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Abstract

Multiple imputation (MI) provides us with efficient estimators in model-based methods for

handling missing data under the true model. It is also well-understood that design-based estimators

are robust methods that do not require accurately modeling the missing data; however, they can

be inefficient. In any applied setting, it is difficult to know whether a missing data model may

be good enough to win the bias-efficiency trade-off. Raking of weights is one approach that

relies on constructing an auxiliary variable from data observed on the full cohort, which is then

used to adjust the weights for the usual Horvitz-Thompson estimator. Computing the optimally

efficient raking estimator requires evaluating the expectation of the efficient score given the full

cohort data, which is generally infeasible. We demonstrate MI as a practical method to compute

a raking estimator that will be optimal. We compare this estimator to common parametric and

semi-parametric estimators, including standard MI. We show that while estimators, such as the

semi-parametric maximum likelihood and MI estimator, obtain optimal performance under the

true model, the proposed raking estimator utilizing MI maintains a better robustness-efficiency

trade-off even under mild model misspecification. We also show that the standard raking estimator,

without MI, is often competitive with the optimal raking estimator. We demonstrate these

properties through several numerical examples and provide a theoretical discussion of conditions

for asymptotically superior relative efficiency of the proposed raking estimator.
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1 | BACKGROUND

In many settings, variables of interest maybe too expensive or too impractical to measure

precisely on a large cohort. Generalized raking is an important technique for using whole

population or full cohort information in the analysis of a subsample with complete data,1–3

closely related to the augmented inverse probability weighted (AIPW) estimators of Robins

et al.4–6 Raking estimators use auxiliary data measured on the full cohort to adjust the

weights of the Horvitz-Thompson estimator in a manner that leverages the information

in the auxiliary data and improves efficiency. The technique is also, and perhaps more

commonly, known as “calibration of weights,” but we will avoid that term here because of

the potential confusion with other uses of the word “calibration.” An obvious competitor

to raking is multiple imputation (MI) of the non-sampled data.7 While MI was initially

used for relatively small amounts of data missing by happenstance, it has more recently

been proposed and used for large amounts of data missing by design, such as when certain

variables are only measured on a subsample taken from a cohort.8–12

In this article, we take a different approach. We use MI to construct new raking estimators

that are more efficient than the simple adjustment of the sampling weights3 and compare

these estimators to direct use of MI in a setting where the imputation model may be

only mildly misspecified. Our work has connections to the previous literature, where MI

and empirical likelihood are used in the missing data paradigm to construct multiply

robust estimators that are consistent if any of a set of imputation models or a set of

sampling models are correctly specified.13 We differ from this work in assuming known

subsampling probabilities, which allows for a complex sampling design from the full

cohort, and in evaluating robustness and efficiency under contiguous (local) misspecification

following the “nearly true models” paradigm.14 Known sampling weights commonly arise

in settings, such as retrospective cohort studies using electronic health records (EHR) data,

where a validation subset is often constructed to estimate the error structure in variables

derived using automated algorithms rather than directly observed. Lumley14 considered

the robustness and efficiency trade-off of design-based estimators vs maximum likelihood

estimators in the setting of nearly true models. We build on this work by comparing MI with

the standard raking estimator, and examine to what extent raking that makes use of MI to

construct the auxiliary variable may affect the bias-efficiency trade-off for this setting.

We first introduce the raking framework in Section 2. In Section 3, we describe the proposed

raking estimator, which makes use of MI to construct the potentially optimal raking variable.

In Section 4, we compare design-based estimators with standard MI estimators in two

examples using simulation, a classic case-control study and a two phase study where the

linear regression model is of interest and an errorprone surrogate is observed on the full

cohort in place of the target variable. For this example, we additionally study the relative

performance of regression calibration, a popular method to address covariate measurement

error.15 In Section 5, we consider the relative performance of MI vs raking estimators in

the National Wilms Tumor Study (NWTS). We conclude with a discussion of the robustness

efficiency trade-off in the studied settings.
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2 | INTRODUCTION TO RAKING FRAMEWORK

Assume a full cohort of size N and a probability subsample of size n with known sampling

probability πi for the ith individual. Further, assume we observe an outcome variable Y,

predictors Z, and auxiliary variables A on the whole cohort, and observe predictors X only

on the sample. Our goal is to fit a model Pθ for the distribution of Y given Z and X (but

not A). Define the indicator variable for being sampled as Ri. We assume an asymptotic

setting in which as n → ∞, a law of large numbers and central limit theorem exist. In some

places, we will make the stronger asymptotic assumption that the sequence of cohorts are iid

samples from some probability distribution and that the subsamples satisfy infi πi > 0.3,6,14

With full cohort data with complete observations we would solve an estimating equation

∑
i = 1

N
U Y i, Xi, Zi; θ = 0, (1)

where Ui(θ) = U Y i, Xi, Zi; θ  is an efficient score or influence function for giving at least

locally efficient estimation of θ. We write θN for the resulting estimator with complete data

from the full cohort and assume it converges in probability to some limit θ*. If the cohort is

truly a realization of the model Pθ, it follows that θN would be a locally efficient estimator

of θ in the model Pθ. The Horvitz-Thompson-type estimator θ̂HT  of θ solves

∑
i = 1

N Ri
πi

U Y i, Xi, Zi; θ = 0. (2)

Under regularity conditions, for example, the existence of a central limit theorem and

sufficient smoothness for Ui(θ), it is also consistent for θ*.

