe(xse))‖2

2

+ λte
‖zst − zse‖2

2

fte(X) ,
(4)

where zst = ℰt(xst) and zse = ℰe(xse). Here xst denotes gene expression vector for sample 

s and xse denotes the concatenated sparse principal component (sPC) and physiological 

feature measurement vectors for the same sample. The interplay between the accuracy 

with which the representations capture the individual data modality, versus how well the 

representations are aligned is a fundamental trade-off that any attempt to define consistent 

multimodal cell types must resolve. The hyperparameters αt, αe and λte explicitly control 

this trade-off in our formulation (Extended Data Fig. 3 shows behavior over a range of these 

values with the Patch-seq dataset). We set all three parameters to 1.0 for all central analyses 

in this manuscript.

Although not used explicitly in this study, we would like to point out that the deterministic 

view in equation (4) is equivalent to maximizing log-likelihood of a discriminative 

probabilistic model for independent and identically distributed observations31:

∑s ∈ S log p(xst, xse, zst ∣ zse) = ∑s ∈ S log p(xst ∣ zst, zse) + log p(xse ∣ zse)
+ log p(zst ∣ zse)

= ∑s ∈ S log p(xst ∣ zst) + log p(xse ∣ zse) + log p
(zst ∣ zse),

(5)

where we assume that xse is independent of xst and zst given zse, and that xst is 

independent of zse given zst. By modeling the conditional probabilities p(xst ∣ zst), 
p(xse ∣ zse) and p(zst ∣ zse) as multivariate normal distributions with diagonal covariances 

xst ∣ zst ∼ N(xst, σt2I), xse ∣ zse ∼ N(xse, σe2I) and zst ∣ zse ∼ N(zse, λ−1I), we can write 

equation (5) as
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∑s ∈ S log p(xst, xse, zst ∣ zse) = −1
2 ∑s ∈ S σt−2‖xst − xst‖2

2 + σe−2‖xse − xse‖2
2

+ λ ‖ zst − zse‖2
2 + const .

(6)

Comparing the loss function in equation (6) with equation (4), we see that αt ≈ σt−2 and 

αe ≈ σe−2 are related to the noise in the measurements, and λte ≈ λ denotes the precision in 

cross-modal latent variable estimation.

The two modalities t and e are interchangeable in equation (5), and Fig. 1b suggests that 

the individual cell types may be well-approximated by hyperellipsoids; fitting a Gaussian 

mixture model to the encodings therefore provides an efficient prior distribution for p(zst) (or 

p(zse)) and produces a generative model for multimodal datasets.

Data augmentation.

Data augmentation is important to regularize the networks and alleviate overfitting, 

particularly when the dataset size is small. We mimicked the biological dropout 

phenomenon33 and used Bernoulli noise (that is, Dropout34) to augment repeated 

presentations of the transcriptomic vectors while training. This strategy also renders 

the network robust to partial mismatches in gene lists, and reduces dependence 

of the representations and reconstructions on specific marker genes. The individual 

electrophysiological features have unequal variances as the total variance in the sPC is 

normalized on a per-experiment basis. We therefore used additive Gaussian noise with 

variance proportional to that of the individual features to augment the electrophysiological 

vectors while training the network.

The reconstruction loss for the decoders was calculated using both the representation 

obtained by the encoder network of the same modality, as well as that obtained by the 

encoder for the other modality. This was done to improve performance of cross-modal 

prediction. Such a way of calculating the reconstruction loss can be viewed as an 

augmentation strategy for the decoder networks that considerably improves the accuracy 

of cross-modal prediction (Extended Data Fig. 4).

Linear baselines.

Canonical correlation analysis is a standard linear method to align low-dimensional 

representations15. To optimize the performance with linear methods, we first used principal 

component analysis (PCA) to reduce the dimensionality of individual data modalities, 

followed by CCA to achieve aligned representations across the modalities. The number 

of dimensions to which the transcriptomic and electrophysiology data were reduced to 

with PCA is indicated as a tuple in the legends of Fig. 1. The dimensionality of CCA 

representations was chosen to match the dimensionality obtained with coupled autoencoders 

(dimensionality = 3). The inverse CCA and PCA transformations were used to reconstruct 

data from the representations for the within- and across-modality cases in Fig. 1f. 

Reconstruction performance for different representation dimensionality is compared in 

Extended Data Fig. 5.
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Supervised cell-type classification.

