Skip to main content
. Author manuscript; available in PMC: 2022 Dec 30.
Published in final edited form as: Stat Med. 2021 Sep 28;40(30):6777–6791. doi: 10.1002/sim.9210

TABLE 4.

The National Wilms Tumor Study data example

Estimation performance by regressor
Sum of squares
Method Criterion Hstga Stageb Agec Diamd H*Se
MLE MSE 1.765 0.776 0.014 0.014 0.602 4.080
Bias −1.765 −0.776 −0.007 −0.012 0.600 4.076
Var 0.031 0.023 0.012 0.008 0.050 0.004
Raking MSE 0.132 0.021 0.006 0.003 0.205 0.060
Bias 0.032 0.000 0.000 0.001 −0.064 0.005
Var 0.128 0.021 0.006 0.003 0.195 0.055
RC MSE 0.040 0.004 0.004 0.002 0.183 0.196
Bias 0.403 0.003 0.004 0.002 −0.179 0.195
Var 0.022 0.003 0.001 0.001 0.036 0.001
MI MSE 0.148 0.015 0.003 0.002 0.173 0.052
Bias 0.062 −0.003 0.002 0.002 −0.050 0.006
Var 0.134 0.014 0.002 0.001 0.166 0.046
MIR MSE 0.125 0.019 0.006 0.003 0.182 0.049
Bias 0.032 0.004 0.001 0.001 −0.047 0.003
Var 0.121 0.019 0.006 0.003 0.175 0.046
Full cohort Estimate 1.193 0.285 0.089 0.028 0.816
SE 0.156 0.105 0.017 0.012 0.227

Note: We compare relative performance of the semiparametric efficient maximum likelihood (MLE), standard raking, regression calibration (RC), multiple imputation using the bootstrap (MI), and the proposed multiple imputation with raking (MIR) estimators for a two-phase design with cohort size N = 3915, phase 2 subset |S2| = 1338, M = 100 imputations, and 1000 Monte Carlo runs. We report the root-mean squared error (MSE) for the parameter estimate obtained from the full cohort analysis of the outcome model (13), and its bias and variance decomposition (10).

a

Unfavorable histology vs favorable.

b

Disease stage III/IV vs I/II.

c

Year at diagnosis.

d

Tumor diameter (cm).

e

Histology*Stage.