TABLE 4.
Estimation performance by regressor |
Sum of squares | ||||||
---|---|---|---|---|---|---|---|
Method | Criterion | Hstga | Stageb | Agec | Diamd | H*Se | |
MLE | 1.765 | 0.776 | 0.014 | 0.014 | 0.602 | 4.080 | |
Bias | −1.765 | −0.776 | −0.007 | −0.012 | 0.600 | 4.076 | |
0.031 | 0.023 | 0.012 | 0.008 | 0.050 | 0.004 | ||
Raking | 0.132 | 0.021 | 0.006 | 0.003 | 0.205 | 0.060 | |
Bias | 0.032 | 0.000 | 0.000 | 0.001 | −0.064 | 0.005 | |
0.128 | 0.021 | 0.006 | 0.003 | 0.195 | 0.055 | ||
RC | 0.040 | 0.004 | 0.004 | 0.002 | 0.183 | 0.196 | |
Bias | 0.403 | 0.003 | 0.004 | 0.002 | −0.179 | 0.195 | |
0.022 | 0.003 | 0.001 | 0.001 | 0.036 | 0.001 | ||
MI | 0.148 | 0.015 | 0.003 | 0.002 | 0.173 | 0.052 | |
Bias | 0.062 | −0.003 | 0.002 | 0.002 | −0.050 | 0.006 | |
0.134 | 0.014 | 0.002 | 0.001 | 0.166 | 0.046 | ||
MIR | 0.125 | 0.019 | 0.006 | 0.003 | 0.182 | 0.049 | |
Bias | 0.032 | 0.004 | 0.001 | 0.001 | −0.047 | 0.003 | |
0.121 | 0.019 | 0.006 | 0.003 | 0.175 | 0.046 | ||
Full cohort | Estimate | 1.193 | 0.285 | 0.089 | 0.028 | 0.816 | − |
SE | 0.156 | 0.105 | 0.017 | 0.012 | 0.227 | − |
Note: We compare relative performance of the semiparametric efficient maximum likelihood (MLE), standard raking, regression calibration (RC), multiple imputation using the bootstrap (MI), and the proposed multiple imputation with raking (MIR) estimators for a two-phase design with cohort size N = 3915, phase 2 subset = 1338, M = 100 imputations, and 1000 Monte Carlo runs. We report the root-mean squared error () for the parameter estimate obtained from the full cohort analysis of the outcome model (13), and its bias and variance decomposition (10).
Unfavorable histology vs favorable.
Disease stage III/IV vs I/II.
Year at diagnosis.
Tumor diameter (cm).
Histology*Stage.