Label sets obtained at different resolutions of the reference transcriptomic taxonomy were 

used as ground truth to evaluate representations. The different resolutions correspond to 

different horizontal levels of the reference taxonomy hierarchy in Extended Data Fig. 1. 

Starting from the leaf node cell-type labels, each cell is assigned the parent node label 

based on the set of labels that remains at a given level of the hierarchy; thus, at the 

lowest resolution, there is just a single class (n59) that encompasses all neurons, and at 

the highest resolution there are 53 classes that are cell-type labels (Extended Data Fig. 1). 

We used QDA15 to perform classification with the representations obtained with coupled 

autoencoders or CCA, and used to predict the cell-type labels for all such label sets. Cells 

that were not used to train the coupled autoencoder were used to obtain the accuracy values 

shown in Fig. 1d,e, using a k = 43-fold cross-validation approach. Validation folds were 

obtained such the class distribution in each fold was similar to that for the overall dataset. 

Classes with n ≤ 10 samples in the dataset were discarded from the analysis. Similarly, 

classes for which there were less than n = 6 samples in the training set of any fold were 

discarded from evaluation for only that fold, as QDA classifier parameters for those poorly 

represented classes would be unreliable. The results were pooled across the folds for the 

remaining number of classes (that is, QDA components) in Fig. 1d,e. The architecture 

of the neural network only trained to classify cell types at the highest resolution of the 

taxonomy using only electrophysiological profiles used the same encoder network as for the 

Xe autoencoder, except that the output was a 53 way classification. The network was trained 

with the standard cross-entropy loss for classification.

Unsupervised clustering and consensus clusters.

For this analysis, 80% of the cells were used for training and the remaining 20% served as 

the test set. The training and test sets had similar distributions of the cell-type labels based 

on the reference taxonomy. The coupled autoencoder (λte = 1.0) was initialized 21 times to 

obtain as many different representations. For each representation, Gaussian mixture models 

with different numbers of components (15 to 45 in steps of 1) were fit on zt utilizing only 

the training set. The model with the lowest value of the Bayesian information criterion15. on 

the training set was used to determine the optimal number of components. The distribution 

for optimal number of mixture components across the 21 different representations was 

binned using the Freedman–Diaconis rule35 (Fig. 3a). Based on this distribution (32.19 ± 

3.16, mean ± s.d.), we use the ceiling of the mean as the number of clusters that can be 

consistently defined with coordinated representations. These 33 mixture components are 

referred to as consensus clusters. We picked the representation from coupled autoencoder 

model with the best total reconstruction error to show results on the test cells. The 33 

component Gaussian mixture model was then used to assign consensus cluster labels to test 

cells based on zt, as well as based on ze. The consensus cluster assignments obtained in this 

manner are compared in Fig. 3b (Supplementary Fig. 5 shows the individual BIC plots for 

the different representations, and offers a comparison with a similar analysis using PC-CCA 

representations). We used the Hungarian algorithm to match the consensus clusters with leaf 

node cell types of the reference taxonomy, using the negative of the contingency matrix 

based on training cells as the cost function. The order of the consensus clusters in Fig. 3b,c 

reflects this optimal match.
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Evaluating the agreement and consistency of cluster assignments.

We calculated the following fraction to evaluate the agreement between assignments across 

the experimental modalities on a per-cluster basis:

c =
∑m = 1

M 1(C(m, m)) ≥ ϕ max{max
i

C(m, i), max
i

C(i, m)}

M ,

where M denotes the number of clusters, C denotes the contingency matrix for which the 

fraction is calculated and 1 denotes the indicator function; 1(a) = 1 if a holds, otherwise 1(a) 

= 0; ccon (cref) refers to this quantity when calculated with the contingency matrix calculated 

over the consensus labels (reference taxonomy merged to 33 labels). We set the scalar factor 

ϕ ≥ 1 to ϕ = 1 in the reported experiments. We also found that the conclusion that ccon > 

cref is not sensitive to this factor over a broad range of values (1 to 5). To obtain uncertainty 

estimates, we selected the best 5 of the 21 networks used for training on the same 80% 

of the dataset with different initializations, on the basis of the lowest total reconstruction 

error on the test set. We performed clustering with 33 mixture components to obtain the 

labels and calculate the corresponding contingency matrices. For any other label set, we 

use the representation to train QDA classifiers and assign labels to the test set to obtain the 

contingency matrix.

