TABLE 3.
Multiple imputation in two-stage analysis with continuous surrogates when Z = ηX for independent η ∼ Γ(4, 4)
| Estimation performance |
|||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| MI |
MIR |
Empirical powera |
|||||||||
| Criterion | MLE | Raking | RC | Boot | Bayes | Boot | Bayes | Abs corra | MP test | Lin. test | |
| (1, 0) | 0.018 | 0.030 | 0.216 | 0.099 | 0.094 | 0.029 | 0.029 | - | 0.048 | 0.056 | |
| Bias | 0.006 | 0.001 | 0.215 | 0.097 | 0.092 | 0.002 | 0.002 | ||||
| 0.017 | 0.030 | 0.013 | 0.018 | 0.018 | 0.029 | 0.029 | |||||
| (1.045,−0.068) | 0.040 | 0.030 | 0.227 | 0.111 | 0.106 | 0.029 | 0.029 | 0.585 | 0.149 | 0.062 | |
| Bias | 0.036 | 0.001 | 0.227 | 0.109 | 0.104 | 0.002 | 0.002 | ||||
| 0.018 | 0.030 | 0.013 | 0.018 | 0.018 | 0.029 | 0.029 | |||||
| (1.087, −0.131) | 0.068 | 0.031 | 0.239 | 0.123 | 0.117 | 0.030 | 0.030 | 0.584 | 0.427 | 0.075 | |
| Bias | 0.065 | 0.001 | 0.238 | 0.121 | 0.116 | 0.002 | 0.002 | ||||
| 0.018 | 0.031 | 0.013 | 0.018 | 0.018 | 0.030 | 0.030 | |||||
| (1.127, −0.191) | 0.095 | 0.032 | 0.249 | 0.134 | 0.128 | 0.031 | 0.031 | 0.585 | 0.697 | 0.099 | |
| Bias | 0.093 | 0.001 | 0.249 | 0.133 | 0.127 | 0.002 | 0.002 | ||||
| 0.018 | 0.032 | 0.014 | 0.018 | 0.018 | 0.030 | 0.031 | |||||
| (1.165, −0.247) | 0.121 | 0.032 | 0.259 | 0.144 | 0.139 | 0.031 | 0.031 | 0.583 | 0.890 | 0.136 | |
| Bias | 0.119 | 0.001 | 0.259 | 0.143 | 0.138 | 0.002 | 0.002 | ||||
| 0.019 | 0.032 | 0.014 | 0.019 | 0.019 | 0.031 | 0.031 | |||||
| (1.200, −0.3) | 0.146 | 0.033 | 0.269 | 0.155 | 0.149 | 0.032 | 0.032 | 0.580 | 0.967 | 0.179 | |
| Bias | 0.145 | 0.001 | 0.268 | 0.154 | 0.148 | 0.003 | 0.002 | ||||
| 0.019 | 0.033 | 0.014 | 0.019 | 0.019 | 0.032 | 0.032 | |||||
Note: We compare relative performance of the semiparametric efficient maximum likelihood (MLE), standard raking, regression calibration (RC), multiple imputations using (MI) either the wild bootstrap or Bayesian approach, and the proposed multiple imputation with raking (MIR) estimators for a two-phase design with cohort size N = 5000, phase 2 subset in average, M = 100 imputations, and 1000 Monte Carlo runs. We report the root-mean squared error () for β= 1, its bias and variance decomposition (10), and the empirical power to reject the nearly true model (12) through the most powerful (MP) test and the goodness-of-fit test of linear fits.42,43
The absolute value of the correlation between and , where PN and QN are likelihood functions at and , respectively.