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Abstract

Motivation: Antibodies are a key component of the immune system and have been extensively used as biotherapeu-
tics. Accurate knowledge of their structure is central to understanding their antigen-binding function. The key area
for antigen binding and the main area of structural variation in antibodies are concentrated in the six complementar-
ity determining regions (CDRs), with the most important for binding and most variable being the CDR-H3 loop. The
sequence and structural variability of CDR-H3 make it particularly challenging to model. Recently deep learning
methods have offered a step change in our ability to predict protein structures.

Results: In this work, we present ABlooper, an end-to-end equivariant deep learning-based CDR loop structure
prediction tool. ABlooper rapidly predicts the structure of CDR loops with high accuracy and provides a confidence
estimate for each of its predictions. On the models of the Rosetta Antibody Benchmark, ABlooper makes predictions
with an average CDR-H3 RMSD of 2.49 Å, which drops to 2.05 Å when considering only its 75% most confident
predictions.

Availability and implementation: https://github.com/oxpig/ABlooper.

Contact: opig@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Antibody structure
Antibodies are a class of protein produced by B cells during an im-
mune response. Their ability to bind with high affinity and specifi-
city to almost any antigen makes them attractive for use as
therapeutics (Carter and Lazar, 2018).

Knowledge of the structure of antibodies is becoming increasing-
ly important in biotherapeutic development (Chiu et al., 2019).
However, experimental structure determination is time-consuming
and expensive so it is not always practical or even possible to use
routinely. Computational modelling tools have allowed researchers
to bridge this gap by predicting large numbers of antibody structures
to a high level of accuracy (Leem et al., 2016; Ruffolo et al., 2021).
For example, models of antibody structures have recently been used
for virtual screening (Schneider et al., 2021) and to identify
coronavirus-binding antibodies that bind the same epitope with very
different sequences (Robinson et al., 2021).

The overall structure of all antibodies is similar and therefore
can be accurately predicted using current methods (e.g. Leem et al.,

2016). The area of antibodies that it is hardest to model is the
sequence variable regions that provide the structural diversity
necessary to bind a wide range of antigens. This diversity is largely
focussed on six loops known as the complementarity determining
regions (CDRs). The most diverse of these CDRs and therefore
the hardest to model is the third CDR loop of the heavy chain
(CDR-H3) (Teplyakov et al., 2014).

1.2 Deep learning for protein structure prediction
At CASP14 (Kryshtafovych et al., 2021), DeepMind showcased
AlphaFold2 (Jumper et al., 2021), a neural network capable of ac-
curately predicting many protein structures. The method relies on
the use of equivariant neural networks and an attention mechanism.
More recently, RoseTTAFold, a novel neural network based on
equivariance and attention was shown to obtain results comparable
to those of AlphaFold2 (Baek et al., 2021).

These methods both rely on the use of equivariant networks. For
a network to be equivariant with respect to a group, it must be able
to commute with the group action. For rotations, this means that
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rotating the input before feeding it into the network will have the
same result as rotating the output. In the case of proteins, using a
network equivariant to both translations and rotations in 3D space
allows us to learn directly from atom coordinates. This is in contrast
to previous methods like TrRosetta (Yang et al., 2020) or the origin-
al version of AlphaFold (Senior et al., 2020) that predicted invariant
features, such as inter-residue distances and orientations which are
then used to reconstruct the protein. A number of approaches for
developing equivariant networks have been recently developed (e.g.
Finzi et al., 2021).

In this article, we explore the use of an equivariant approach to
CDR structure prediction. We chose to use E(n)-Equivariant Graph
Neural Networks (E(n)-EGNNs; Satorras et al., 2021) as our equiv-
ariant approach due to their speed and simplicity.