We used silhouette analysis to evaluate the ability of a set of labels in representing the 

underlying data. Although the silhouette values reported in the main text, Scon and Sref 

are averages over all involved samples, the values reported in the corresponding figures 

represent averages on a per-cluster basis. To obtain uncertainty estimates, we selected the 

best 5 of the 21 networks used for training on the same 80% of the dataset with different 

initializations, on the basis of the lowest total reconstruction error on the test set. Silhouette 

scores were obtained for the different label sets using the test set representations obtained 

from these networks.

Patch-seq dataset.

We used the transcriptomic and electrophysiological profiles of GABAergic interneurons 

from mouse visual cortex of a recent Patch-seq dataset14. Briefly, neurons were patched 

with biocytin-filled electrodes with which the electrophysiological responses to a series of 

hyperpolarizing and depolarizing current injections were recorded, nuclear and cytosolic 

mRNA was extracted, reverse transcribed and the resulting cDNA was sequenced using 

SMART-Seq v4 (ref. 14). Among the 3,708 cortical GABAergic interneurons reported in that 

work, axonal and dedritic morphology of only 350 cells was reconstructed. We restricted our 

analysis to the two modalities with largest number of samples, and dropped the morphology 

modality altogether. The 3,708 cells were also mapped to the reference transcriptomic 

hierarchical taxonomy8 with different levels of confidence. We discarded cells which were 

annotated as inconsistent14 based on this confidence level, leaving 3,411 cells for which both 

transcriptomic and electrophysiological profiles were available. The relevant taxonomy and 

abundances of cells per type for well-representated types (at least ten samples per type) are 

shown in Extended Data Figs. 1 and 2.
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A set of 1,252 genes used as input for the analyses in this study. The gene selection 

procedure included two filtering steps. The first step excluded genes where the primary 

source of variation in gene expression is unlikely to be related to its cell-type identity. 

Specifically, we removed (1) genes that are highly expressed in non-neuronal cells, (2) genes 

with reported sex or mitochondrial associations, and (3) genes that are much more highly 

expressed in Patch-seq data versus fluorescence-activated cell-sorting data (or vice versa) 

and therefore may be associated with the experimental platform14. We also removed gene 

models and some other families of unannotated genes that may be difficult to interpret. The 

second filtering step used the β score, which is a published measure of how binary a gene 

is with respect to cell types36. Higher β indicates that for each cell type a gene is either 

expressed (with CPM > 1) or unexpressed in most cells. We removed all genes with β < 

0.4, leaving a total of 1,252 genes in the analysis after both filtering steps. Gene expression 

values were CPM normalized and then log e(● + 1) transformed.

Fourty-four sPCs were extracted to summarize the time series data from different portions of 

the electrophysiology measurement protocol14. An additional 24 measurements of intrinsic 

physiology features were obtained using the IPFX library (https://ipfx.readthedocs.io/). 

The sPC values were scaled to have unit variance per experiment, whereas the remaining 

features were individually normalized to have zero mean and unit norm. We have used the 

following abbreviations to name electrophysiological features: action potential (AP), first 

action potential (AP1), inter-spike interval (ISI), threshold (thr.), sub-threshold (subthr.), 

instantaneous (inst.), frequency (freq.), spike (spk.), square (sq.), stimulus (stim.), amplitude 

(amp.), membrane potential (v), membrane potential time derivative (dv), current (i). Note 

that the coupled autoencoder trains to minimize the mean squared error for both modalities. 

Normalization of individual features on the electrophysiology side can therefore affect 

the R2 calculations (the autoencoder may also act as a denoiser and impute genes that 

suffer from experimental drop-out which can affect the observed R2 values as well.) Data 

were divided into k = 43 folds for cross-validation experiments. For the consensus cluster 

experiments, 20% of the cells were set aside as the test set. Different random seeds were 

used to train networks 21 times on the remaining 80% of the cells.

Cross-modal reconstruction of inhibitory cell-type marker genes.

We compiled a set of marker genes for inhibitory cell types from (according to Figs. 5e,f 

in ref.8) to showcase the cross-modal reconstruction ability of our model. Out of these, 38 

genes were available in the set of 1,252 genes used as input and cross-modal reconstructions 

for these are shown in Supplementary Fig. 1. Note that six of these marker genes are also 

present in the list of neuropeptide precursor gene list shown in Fig. 2.