A generalized raking estimator using auxiliary information H(Yi, Zi, Ai) available for all 1 ≤

i ≤ N, which may depend on some extra parameters, is given by the solution of a weighted

estimating equation

∑
i = 1

N giRi
πi

U Y i, Xi, Zi; θ = 0, (3)

where the weight adjustments gi are chosen to minimize the distance between the original

and new weights ∑i = 1
N Rid gi/πi, 1/πi  subject to the calibration constraints

∑
i = 1

N Rigi
πi

H Y i, Zi, Ai = ∑
i = 1

N
H Y i, Zi, Ai . (4)

In literature, the idea of weight adjustments gi was discussed as weighting control

procedures through a generalized weighting algorithm in survey16 to reduce the variance

of estimates without making additional assumptions.6 Deville and Särndal1 proposed
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a family of calibration estimators defined by specifying a distance measure and

corresponding calibration constraint (4). Deville and Särndal1 discuss considerations for

the choice of the distance measure. For example, choosing d1(a, b) = (a − b)2/2b leads to

the generalized regression estimator, but the calibrated weights may be negative. Choosing

d2(a, b) = alog(a/b) − a + b results in positive weights, and the resulting estimator is referred

to as the generalized raking estimator.6 Though, asymptotically the choice of distance

function will not matter, in the empirical studies that follow, we will study the use of

d2(a, b), otherwise known as the Poisson deviance. It is worth mentioning that sometimes one

may wish to restrict the range of new weights to avoid extreme values. For further details

regarding calibration and generalized raking, we refer the reader to Deville and Särndal1 and

Deville et al.17

3 | IMPUTATION FOR CALIBRATION

3.1 | Estimation

In the standard MI approach, one may use a regression model for X given Z, Y, and A. For

this, M samples are generated from the predictive distribution to produce MIs X̂1
(m), …, X̂N

(m)

for m = 1, …, M, giving rise to M complete imputed datasets that represent samples from the

unknown conditional distribution of the complete data given the observed data. Then, it is

straightforward to solve an imputed estimating equation (1)

∑
i = 1

N
U Y i, X̂i

(m)
, Zi; θ = 0 (5)

for each of the mth imputed dataset, giving M values of θ(m) with estimated variances

σ(m)
2 , 1 ≤ m ≤ M. The imputation estimator θ̂MI of θ is the average of the θ(m), and the

variance can also be estimated from sum of the variance of θ(m) and the average of σ(m)
2 .7

We propose a raking estimator using MI. The optimal calibration function H Y i, Zi, Ai
incorporating the auxiliary variable Ai is given by E ℎ Y i, Xi, Zi; θ ∣ Y i, Zi, Ai , where

ℎi(θ) = ℎ Y i, Xi, Zi; θ  is the influence function for the target parameter under Pθ, which

gives the efficient design-consistent calibrated estimator of θ.3 However, the explicit form of

such an optimal function is typically not available.3,18 We estimate the calibration function

through MI. Specifically, for the mth imputation, we generate X̂i
(m) = X̂i

(m) Y i, Zi, Ai , the

imputed value of Xi given Yi, Zi, and Ai for every subject index i = 1, …, N, where

the imputation model is constructed based on all individuals who have the complete

observations Y i, Xi, Zi, Ai ;19 we calculate θ(m) by solving the imputed estimating equation

(5). Then, the optimal calibration function is estimated by the average of the M resulting

ℎi θ(1) , …, ℎi θ(M) , estimated as
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Ĥ Y i, Zi, Ai = 1
M ∑

m = 1

M
ℎ Y i, X̂i

(m)
, Zi; θ(m) (6)

for each i = 1, …, N. If the true regression model associated with Y, X, and Z and the MI

model are both correctly specified using all the available variables, the empirical average

in (6) will converge to the optimal calibration function E ℎ Y i, Xi, Zi; θ ∣ Y i, Zi, Ai  as both

the sample size and the number of MIs increase. Finally, we solve the original weighted

estimating equation (3) with respect to θ, where the weight adjustments gi are derived using

the calibration constraints (4) with Ĥi Y i, Zi, Ai  in place of Hi Y i, Zi, Ai . We propose the

final solution, denoted by θ̂MIR, as the raking estimator of θ via MI.

3.2 | Efficiency and robustness

When all three of the sampling probability, the imputation model, and the regression

model are correctly specified, the proposed raking estimator gives a way to compute the

efficient design-consistent estimator. In this case, the standard MI estimator θ̂MI will also

be consistent and typically more efficient than a design-based approach. However, if we are

willing to only assume the regression model and imputation model are correct, there appears

to be no motivation for requiring a design-consistent estimator. Also, it is unreasonable

in practice to assume that both the regression and imputation models are exactly correct.

Recently, in the special case where the full cohort is an iid sample and the subsampling

is independent, so-called Poisson sampling, it has been shown that the inverse probability

weighting adjusted by MI attains the semi-parametric efficiency bound for a model that

assumes only E U Y i, Xi, Zi; θ = 0 and E Ri ∣ Y i, Zi, Ai = πi.13 Since the proposed estimator

θ̂MIR also solves a weighted estimating equation (3) subject to the calibration constraints (4)

computed by MI, one may expect similar theoretical results after careful development.

In this article, we argue one step further that the interesting questions of robustness and

efficiency arise when the imputation model and potentially also the regression model are

slightly misspecified: Under what conditions are θ̂MIR − θ∗
2
2
 and θ̂MI − θ∗

2
2
 comparable,

and do these correspond to plausible misspecifications of the regression model, the

imputation model, or both? Recall that θ* is the limit of the resulting estimator θN
in (1), where the complete data are available for the full cohort. These questions were

considered in a more abstract context.14 More precisely, let PN be the sequence of likelihood

functions for the true regression model and QN the sequence corresponding to a misspecified

model chosen to be contiguous to PN. Since θ̂MI is an asymptotically efficient estimator

of θ*, given that θ̂MIR is still asymptotically unbiased, ΔN = N θ̂MIR − θ̂MI  converges to

N 0, ω2  for some ω > 0 under PN. Then, it follows from Le Cam’s third lemma20,21 that ΔN

converges to N κ ρω, ω2  under QN, where κ2 is the limiting variance of the Kullback-Leibler

divergence from QN to PN. Then, we measure the asymptotic magnitude of the model

misspecification by ρ, the limiting correlation between ΔN and log QN − logPN under PN.