1.3 Deep learning for antibody structure prediction
Deep learning-based approaches have also been shown to improve
structure prediction in antibodies, e.g. DeepH3 (Ruffolo et al.,
2020), an antibody-specific version of TrRosetta. Recently, DeepAb
(Ruffolo et al., 2021), an improved version of DeepH3, was shown
to outperform all currently available antibody structure prediction
methods. DeepAb and DeepH3 are similar to TrRosetta and the ori-
ginal version of AlphaFold in that deep learning is used to obtain
inter-residue geometries that are then fed into an energy minimiza-
tion method to produce the final structure.

In this work, we present ABlooper, a fast and accurate tool for
antibody CDR loop structure prediction. By leveraging E(n)-
EGNNs, ABlooper directly predicts the structure of CDR loops. By
simultaneously predicting multiple structures for each loop and
comparing them amongst themselves, ABlooper is capable of esti-
mating a confidence measure for each predicted loop.

2 Materials and Methods

2.1 Data
The data used to train, test and validate ABlooper were extracted
from SAbDab (Dunbar et al., 2014), a database of all antibody
structures contained in the PDB (Berman et al., 2000). Structures
with a resolution better than 3.0 Å and no missing backbone atoms
within any of the CDRs were selected. The CDRs were defined using
the Chothia numbering scheme (Chothia et al., 1989).

For easy comparison with different pipelines, we used the 49
antibodies from the Rosetta Antibody Benchmark as our test set.
For validation, 100 structures were selected at random. It was
ensured that there were no structures with the same CDR sequences
in the training, testing and validation sets. Sequence redundancy
was allowed within the training set to expose the network to the ex-
istence of antibodies with identical sequences but different structural
conformations. This resulted in a total of 3438 training structures.

Additionally, we use a secondary test set composed of 114 anti-
bodies (SAbDab Latest Structures) with a resolution of under 2.3 Å
and a maximum CDR-H3 loop length of 20, which were added to
SAbDab after the initial test, train and validation sets were extracted
(November 8, 2020 to May 24, 2021). A list containing the PDB

IDs of all the structures used in the train, test, and validation sets is
given in the Supplementary Material.

ABodyBuilder was used to build models of all the structures.
Structural models were generated using the singularity version of
ABodyBuilder (Leem et al., 2016) (fragment database from July 8,
2021) excluding all templates with a 99% or higher sequence iden-
tity. ABlooper CDR models for the test sets were obtained by
remodelling the CDR loops on ABodyBuilder models.

2.2 Deep learning
ABlooper is composed of five E(n)-EGNNs, each one with four
layers, all trained in parallel. The model is trained on the position of
the Ca-N-C-Cb backbone atoms for all six CDR loops plus two an-
chor residues at either end. E(n)-EGNNs require a starting geom-
etry, so a non-descriptive input geometry is generated by evenly
spacing each CDR loop residue on a straight line between its anchor
residues (Fig. 1). The model is given four different types of features
per node resulting in a 41-dimensional vector. These include a one-
hot encoded vector describing the amino acid type, the atom type
and which loop the residue belongs to. Additionally, sinusoidal pos-
itional embeddings are given to each residue describing how close it
is to the anchors. An outline of how E(n)-EGNNs are used within
ABlooper is shown in Figure 1.

Two different losses were used during training. To quantify the
structural similarity between the predicted and true structures,
RMSD was used. To encourage the conservation of distances be-
tween neighbouring atoms in the backbone chain, an L1-loss be-
tween the true and predicted inter-atom distances was used. This
was composed of five terms between the following pairs of atoms:

Ci
a-Ciþ1

a ; Ci
a-Ci

b; Ci
a-Ni; Ci

a-Ci; Ci-Niþ1.

Each of the five E(n)-EGNNs were trained to make predictions
independently by minimizing the RMSD between their prediction
and the crystal structure. The output from the five networks is then
averaged to obtain a final prediction. To ensure that the final com-
bined prediction of all E(n)-EGNNs was physically plausible, the
L1-loss was used on the final averaged structure.

