Skip to main content
. Author manuscript; available in PMC: 2022 Dec 30.
Published in final edited form as: Stat Med. 2021 Sep 28;40(30):6777–6791. doi: 10.1002/sim.9210

TABLE 3.

Multiple imputation in two-stage analysis with continuous surrogates when Z = ηX for independent η ∼ Γ(4, 4)

Estimation performance
MI
MIR
Empirical powera
(β0,δ0) Criterion MLE Raking RC Boot Bayes Boot Bayes Abs corra MP test Lin. test
(1, 0) MSE 0.018 0.030 0.216 0.099 0.094 0.029 0.029 - 0.048 0.056
Bias 0.006 0.001 0.215 0.097 0.092 0.002 0.002
Var 0.017 0.030 0.013 0.018 0.018 0.029 0.029
(1.045,−0.068) MSE 0.040 0.030 0.227 0.111 0.106 0.029 0.029 0.585 0.149 0.062
Bias 0.036 0.001 0.227 0.109 0.104 0.002 0.002
Var 0.018 0.030 0.013 0.018 0.018 0.029 0.029
(1.087, −0.131) MSE 0.068 0.031 0.239 0.123 0.117 0.030 0.030 0.584 0.427 0.075
Bias 0.065 0.001 0.238 0.121 0.116 0.002 0.002
Var 0.018 0.031 0.013 0.018 0.018 0.030 0.030
(1.127, −0.191) MSE 0.095 0.032 0.249 0.134 0.128 0.031 0.031 0.585 0.697 0.099
Bias 0.093 0.001 0.249 0.133 0.127 0.002 0.002
Var 0.018 0.032 0.014 0.018 0.018 0.030 0.031
(1.165, −0.247) MSE 0.121 0.032 0.259 0.144 0.139 0.031 0.031 0.583 0.890 0.136
Bias 0.119 0.001 0.259 0.143 0.138 0.002 0.002
Var 0.019 0.032 0.014 0.019 0.019 0.031 0.031
(1.200, −0.3) MSE 0.146 0.033 0.269 0.155 0.149 0.032 0.032 0.580 0.967 0.179
Bias 0.145 0.001 0.268 0.154 0.148 0.003 0.002
Var 0.019 0.033 0.014 0.019 0.019 0.032 0.032

Note: We compare relative performance of the semiparametric efficient maximum likelihood (MLE), standard raking, regression calibration (RC), multiple imputations using (MI) either the wild bootstrap or Bayesian approach, and the proposed multiple imputation with raking (MIR) estimators for a two-phase design with cohort size N = 5000, phase 2 subset |S2|=750 in average, M = 100 imputations, and 1000 Monte Carlo runs. We report the root-mean squared error (MSE) for β= 1, its bias and variance decomposition (10), and the empirical power to reject the nearly true model (12) through the most powerful (MP) test and the goodness-of-fit test of linear fits.42,43

a

The absolute value of the correlation between β^MLEβ^Raking and logQNlogPN, where PN and QN are likelihood functions at θ0=(α0,β0,δ0) and θ=(α,β), respectively.