Consequently, under the misspecified outcome model QN, we have
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N θ̂MIR − θ∗ QN N 0, σ2 + ω2

and

N θ̂MI − θ∗ QN N κ ρω, σ2

for some σ2 > 0. We note that the asymptotic mean-squared error of θ̂MI is greater than that

for θ̂MIR under model misspecification, that is, κ2ρ2ω2 + σ2 > σ2 + ω2, whenever |κρ | > 1.14

Typically, |ρ| is bounded away from 1 for Horvitz-Thomson type estimators, and therefore

the generalized raking estimator with optimal calibration is beneficial for the large amount

of model misspecification. In addition, there may also be only small misspecification such

that |ρ| is arbitrarily close to 1, the worst-case scenario for MI with respect to mean-squared

error. The advantage of a design-based estimator may not be readily evident in a single data

set if the model misspecification was not reliably detectable. Hence, in the next section, we

study the relative numerical performance of these two estimators and several competitors

under “nearly true” model misspecification. See Lumley14 for further discussion of nearly

true models for two-phase study setting.

4 | SIMULATIONS

In this section, we are interested in three questions; how much precision is gained

by multiple vs single imputation in raking, whether imputation models can maintain

an efficiency advantage while being more robust, and how these affect the efficiency-

robustness trade-off between weighted and imputation estimators. Source code in R for

these simulations is available at https://github.com/kyungheehan/calib-mi.

4.1 | Case-control study

We first demonstrate numerical performance of MI for the case-control study, where

calibration is not available but the maximum likelihood estimator can be easily computed.

Specifically, we examine the sensitivity of MI for the design-based method when a working

regression model is slightly misspecified for the analysis.

Let X be a standard normal random variable and Y be a binary response taking values in {0,

1} such that for a given X = x the associated logistic model is given by

logit ℙ(Y = 1 ∣ X = x) = α0 + β0x + δ0(x − ξ)I(x > ξ) (7)

for some fixed δ0 and ξ, and logit(p) = log p
1 − p  for 0 < p < 1. In accordance with the usual

case-control study design, we assume Y is known for everyone, but X is available with

sampling probability of 1 when Y = 1 and a lower sampling probability when Y = 0. To be

specific, we first generate a full cohort XN = Y i, Xi :1 ≤ i ≤ N  following the true model
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(7) and denote the index set of all the n-case subjects in XN by S1 ⊂ 1, …, N , n < N. Thus,

Y i = 1 if i ∈ S1, otherwise Y i = 0. Then a balanced case-control design is employed which

consists of observing Y i, Xi  for all the subjects in S1 and a randomly chosen n-subsample

S0 from 1, …, N ∖ S1. For cohort members 1, …, N ∖ S0 ∪ S1, only Yi is observed. Define

Xn
∗ = Y i, Xi : i ∈ S0 ∪ S1 .

For a practical definition of a nearly true model,14 we consider a working model that may

not be reliably rejected, even when using the oracle test statistic of the likelihood ratio with

the true model (7) used to generate the data as the null. In other words, instead of fitting the

true model (7), we employ a simpler outcome model

logit ℙ(Y = 1 ∣ X = x) = α + βx . (8)

We note that when δ0 = 0 the working model (8) is correctly specified, but misspecified

when δ0 ≠ 0. It is worth while to mention that the simple linear logistic model (8)

misspecifies the single knot linear spline logistic model (7) with ρ ≈ 0.92 given α0 = − 5,

β0 = 1, and ξ ≈ 1.8, which may represent the worst-case misspecification scenario under the

commonly fit linear model (8).14 In this case, the maximum likelihood estimator of (8) is the

unweighted logistic regression22 for the complete case analysis only with Xn
∗.

Four different methods are compared in our example for estimating the nearly true slope β
in (8); (i) the maximum likelihood estimation (MLE), (ii) a design-based inverse probability

weighting (IPW) approach, (iii) an MI with a parametric imputation model (MI-P), and (iv)

an MI with nonparametric imputation based on bootstrap resampling (MI-B). Formally,

the parametric MI (MI-P) imputes covariates Xi, i ∉ S0 ∪ S1, from a parametric model

such that X ∣ Y = y is assumed to be distributed as N μ + ηy, σ2 , where μ = E(X ∣ Y = 0),

η = E(X ∣ Y = 1) − μ, and σ2 = Var(X). Here, the parameters μ, η, and σ2 are estimated from

Xn
∗. On the other hand, the bootstrap method (MI-B) resamples covariates Xi, i ∉ S0 ∪ S1,

from the empirical distribution of X given Y = 0. We note that MLE only utilizes the

sub-cohort information Xn
∗ but the other estimators additionally use response observations

Y i: i ∉ S0 ∪ S1  so that efficiency gains can be expected for estimating the nearly true slope

β, depending on the level of model misspecification.

Using Monte Carlo iterations, we summarized the empirical performance of the four

different estimators based on fitting the nearly true model (8) with the mean squared error

(MSE) of the target parameter β,

MSE(β̂ ) = 1
K ∑

k = 1

K
β̂

[k]
− β

2
, (9)

where β̂ [k]
 is the estimate of β from the kth Monte Carlo replication, 1 ≤ k ≤ K. Similarly

the empirical bias-variance decomposition,
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Bias(β̂ ) = Eβ̂ − β and Var(β̂ ) = 1
K ∑

k = 1

K
β̂

[k]
− Eβ̂

2
, (10)

was also reported to compare precision and efficiency, where Eβ̂ = K−1∑k = 1
K β̂ [k]

. For all

simulations, we fixed β = 1, α0 = −5, ξ0 = 1.8, N = 104, and the number of cases was around

n = 110 in average. We used M = 100 MIs and K = 1000 Monte Carlo simulations. Results

are provided in Table 1.

Table 1 demonstrates two principles. First, the parametric MI (MI-P) estimator closely

matches the maximum likelihood estimator, but the resampling (MI-B) estimator closely

matches the design-based estimator. Second, more importantly, the design-based estimator is

less efficient than the maximum likelihood estimator when the model is correctly specified,

but has lower mean squared error when δ0 was greater than about 1.6. In this case, even the

most powerful one-sided test of the null δ0 = 0 based on the alternative model (8) would

have power less than approximately 0.5, so that any model diagnostic used in a practical

setting would have lower power. Figure 1 shows the relative efficiency of the methods as a

function of the level of misspecification. In summary, the model-based analysis is not robust

even to mild forms of misspecification that would not be detectable in practical settings,

while MI would be beneficial for the efficiency gain of the design-based analysis through the

bias-variance trade-off. This preliminary result motivates us to calibrate raking of weights

through MI which is less sensitive to the design-based method under the misspecified model.