The model was trained in two phases. First, it was trained until
convergence without the L1-loss term using the RAdam (Liu et al.,
2020) optimizer with a learning rate of 10�3 and a weight decay of
10�3. In the second stage, the L1-loss term was added with a weight-
ing of 1.0. For this stage, the model was trained using the Adam
(Kingma and Ba, 2014) optimizer with a learning rate of 10�4 and
early stopping. More details on the implementation of ABlooper can
be found in the Supplementary Material.

2.3 Loop relaxation
During training, ABlooper is encouraged to predict physically plaus-
ible CDR loops via the intra-residue atom distance loss term.
However, ABlooper occasionally produces loops with incorrect
backbone geometries. To enforce correct backbone geometries we
relax the predicted loops using a restrained energy minimization
procedure. As our energy function, we use the AMBER14 (Maier
et al., 2015) protein force field with an additional harmonic poten-
tial term keeping the positions of backbone atoms close to their
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Fig. 1. Flowchart showing how E(n)-EGNN is used to predict CDR loops in ABlooper. The input geometry for each CDR loop is generated by aligning its residues between

their anchors, while the node features are extracted from the loop sequence. Atom coordinates are then iteratively updated using a four-layer E(n)-EGNN resulting in a pre-

dicted set of conformations for each CDR
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original predicted positions. The spring constant of the harmonic
potential is set to 10 kcal/mol2. Energy minimization is done using
the Langevin Integrator in the OpenMM python package (Eastman
et al., 2017). This relaxation step typically results in a small loss in
accuracy, but ensures that predicted loops are physically plausible.

2.4 Deepab and AlphaFold2
DeepAb structural models were generated using the open-source
version of the code (available at https://github.com/Rosetta
Commons/DeepAb). As suggested in their paper (Ruffolo et al.,
2021), we generated five decoys per structure. This took around
10 min per antibody on an 8-core Intel i7-10700 CPU.

Antibody structures were generated using the open-source ver-
sion of AlphaFold2 (available at https://github.com/deepmind/alpha
fold). We used the ‘full_dbs’ preset and allowed it to use templates
from before May 14, 2020. As AlphaFold2 is intended to predict
single chains (Jumper et al., 2021), we predicted and aligned the
heavy and light chain independently before comparing to other
methods. On a 20-core Intel 6230 CPU this took around 3 h per
antibody modelled.

3 Results

3.1 Using ABlooper to predict CDR loops on modelled

antibody structures
We used ABlooper to predict the CDRs on ABodyBuilder models of
the Rosetta Antibody Benchmark (RAB) and the SAbDab Latest
Structures (SLS) sets. The RMSD between the Ca-N-C-Cb atoms in
the backbone of the crystal structure and the predicted CDRs for
both test sets is shown in Table 1.

ABlooper achieves lower mean RMSDs than AbodyBuilder for
most CDRs (Table 1). By far, the largest improvement is for the
CDR-H3 loop, where due to the large structural diversity, homology
modelling performs worst (Leem et al., 2016). ABlooper predicts
loops of a similar accuracy to AlphaFold2 and DeepAb for all CDRs
except CDR-H3, where ABlooper and DeepAb outperform
AlphaFold2.

One potential source of error for ABlooper is the model frame-
works generated by ABodyBuilder, so we examined its resilience to
the small deviations seen in these models and found little to no cor-
relation between framework error and CDR prediction error (see
Supplementary Material).

3.2 Prediction diversity as a measure of prediction

quality
ABlooper predicts five structures for each loop. We found that the
average RMSD between predictions can be used as a measure of

certainty of the final averaged prediction. If all five models agree on
the same conformation, then it is more likely that it will be the cor-
rect conformation, if they do not, then the final prediction is likely
to be less accurate (Fig. 2). This allows ABlooper to give a confi-
dence score for each predicted loop. As shown in Figure 2D, this
score can be used as a filter, removing structures which are expected
to be incorrectly modelled by ABlooper. For example, by setting a
1.5 Å inter-prediction RMSD cut-off on structures from the Rosetta
Antibody Benchmark, the average CDR-H3 RMSD for the set can
be reduced from 2.49 to 2.05 Å while keeping around three quarters
of the predictions. As expected, accuracy filtering has a tendency to
remove longer CDR-H3 predictions but it is not exclusively corre-
lated to length (see Supplementary Material).