Supervised approach to identify consistent cell types based on reference taxonomy.

Our experiments suggest that one can identify approximately 33 clusters with in this 

dataset using a completely unsupervised approach. To argue that clusters obtained in this 

manner are more consistent across modalities, we compare the contingency matrix of Fig. 

3b with one obtained with a supervised approach, utilizing the labels of the reference 

taxonomy (Supplementary Fig. 6). Accordingly, we first merged the reference hierarchy 

of Extended Data Fig. 1 to obtain 33 class labels. With these labels, we trained separate 
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QDA classifiers on three-dimensional representations zt and ze from the uncoupled (λte = 

0) autoencoders. Note that this is equivalent to performing dimensionality reduction with 

separate autoencoders trained on the individual modalities. First, we show a representative 

contingency matrix for the ground truth transcriptomic labels, and the labels predicted by 

the classifier for test cells. The dominant diagonal in Supplementary Fig. 6a shows that the 

uncoupled three-dimensional representations capture the transcriptomic classification very 

well, whereas Supplementary Fig. 6b shows the contingency matrix for label predictions 

with zt and ze. We observe that for certain classes, classifiers trained on different modalities 

never lead to identical labels (zeros along the diagonal). We quantify this by defining a 

fraction of co-occupied labels, fco; fco = 0.88 for Fig. 3, whereas fco = 0.42 ± 0.02 for the 

supervised approach devised here (mean ± s.d, sixfold cross-validation).

Application as a cross-modality translator for unimodal data.

We used two different published Patch-seq datasets with transcriptomic and 

electrophysiological profiles of GABAergic cells (Scala et al. 201922 and Scala et al. 

202023) to demonstrate the utility of coupled autoencoders to serve as translators for 

unimodal data. The Patch-seq data used in the main text is used as the reference dataset, 

and is referred to as the Gouwens et al. 2020 dataset. The Scala et al. 2019 dataset consists 

of 107 neurons, whereas Scala et al. 2020 dataset consists of 524 neurons sampled in mouse 

motor cortex.

Previous studies have shown that the cell type diversity of inhibitory neurons is essentially 

conserved across brain areas8; thus, although both the Scala et al. 2019 and the Scala 

et al. 2020 datasets profile neurons from mouse motor cortex, we can hope to use the 

mouse visual cortex Patch-seq dataset used in this study to serve as a meaningful reference. 

Nearly 5% of the genes that were used as input for the coupled autoencoders were either 

not measured, or were missing from the transcriptomic profiles of neurons in both these 

datasets. At the time of network training, we zeroed out the genes expression values at 

random both to mimic gene dropout33,34 and to increase the robustness against non-identical 

input gene lists. We were therefore able to use the pre-trained network without additional 

training to make predictions with these datasets.

The Scala et al. 2020 dataset was obtained from the public repository related to this work 

at https://github.com/berenslab/mini-atlas. The dataset consists of gene expression profiles 

that were mapped to the reference taxonomy considered here. We relied on this mapping to 

select 524 cells that were confidently mapped to the inhibitory types that were well sampled 

in the Gouwens et al. dataset. In particular, we filtered out cells that were mapped to a single 

leaf node of the reference taxonomy with less than 80% confidence.

Results for inferring transcriptomic cell types and predicting electrophysiological features 

from gene expression with pre-trained coupled autoencoders are shown in Extended Data 

Figs. 8 and 9, and Supplementary Figs. 2 and 3 The electrophysiology measurement 

protocols in both these datasets differ from the one in the Allen Institute dataset. 

In particular, differences in the temperature and internal/external solutions with which 

experiments were conducted are expected to contribute to differences in estimated 

parameters across the datasets.
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Data availability

The Patch-seq transcriptomic data are available at http://data.nemoarchive.org/other/grant/

AIBS_patchseq/transcriptome/scell/SMARTseq/processed/analysis/20200611/, whereas the 

electrophysiological data are available at https://dandiarchive.org/dandiset/000020. For 

the Scala et al. 2019 dataset, the sequencing data are available under accession no. 

GSE134378, whereas the electrophysiological data are available at https://doi.org/10.5281/

zenodo.3336165. The Scala et al. 2020 dataset was obtained from the public repository 

related to this work at https://github.com/berenslab/mini-atlas. Source Data are available 

with this paper.