4.2 | Linear regression with continuous surrogate

We now evaluate the performance of the MI raking estimator in a two-phase sampling

design. Let Y be a continuous response associated with covariates X = x and Z = z such that

E(Y ∣ X = x, Z = z) = α0 + β0x + δ0x ⋅ I z > ζ0 , (11)

for some fixed δ0 and ζ0 = FZ
−1(0.95), where Var(Y ∣ X, Z) = 1, X is a standard normal

random variable, Z is a continuous surrogate of X and FZ
−1 is the inverse cumulative

distribution function for Z. Similarly to the simulation study in Section 4.1, instead of the

true model (11) which generally will not be known in a real data setting, we are interested in

the typical linear regression analysis with an outcome model

E(Y ∣ X = x) = α + βx . (12)

Two different scenarios of the surrogate variable Z are considered such that (a) Z = X + ε
for ε ∼ N(0, 1) and (b) Z = ηX for η ∼ Γ(4, 4), which represent additive and multiplicative

error, respectively. In the first phase of sampling, we assume that outcomes Y and auxiliary

variables Z are known for everyone, whereas covariate measurements of X are available

only at the second stage. The sampling for the second phase will be stratified on Z.

Specifically, we will observe Xi for all individuals if Zi > ζ0, otherwise 5% of subjects

in the intermediate stratum Zi ≤ ζ0 are randomly sampled, where 1 ≤ i ≤ N. We write
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S2 ⊂ 1, …, N  to be the index set of subjects collected in the second phase so that

XI = Y i, Zi :1 ≤ i ≤ N  and χII = {(Yi, Xi, Zi) : i ∈ S2} denote the first and second stage

samples, respectively.

We compare five different methods of estimating the nearly true parameter β: (i) maximum

likelihood estimation (MLE), (ii) a standard generalized raking estimation using the

auxiliary variable, (iii) regression calibration (RC), a single imputation method that imputes

the missing covariate X with an estimate of E[X ∣ Z],15 (iv) multiple imputation without

raking (MI), and (v) the proposed approach combining raking and the multiple imputation

(MIR). We note that when Y is Gaussian, the semi-parametric efficient maximum likelihood

estimator of β is available in the missreg3 package in R,23 using the stratification

information.24 We employ this for the MLE (i).

For the standard raking method (ii), we construct a design-based efficient estimator3 as

below:

R1. Find a single imputation model X = a + bY + cZ + ϵ, where ϵ ∼ N 0, τ2  based on the

second phase sample χII.

R2. Fit the nearly true model (12) using Y i, X̂i  for 1 ≤ i ≤ N, where X̂i are fully imputed

from (R1).

R3. Calibrate sampling weights for raking using the influence function induced from the

nearly true fits in (R2).

R4. Fit the design-based estimator of the nearly true model (12) with the second phase

sample χII and calibrated sampling weights from (R3).

We used the distance function d2(a, b) = alog(a/b) − a + b to calibrate sampling weights in

(R3). For the numerical implementation in calibration, we used calibrate function in the

R package survey that provides numerical implementation of calibrating sampling weights

with non-negative values.25 For the conventional regression calibration approach (iii), we

simply fit a linear model regressing Xi on Zi for i ∈ Si and then impute missing observations

X̂i in the first phase so that the nearly true model (12) is evaluated using Y i, X̂i : i ∉ S2  and

Y i, Xi : i ∈ S2 .

We consider two resampling techniques for the MI method (iv): the wild bootstrap26–28

and a Bayesian approach with a non-informative prior. Note, the wild bootstrap gives

consistent estimates for settings where the conventional Efron’s bootstrap does not work,

such as under heteroscedasticity and high-dimensional settings. We refer to Appendix A for

implementation details of MI with the wild bootstrap and a parametric Bayesian resampling.

We now illustrate the proposed method that calibrates sampling weights using MI.

M1. Resample X̂i
∗
 independently for all 1 ≤ i ≤ N by using either the wild bootstrap or the

parametric Bayesian resampling.
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M2. Fit the nearly true model (12) based on a resample Y i, X̂i
∗ :1 ≤ i ≤ N .

M3. Repeat (M1) and (M2) in multiple times, and take the average of influence functions,

induced by the nearly true models fitted in (M2).

M4. Calibrate sampling weights using the average influence function as auxiliary

information.

M5. Fit the design-based estimator of the nearly true model (12) with the second phase

sample χII and calibrated sampling weights obtained from (M4).

Setting N = 5000, we ran M = 100 MIs over 1000 Monte Carlo replications. For all

simulations, β = 1, α0 = 0, ζ0 ≈ 2.3 when Z is a surrogate of X with an additive measurement

error but ζ0 ≈ 1.8 with a multiplicative error in our simulation settings, and the phase two

sample with |S2| = 750 in average. We considered several values of δ0 and the level of

misspecification is described by the empirical power to reject the misspecified model for the

level 0.05 likelihood ratio test comparing the null (11) and alternative (12).

The numerical results with additive measurement errors are summarized in Table 2 and

Figure 2. In this scenario, regression calibration (RC) performed the best for δ0 less than

approximately 0.15, since RC correctly assumes a linear model for imputing X from Z.