4 Discussion

We present ABlooper, a fast and accurate tool for predicting the
structures of the CDR loops in antibodies. It builds on recent advan-
ces in EGNNs to improve CDR loop structure prediction.

On an NVIDIA Tesla V100 GPU, the unrelaxed version of
ABlooper can predict the CDR backbone atoms for 100 structures
in under 5 s. Loop relaxation and side-chain prediction are the most
computationally expensive parts of the pipeline taking around 10 s
per structure. ABlooper outperforms ABodyBuilder (a state of the
art homology method) and produces antibody models of similar ac-
curacy to both AlphaFold2 and DeepAb, but on a far faster
timescale.

By predicting each loop multiple times, ABlooper is capable of
producing an accuracy estimate for each generated loop structure. It
is not clear whether a high prediction diversity score is indicative of
loops with multiple conformations or underrepresentation of the
given loop sequence in SAbDab (Dunbar et al., 2014). However,
due to how ABlooper is trained (with the averaged prediction
encouraged to be physically plausible), we would expect individual
decoys from ABlooper to be unphysical for divergent predictions.

With the arrival of B-cell receptor repertoire sequencing, the
number of publicly available paired antibody sequence data is rapid-
ly increasing (Kovaltsuk et al., 2018; Olsen et al., 2022). Fast accur-
ate tools such as ABlooper provide the opportunity for structural
studies (such as Robinson et al., 2021) at previously infeasible
scales. The model used for ABlooper is available at: https://github.
com/oxpig/ABlooper.
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Table 1. Performance comparison between AlphaFold2, ABodyBuilder, DeepAb and ABlooper for both test sets

Method CDR-H1 CDR-H2 CDR-H3 CDR-L1 CDR-L2 CDR-L3

Rosetta Antibody Benchmark

AlphaFold2a 0.84 0.99 2.87 0.53 0.49 0.95

ABodyBuilder 1.08 0.99 2.77 0.69 0.50 1.12

DeepAb 0.83 0.93 2.44 0.50 0.44 0.85

ABlooper 0.92 1.01 2.49 0.62 0.52 0.97

ABlooper unrelaxed 0.90 1.03 2.45 0.61 0.51 0.93

SAbDab latest structures

ABodyBuilder 1.24 1.07 3.25 0.88 0.57 1.03

DeepAba 1.00 0.82 2.49 0.59 0.45 0.90

ABlooper 1.14 0.97 2.72 0.74 0.55 1.04

ABlooper Unrelaxed 1.14 0.99 2.66 0.73 0.54 1.01

The mean RMSD to the crystal structure across each test set for the six CDRs is shown. RMSDs for each CDR are calculated after superimposing their corre-

sponding chain to the crystal structure. RMSDs are given in Angstroms (Å).
aIt is likely that AlphaFold2 used at least some of the structures in the benchmark set during training. Similarly, structures in the SAbDab Latest Structures set

may have been used for training DeepAb.
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Fig. 2. (A) CDR-H3 loop RMSD between final averaged prediction and crystal structure compared with average RMSD between the five ABlooper predictions for both the

Rosetta Antibody Benchmark and the SAbDab Latest Structures set. (B) An example of a poorly predicted CDR-H3 loop. All five predictions are given in grey, with the final

averaged prediction in blue and the crystal structure in green. The predictions from the five networks are very different, indicating an incorrect final prediction. (C) Example of

correctly predicted CDR loops. All five predictions are similar, indicating a high confidence prediction. Colours are the same as in (B). (D) Effect of removing structures with a

high CDR-H3 inter-prediction RMSD on the averaged RMSD for the set. The number of structures remaining after each quality cut-off is shown as a percentage. Data shown

for the RAB and the SLS sets
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