Code availability

Code for the coupled autoencoder implementation and analysis are available at https://

github.com/AllenInstitute/coupledAE-patchseq. An interactive version of the code base is 

provided in ref. 37.

Extended Data

Extended Data Fig. 1 ∣. Reference taxonomy for well-represented GABAergic neurons.
Cells were mapped to the complete hierarchical classification tree for cortical cells with a 

marker gene based procedure. Here we show a subset of the full hierarchical tree, which 

consists of only those leaf nodes that are well-represented (n≥10) in the Patch-seq dataset. 

At the highest resolution, this tree consists of 53 cell type labels. The lowest resolution view 

consists of a single label (n59) which comprises of all GABAergic cortical neurons.
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Extended Data Fig. 2 ∣. Cell type distribution.
The distribution of samples according to the reference hierarchy cell type label assignment. 

Types with less than 10 samples are not shown.

Extended Data Fig. 3 ∣. Hyper-parameter search.
(Left and center) Reconstruction errors relative to the value over uncoupled networks, and 

(Right) coupling error over different values for αe and λte averages over validation sets. 

The value for αt was set to 1.0 and representation dimensionality was set to 3 for these 

experiments. As coupling is increased, the reconstruction error increases illustrating the 

trade-off between coupling and reconstruction accuracy.

Extended Data Fig. 4 ∣. Decoder augmentation improves cross-modal prediction accuracy.
We use cross modal representations to augment the input for decoder subnetworks while 

training. Reconstruction performance as measured by the coefficient of determination (R2) 

for linear baselines (PC-CCA), and coupled autoencoders with- and without- augmentation. 

Error bars show standard deviation over 20 cross validation folds.
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Extended Data Fig. 5 ∣. Effect of latent space dimensionality on reconstruction performance.
errors for coupled autoencoder and linear baseline for different latent space dimensionality 

dim ∈ {3, 5, 10}. Coupled autoencoders reconstruct the data more accurately than linear 

baselines (p < 10−4, two-sided Wilcoxon signed-rank test). The only exception is for 

Xt Xe with dimensionality set to 10, where the null hypothesis cannot be rejected. We 

would like the dimensionality to be as low as possible for downstream tasks such as 

clustering and classification with limited data, and as high enough for good performance at 

tasks such as data imputation or cross-modal data prediction.

Extended Data Fig. 6 ∣. Reconstruction of gene expression using coordinated representations.
Within-modality reconstructions for individual genes are decoded from the coordinated λte 

= 1.0 representation zt obtained for the transcriptomic data. Cross-modal reconstructions are 

obtained from the corresponding ze, which is the representation for the electrophysiological 

data. The cross-modal reconstructions are comparable to within-modality reconstructions, 

and a majority of the neuropeptide precursor genes are reconstructed well, as suggested by 
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the high coefficient of determination (R2) values.reconstructed well, as suggested by the 

high coefficient of determination (R2) values.

Extended Data Fig. 7 ∣. Reconstruction of electrophysiological features using coordinated 
representations.
The within-modality reconstructions for electrophysiological features are decoded from the 

coordinated λte = 1.0 representation ze obtained for the electrophysiological data. Cross-

modal reconstructions are obtained from the corresponding zt, which is the representation 

for the transcriptomic data. Features that are reconstructed well in the within-modality case 

are analyzed in the context of transcriptomic cell types in the main text.
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Extended Data Fig. 8 ∣. Predicting cell types based on gene expression.
Gene expression profiles of the 524 inhibitory neurons Scala et al. 2020 dataset were used to 

obtain 3-d representations without additional training of the coupled autoencoder trained on 

the Gouwens et al. dataset. QDA classifiers trained to predict cell types for the Gouwens et 

al. dataset were thereafter used to predict labels for the cells in the Scala et al. 2020 dataset. 

The contingency matrix comparing the predicted cell types and the cell types assigned by 

Scala et al. is shown. Overall accuracy of label prediction is 66%, with many inaccuracies 

being accounted for by closely related types.
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Extended Data Fig. 9 ∣. Predicting electrophysiological properties from gene expression.
Gene expression profiles for 524 inhibitory neurons in the Scala et al. 2020 dataset were 

used as input for the coupled autoencoder that was trained only with the Gouwens et al. 

dataset. The electrophysiological measurements were not measured the same way in the two 

datasets; cross-modal setting only allows predictions for electrophysiological features of the 

Gouwens et al. dataset for cells in the Scala et al. dataset. There is a strong correlation 

(Pearson’s r is shown on each plot) for many related measurements across the datasets. Cells 

are colored according to the cell type assignments of Scala et al. 2020, who mapped them to 

the same reference taxonomy that is used throughout this study.