The two standard MI had estimation bias due to a misspecified imputation model and had

a larger MSE than the RC method. However, we note once again the model diagnostic

for linearity, that is, δ0 = 0, had at most 20% power for the level of misspecification

studied, which means one may not reliably reject the misspecified model even when δ0 =

0.3 and imputation with the correctly specified model is also unlikely. Indeed the standard

and proposed MIR raking estimators achieved lower MSE when δ0 ≥ 0.15. Thus, raking

successfully leveraged the information from the cohort not in the phase two sample while

maintaining its robustness, as seen in previous literature.1–3 We further found that the

raking estimator can be improved by using MI to estimate the optimal raking variable, with

efficiency gains of about 10% in this example. Table 3 and Figure 3 summarize the results

for the multiplicative error scenario. In this case, even for δ0 = 0, the RC and MIs have

appreciable bias and worse relative performance compared to the two raking estimators,

because of the misspecified imputation model. The two raking estimators outperformed all

estimators for all levels of misspecification. In this scenario, the MIR had smaller gains over

the standard raking estimator. We also verified that M = 50 MIs produced similar results

as reported through all the scenarios (data not shown), but the larger number of MIs is

preferred for its potential to provide better numerical stability more generally.29

5 | DATA EXAMPLE: THE NWTS

We apply our proposed approach to the data from NWTS. In this example, we assume a

key covariate of interest is only available in a phase 2 subsample, and compare the proposed

MIR method with other standard estimators for this setting. In the data example with NWTS,

we are interested in the logistic model for the binary relapse response with predictors
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histology (UH: unfavorable vs FH: favorable vs), the stage of disease (III/IV vs I/II), age at

diagnosis (year) and the diameter of tumor (cm) as

logit ℙ(Relapse ∣ Histology, Stage, Age, Diameter)
= α + β1(Age) + β2(Diameter) + β3(Histology) + β4(Stage) + β3, 4

(Histology ∗ Stage),
(13)

where β3,4 indicates an interaction coefficient between histology and stage.30,31 We consider

(13) is a nearly true model of the relapse probability associated with covariates, as it is

difficult to specify the true model in this real data setting.

Histology was evaluated from both a central laboratory and a local laboratory, where the

latter is subject to misclassification due to the difficulty of diagnosing this rare disease.

For the first phase data, we suppose that the N = 3915 observations of outcomes and

covariates are available for the full cohort, except that the histology is obtained only from

the local laboratory. Central histology is then obtained on a phase 2 subset. By considering

the outcome-dependent sampling strategies,30,31 we sampled individuals for the second

phase by stratifying on relapse, local histology, and disease stage levels. Specifically, all the

subjects who either relapsed or had unfavorable local histology were selected, while only a

random subset in the remaining strata (non-relapsed and favorable histology strata for each

stage level) were selected so that there was a 1:1 case-control sample for each stage level.30

In this data example, we consider the regression coefficient obtained from the full cohort

analysis of the model (13) as the “nearly true parameters.” Similarly to previous numerical

studies, we compared four estimators: (i) the maximum likelihood estimates (MLE) of the

regression coefficients in (13) based on the complete case analysis of the second phase

sample; (ii) the standard generalized raking estimator (specified by the Poisson deviance

distance function d2(a, b)), which calibrates sampling weights by using the local histology

information in the first phase sample, where the raking variable was generated by the

influence functions. We imputed (unobserved) a central histology path by using a logistic

model regressing the second phase histology observations on the age, tumor diameter, and

three-way interaction among the relapse, stage, and local histology together with their nested

interaction terms. The reason for introducing interaction in the imputation model is that

subjects at advanced disease stage or with unfavorable histology were mostly relapsed in

the observed data. We note that the data analysis is more closely related to the case-cohort

study in Section 4.1 except for the two-phase analysis setting, where the gold standard

central histology results are available only for a subset of patients. Recall from Table 1, the

bootstrap-based multiple imputation (MI-B) showed more robust results against the nearly

true model misspecification than the multiple imputation with a parametric approach (MI-P).

Motivated by this simulation result, we consider (iii) the bootstrap procedure for MI with

the second phase sample and (iv) combining the raking and multiple imputation (MIR) as

proposed in the previous section.

The relative performance of the methods were assessed by obtaining estimates for 1000

two-phase samples. For each two-phase sample, 100 MIs were applied. Table 4 summarizes

the results. Similarly to the numerical illustration in the previous section, we found that the

proposed method (MIR) had the best performance in terms of achieving lowest MSE for
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the target parameter available only on the subset. While raking does not provide the lowest

MSE for all parameters, in this example, MIR had the lowest squared error summed over the

model parameters.

6 | DISCUSSION

There are many settings in which variables of interest are not directly observed, either

because they are too expensive or difficult to measure directly or because they come from

a convenient data source, such as EHR, not originally collected to support the research

question. In any practical setting, the chosen statistical model to handle the mismeasured

or missing data will be at best a close approximation to the targeted true underlying

relationship. A general discussion of the difficulty of testing for model misspecification

demonstrates that the data at hand cannot be used to reliably test whether or not the

basic assumptions in the regression analysis hold without good knowledge of the potential

structure.32

Here, we have considered the robustness-efficiency trade-off of several estimators in the

setting of mild model misspecification, where idealized tests with the correct alternative

have low power. When the misspecification is along the least-favorable direction contiguous

to the true model, the bias will be in proportion to the efficiency gain from a parametric

model.14 We studied the relative performance of design-based estimators for a nearly

true regression model in two cases, logistic regression in a case-control study and linear

regression in a two-phase design, where the misspecification was approximately in the least

favorable direction. In both cases, the misspecification took the form of a mild departure

from linearity, and as expected, the raking estimators demonstrated better robustness

compared to the parametric MLE and standard MI models.

In the recent literature, Han33 discussed that modifying the propensity scores as inverse

weights essentially agrees with Deville and Särndal1 in survey literature and showed that

directly optimizing an objective function under calibration constraints leads to improving

efficiency and robustness.34,35 Likewise, a number of AIPW estimators have been proposed

to calibrate the propensity scores by paring estimating equations and augmentation terms so

that they achieve certain efficiency as well as dealing with double robustness.13,36–38 Our

approach to local robustness is rather related to that of Watson and Holmes,39 who consider

making a statistical decision robust to model misspecification around the neighborhood of

a given model in the sense of Kullback-Leibler divergence. Our approach is simpler than

theirs for two reasons: we consider only asymptotic local minimax behavior, and we work

in a two-phase sampling setting where the sampling probabilities are under the investigator’s

control and so can be assumed known. In this setting, the optimal raking estimator is

consistent and efficient in the sampling model and so is locally asymptotically minimax. In

more general settings of nonresponse and measurement error, it is substantially harder to

find estimators that are local minimax, even asymptotically, and more theoretical work is

needed.

Another contribution of our study is that we demonstrated a practical approach for the

efficient design-based estimator under contiguous misspecification. Without an explicit form
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of an efficient influence function, the characterization of the efficient estimator may not

always lead to readily attainable computation of the efficient estimator in the standard

raking method. We examined the use of MI to estimate the raking variable that confers the

optimal efficiency.13 Our proposed raking estimator is easy to calculate and provides better

efficiency than any raking estimator based on a single imputation auxiliary variable. In the

two cases studied, the improvement in efficiency was evident, though at times small. On the

other hand, the degree of improvement of the MI-raking estimator over the standard raking

approach is expected to increase with the degree of nonlinearity of the score for the target

variable. In additional simulations, not shown, we did indeed see larger efficiency gains for

MI-raking over single-imputation raking with large measurement error in Z.

In many real-life examples, we may prefer to choose simpler models when there is a lack

of evidence to support a more complicated approach, because of the clarity of interpretation

with simpler models.40,41 In such settings, design-based estimators are easy to implement

in standard software and provide a desired robustness. However, as we demonstrated in our

numerical results with the nearly true models, the simpler models may not be reliably

rejected as an incorrect model. More efforts in characterizing the performance of the

simpler models are needed under a class of mild (difficult to detect) misspecification, the

nearly true models. The proposed method would provide better efficiency without imposing

extra assumptions to the standard techniques, but further theoretical work is also needed

to find a more practical representation of the least-favorable contiguous model for the

general setting in order to better understand how much of a practical concern this type of

misspecification may be. The bias-efficiency trade-off we describe is also important in the

design of two-phase samples. The optimal design for the raking estimator will be different

from the optimal design for the efficient likelihood estimator, and the optimal design when

the outcome model is “nearly true” may be different again.

ACKNOWLEDGEMENTS

This work was supported in part by the Patient Centered Outcomes Research Institute (PCORI) Award
R-1609-36207 and U.S. National Institutes of Health (NIH) grant R01-AI131771. The statements in this manuscript
are solely the responsibility of the authors and do not necessarily represent the views of PCORI or NIH.

Funding information

National Institutes of Health, Grant/Award Number: R01-AI131771; Patient-Centered Outcomes Research Institute,
Grant/Award Number: R-1609-36207

APPENDIX.: DETAILS OF IMPLEMENTATION

A.1 IMPUTATION

The wild bootstrap MI estimator is computed as follows:

W1. Generate Xi
∗ = X̂i + V iê i for i ∈ S2, where êi are residuals from (R2) and Vi is an

independent dichotomous random variable that takes on the value (1 + 5)/2 with probability

( 5 − 1)/(2 5), otherwise (1 − 5)/2, so that EV = 0 and Var(V ) = 1.

W2. Find an imputation model regressing Xi
∗ on Yi and Zi for i ∈ S2.
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W3. Resample X̂i
∗ ∼ N v Y i, Zi , τ2 Y i, Zi  independently for i ∈ S1, where the mean and

variance functions v Y i, Zi ≡ E(X ∣ Y = y, Z = z) and τ2 Y i, Zi ≡ Var(X ∣ Y = y, Z = z) are

estimated from the model in (W2).

W4. Fit the nearly true model (12) using Y i, X̂i
∗ :1 ≤ i ≤ N , where X̂i

∗ = Xi for i ∈ S2.

W5. Repeat (W1) to (W4) and take the average of multiple estimates of parameters.

We employ a parametric Bayesian resampling technique as follows:

B1. Find a posterior distribution of parameters a, b, c, τ2  for the imputation model used in

(R1) given the second phase sample χII.

B2. Generate a∗, b∗, c∗, τ∗2  from the posterior distribution in (B1).

B3. Resample Xi
∗ ∼ N a∗ + b∗Y i + c∗Zi, τ∗2  independently for i ∈ S1.

B4. Fit the nearly true model (12) using Y i, X̂i
∗ :1 ≤ i ≤ N , where X̂i

∗ = Xi for i ∈ S2.

B5. Repeat (B1) to (B4) and take the average of multiple estimates of parameters.

For the prior distribution of a, b, c, τ2 , we adopt a non-informative prior p a, b, c, τ2 ∝ 1/τ2.

In (B2), we first generate τ∗2 ∣ XII ∼ Γ−1 an/2, bn/2 , where an = S2 − 3 and bn is the residual

sum of squares from the linear regression model.

Then, we generate a∗, b∗, c∗ ⊤ ∣ τ∗2, XII ∼ N3 (â, b̂ , ĉ )⊤, τ∗2 Ξ⊤Ξ −1
, where Ξ is the design

matrix of the linear regression model in (R1) and (â, b̂ , ĉ ) is the corresponding estimate of the

regression coefficient.

A.2 GOODNESS-OF-FIT TEST

We use the wild bootstrap26–28 together with kernel smoothing techniques in testing model

specification of the parametric model. Suppose the true model is given by

Y = m(X; θ) + ε, (A1)

where m is a known function depending of the parameter θ and ϵ is a noise uncorrelated to

X, that is E(ε ∣ X) = 0. In our study, we are mainly interested in in testing the null hypothesis

such that

H0:m(X; θ) = α + βX (a . e . )

for some θ = (α, β)⊤ ∈ R2. We note that under the null hypothesis H0, estimation of

E(Y ∣ X = ⋅ ) in a fully nonparametric way regressing iid observations Yi on Xi, 1 ≤ i ≤ N,
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is less efficient than we directly fit the parametric model (A1) based on the same sample.

However, fitting the parametric model may suffers from inevitable bias when the model is

misspecified as the sample size is increasing.42,43

From the above observation, we may test if the mean squared error quantifying the

goodness-of-fit of the specified model (A1) is small compared to the nonparametric fits.