Gala et al. Page 19

Nat Comput Sci. Author manuscript; available in PMC 2022 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 10 ∣. Reference taxonomy labels do not partition the data well.
Average silhouette scores for test samples, for successive mergings of the reference 

taxonomy with uncoupled representations do not indicate any particularly favorable number 

of clusters. Error bars show mean ± SD over 5 best initializations (based on reconstruction 

accuracy) of single modality (uncoupled) autoencoders operating on Xt and Xe. Here 

the uncoupled representations zt and ze serve as low dimensional representations of the 

standalone data. The per-label silhouette score for the 33-merged reference taxonomy labels 

with uncoupled representations performs worse than consensus cluster labels on both, zt (b) 

and ze (c).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Coordinated representations of transcriptomic and electrophysiological profiles with 
coupled autoencoders.
a, A schematic showing the coupled autoencoder architecture for Patch-seq data. Encoders 

(ℰ) compress input data (X) into low-dimensional representations (z), whereas decoders 

(D) reconstruct data (X) from representations. The coupling penalty in the loss function 

encourages representations to be similar across the transcriptomic (t) and electrophysiology 

(e) modalities. b,c, Three-dimensional coordinated representations of the transcriptomic 

(b) and electrophysiological (c) datasets. Each point represents a single cell, which is 

colored by its cell-type membership according to the reference transcriptomic taxonomy. 

d,e, Performance on supervised cell-type classification tasks at different resolutions of 

the reference taxonomy. Classification with QDA is performed using three-dimensional 

representations of the transcriptomic (d) and electrophysiological (e) datasets obtained 

with coupled autoencoders and with linear methods. f, Performance on within-modality 

(Xe Xe and Xt Xt) and cross-modality (Xt Xe and Xe Xt) reconstruction tasks. 

Uncoupled representations are not suitable for cross-modal tasks. Error bars show mean ± 

s.d. over 43-fold cross-validation for panels d–f. Note that there are 1,252 genes versus 68 

electrophysiology features in the dataset over which f is calculated.
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Fig. 2 ∣. Cross-modal reconstructions capture cell-type-specific gene expression patterns and 
electrophysiological features.
a, Gene expression levels averaged over samples reference taxonomy cell types, normalized 

per gene by the maximum value of each column. b, The cell-type specificity of different 

genes is captured well by cross-modal prediction of gene expression profiles from 

electrophysiological features (Pearson’s r = 0.89 ± 0.10, mean ± s.d. over cell types). c, 

A subset of electrophysiological features pooled by cell types shows analogous cell-type 

specificity. d, Cross-modal reconstructions of the electrophysiology features from gene 

expression profiles match the measured electrophysiology features (Pearson’s r = 0.98 ± 

0.02, mean ± s.d. over cell types). Cell-type and feature-wise fidelity of reconstructions are 

quantified with Pearson’s r for each row and column in b and d as compared to ground truth 

in a and c.
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Fig. 3 ∣. Deriving a consensus cell-type clustering.
a, Unsupervised clustering using Gaussian Mixtures on the coordinated representation zt and 

BIC-based model selection suggests 33.0 consensus clusters (32.19 ± 3.16, mean ± s.d.). b, 

Contingency matrix for cluster assignments based on independent, unsupervised clustering 

of the transcriptomic and electrophysiology representations shows that the clusters are 

highly consistent. c, Contingency matrix for the leaf node cell-type labels of the reference 

hierarchy compared with unsupervised cluster assignments show that these unsupervised 

clusters have substantial overlap with known transcriptomic cell types. The number of 

cells for each label are indicated within parentheses next to the label, and area of the 

dots is proportional to number cells in the scatter plots of b and c. d, Consensus clusters 

are compared with an equal number of cell classes obtained by merging the reference 

hierarchical taxonomy, using silhouette analysis based on coupled representations. Average 

per-cluster silhouette values for test cells are larger for consensus cluster labels. Clusters for 

which the silhouette score is less than zero in d and e are grayed out in panels b and c.
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