Specifically, we measure lN = MSE(θ̂) − MSE(m̂) and examine if the observed quantity

lN is significantly small, where m̂( ⋅ ) is a univariate kernel regression estimator of

E(Y ∣ X = ⋅ ). Here, we choose the bandwidth for kernel smoothing based on leave-one-out

cross validation criterion which empirically optimizes prediction performance of the kernel

smoothed estimates and it can be easily implemented by using the npregbw function of the

np package in R.44 Similarly to the previous ideas of the bootstrap resampling, the p-value

of testing the null hypothesis H0 is computed as below:

T1. Generate Y i
∗ = α̂ + β̂Xi + V iê i, 1 ≤ i ≤ N, where ê i = Y i − α̂ + β̂Xi and Vi are random

copies of an independent random variable V which takes binary values by (1 + 5)/2 with

probability ( 5 − 1)/(2 5), otherwise (1 − 5)/2 so that EV = 0 and Var(V ) = 1.

T2. Fit the parametric model with Y 1
∗, X1 , …, Y N

∗ , XN  and let θ̂∗ = α̂∗, β̂∗ ⊤
 be

the resulting estimate of the parameter θ. Compute the mean squared error

MSE θ̂∗ = N−1∑i = i
N Y i

∗ − α̂∗ − β̂∗Xi
2
.

T3. Find kernel smoothed its Ŷ ∗ = m̂∗ Xi , 1 ≤ i ≤ N and compute the mean squared error

MSE m̂∗ = N−1∑i = i
N Y i

∗ − m̂∗ Xi
2
.

T4. Repeat (L1) to (L3) independently to obtain ln
∗ = MSE θ̂∗ − MSE m̂∗  in multiple times

to get an empirical distribution of lN.

T5. Compute the empirical p-value as the fraction of events lN
∗ > lN occurred among

repeated runs in (L4).
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FIGURE 1.
Illustration of Table 1. Relative performance of the semiparametric efficient maximum

likelihood (MLE), design-based estimator (IPW), parametric imputation (MI-P), and

bootstrap resampling (MI-B) imputation estimators in the case-control design
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FIGURE 2.
Illustration of Table 2. Relative performance of the semiparametric efficient maximum

likelihood (MLE), standard raking, regression calibration (RC), multiple imputations (MI)

using either the wild bootstrap or Bayesian approach, and the proposed multiple imputation

with raking (MIR) estimators in two-stage analysis with continuous surrogates when

Z = X + ε for independent ε ∼ N(0, 1)
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FIGURE 3.
Illustration of Table 3. Relative performance of the maximum likelihood (MLE), standard

raking, regression calibration (RC), multiple imputations (MI) using either the wild

bootstrap or Bayesian approach, and the proposed multiple imputation with raking (MIR)

estimators in two-stage analysis with continuous surrogates when Z = ηX for independent

η ∼ Γ(4, 4)
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TABLE 1

Relative performance of the semiparametric efficient maximum likelihood (MLE), design-based estimator

(IPW), parametric imputation (MI-P), and bootstrap resampling (MI-B) imputation estimators in the case-

control design with cohort size N = 104, case-control subset with n = 110 in average, M = 100 imputations,

and 1000 Monte Carlo runs

Estimation performance Empirical power
a

β0, δ0 Criterion MLE IPW MI-P MI-B MP test Lin. test

(1.0) MSE 0.145 0.239 0.140 0.240 0.046 0.042

Bias 0.014 0.071 0.011 0.071

Var 0.144 0.229 0.140 0.229

(0.844, 0.700) MSE 0.148 0.229 0.147 0.229 0.202 0.042

Bias −0.067 0.064 −0.077 0.064

Var 0.132 0.219 0.125 0.219

(0.692,1.400) MSE 0.199 0.217 0.204 0.217 0.410 0.061

Bias −0.156 0.054 −0.168 0.054

Var 0.124 0.211 0.116 0.211

(0.541, 2.100) MSE 0.257 0.201 0.262 0.201 0.683 0.156

Bias −0.233 0.047 −0.242 0.047

Var 0.109 0.196 0.102 0.195

(0.381, 2.800) MSE 0.317 0.206 0.320 0.206 0.905 0.382

Bias −0.301 0.056 −0.306 0.056

Var 0.098 0.199 0.093 0.199

Note: We report the root-mean squared error ( MSE) for β = 1, its bias and variance decomposition (10), and the empirical power to reject the

nearly true model (8) through the most powerful (MP) test and the goodness-of-fit test of linear fits.42,43

a
PN and QN are likelihood functions at θ0 = (α0, β0, δ0) and θ* = (α, β), respectively.
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TABLE 2

Multiple imputation in two-stage analysis with continuous surrogates when Z = X + ϵ for independent ϵ ∼
N(0, 1)

Estimation performance

MI MIR Empirical power
a

β0, δ0 Criterion MLE Raking RC Boot Bayes Boot Bayes Abs corr
a MP test Lin. test

(1.0) MSE 0.019 0.038 0.017 0.019 0.019 0.034 0.034 - 0.052 0.065

Bias 0.004 0.000 0.000 0.002 −0.003 0.001 0.001

Var 0.019 0.038 0.017 0.018 0.018 0.034 0.034

(0.951, 0.068) MSE 0.033 0.037 0.022 0.023 0.026 0.033 0.033 0.480 0.140 0.078

Bias −0.027 0.000 −0.014 −0.014 −0.019 0.001 0.001

Var 0.018 0.037 0.017 0.018 0.018 0.033 0.033

(0.904. 0.131) MSE 0.058 0.036 0.032 0.034 0.039 0.033 0.033 0.496 0.407 0.089

Bias −0.056 0.000 −0.027 −0.029 −0.034 0.001 0.001

Var 0.018 0.036 0.017 0.018 0.018 0.033 0.033

(0.861,0.191) MSE 0.084 0.036 0.042 0.047 0.052 0.032 0.032 0.497 0.698 0.108

Bias −0.082 −0.001 −0.038 −0.043 −0.048 0.001 0.001

Var 0.018 0.036 0.017 0.018 0.018 0.032 0.032

(0.820, 0.247) MSE 0.108 0.035 0.052 0.059 0.064 0.032 0.032 0.496 0.893 0.142

Bias −0.107 0.000 −0.049 −0.057 −0.062 0.001 0.001

Var 0.017 0.035 0.017 0.018 0.018 0.032 0.032

(0.781, 0.3) MSE 0.132 0.035 0.062 0.072 0.077 0.032 0.032 0.495 0.978 0.189

Bias −0.131 −0.001 −0.060 −0.069 −0.074 0.001 0.001

Var 0.017 0.035 0.017 0.018 0.018 0.032 0.032

Note: We compare relative performance of the semiparametric efficient maximum likelihood (MLE), standard raking, regression calibration
(RC), multiple imputations (MI) using either the wild bootstrap or Bayesian approach, and the proposed multiple imputation with raking (MIR)
estimators for a two-phase design with cohort size N = 5000, phase 2 subset S2 = 750 in average, M = 100 imputations, and 1000 Monte Carlo

runs. We report the root-mean squared error ( MSE) for β = 1, its bias and variance decomposition (10), and the empirical power to reject the

nearly true model (12) through the most powerful (MP) test and the goodness-of-fit test of linear fits.42,43

a
The absolute value of the correlation between β̂MLE − β̂Raking and logQN − logPN, where PN and QN are likelihood functions at

θ0 = α0, β0, δ0  and θ∗ = (α, β), respectively.
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TABLE 3

Multiple imputation in two-stage analysis with continuous surrogates when Z = ηX for independent η ∼ Γ(4,

4)

Estimation performance

MI MIR Empirical power
a

β0, δ0 Criterion MLE Raking RC Boot Bayes Boot Bayes Abs corr
a MP test Lin. test

(1, 0) MSE 0.018 0.030 0.216 0.099 0.094 0.029 0.029 - 0.048 0.056

Bias 0.006 0.001 0.215 0.097 0.092 0.002 0.002

Var 0.017 0.030 0.013 0.018 0.018 0.029 0.029

(1.045,−0.068) MSE 0.040 0.030 0.227 0.111 0.106 0.029 0.029 0.585 0.149 0.062

Bias 0.036 0.001 0.227 0.109 0.104 0.002 0.002

Var 0.018 0.030 0.013 0.018 0.018 0.029 0.029

(1.087, −0.131) MSE 0.068 0.031 0.239 0.123 0.117 0.030 0.030 0.584 0.427 0.075

Bias 0.065 0.001 0.238 0.121 0.116 0.002 0.002

Var 0.018 0.031 0.013 0.018 0.018 0.030 0.030

(1.127, −0.191) MSE 0.095 0.032 0.249 0.134 0.128 0.031 0.031 0.585 0.697 0.099

Bias 0.093 0.001 0.249 0.133 0.127 0.002 0.002

Var 0.018 0.032 0.014 0.018 0.018 0.030 0.031

(1.165, −0.247) MSE 0.121 0.032 0.259 0.144 0.139 0.031 0.031 0.583 0.890 0.136

Bias 0.119 0.001 0.259 0.143 0.138 0.002 0.002

Var 0.019 0.032 0.014 0.019 0.019 0.031 0.031

(1.200, −0.3) MSE 0.146 0.033 0.269 0.155 0.149 0.032 0.032 0.580 0.967 0.179

Bias 0.145 0.001 0.268 0.154 0.148 0.003 0.002

Var 0.019 0.033 0.014 0.019 0.019 0.032 0.032

Note: We compare relative performance of the semiparametric efficient maximum likelihood (MLE), standard raking, regression calibration
(RC), multiple imputations using (MI) either the wild bootstrap or Bayesian approach, and the proposed multiple imputation with raking (MIR)
estimators for a two-phase design with cohort size N = 5000, phase 2 subset S2 = 750 in average, M = 100 imputations, and 1000 Monte Carlo

runs. We report the root-mean squared error ( MSE) for β= 1, its bias and variance decomposition (10), and the empirical power to reject the

nearly true model (12) through the most powerful (MP) test and the goodness-of-fit test of linear fits.42,43

a
The absolute value of the correlation between β̂MLE − β̂Raking and logQN − logPN, where PN and QN are likelihood functions at

θ0 = α0, β0, δ0  and θ∗ = (α, β), respectively.
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TABLE 4

The National Wilms Tumor Study data example

Estimation performance by regressor

Sum of squaresMethod Criterion Hstg
a

Stage
b

Age
c

Diam
d

H*S
e

MLE MSE 1.765 0.776 0.014 0.014 0.602 4.080

Bias −1.765 −0.776 −0.007 −0.012 0.600 4.076

Var 0.031 0.023 0.012 0.008 0.050 0.004

Raking MSE 0.132 0.021 0.006 0.003 0.205 0.060

Bias 0.032 0.000 0.000 0.001 −0.064 0.005

Var 0.128 0.021 0.006 0.003 0.195 0.055

RC MSE 0.040 0.004 0.004 0.002 0.183 0.196

Bias 0.403 0.003 0.004 0.002 −0.179 0.195

Var 0.022 0.003 0.001 0.001 0.036 0.001

MI MSE 0.148 0.015 0.003 0.002 0.173 0.052

Bias 0.062 −0.003 0.002 0.002 −0.050 0.006

Var 0.134 0.014 0.002 0.001 0.166 0.046

MIR MSE 0.125 0.019 0.006 0.003 0.182 0.049

Bias 0.032 0.004 0.001 0.001 −0.047 0.003

Var 0.121 0.019 0.006 0.003 0.175 0.046

Full cohort Estimate 1.193 0.285 0.089 0.028 0.816 −

SE 0.156 0.105 0.017 0.012 0.227 −

Note: We compare relative performance of the semiparametric efficient maximum likelihood (MLE), standard raking, regression calibration (RC),
multiple imputation using the bootstrap (MI), and the proposed multiple imputation with raking (MIR) estimators for a two-phase design with
cohort size N = 3915, phase 2 subset S2  = 1338, M = 100 imputations, and 1000 Monte Carlo runs. We report the root-mean squared error

( MSE) for the parameter estimate obtained from the full cohort analysis of the outcome model (13), and its bias and variance decomposition

(10).

a
Unfavorable histology vs favorable.

b
Disease stage III/IV vs I/II.

c
Year at diagnosis.

d
Tumor diameter (cm).

e
Histology*Stage.
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