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Abstract

Motivation: Short-read whole-genome sequencing (WGS) is a vital tool for clinical applications and basic research.
Genetic divergence from the reference genome, repetitive sequences and sequencing bias reduces the performance
of variant calling using short-read alignment, but the loss in recall and specificity has not been adequately character-
ized. To benchmark short-read variant calling, we used 36 diverse clinical Mycobacterium tuberculosis (Mtb) isolates
dually sequenced with lllumina short-reads and PacBio long-reads. We systematically studied the short-read variant
calling accuracy and the influence of sequence uniqueness, reference bias and GC content.

Results: Reference-based lllumina variant calling demonstrated a maximum recall of 89.0% and minimum precision
of 98.5% across parameters evaluated. The approach that maximized variant recall while still maintaining high preci-
sion (<99%) was tuning the mapping quality filtering threshold, i.e. confidence of the read mapping (recall =85.8%,
precision =99.1%, MQ > 40). Additional masking of repetitive sequence content is an alternative conservative ap-
proach to variant calling that increases precision at cost to recall (recall =70.2%, precision =99.6%, MQ > 40). Of the
genomic positions typically excluded for Mtb, 68% are accurately called using lllumina WGS including 52/168 PE/
PPE genes (34.5%). From these results, we present a refined list of low confidence regions across the Mtb genome,
which we found to frequently overlap with regions with structural variation, low sequence uniqueness and low
sequencing coverage. Our benchmarking results have broad implications for the use of WGS in the study of Mtb
biology, inference of transmission in public health surveillance systems and more generally for WGS applications in
other organisms.

Availability and implementation: All relevant code is available at https://github.com/farhat-lab/mtb-illumina-wgs-
evaluation.

Contact: maha_farhat@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Illumina short-read whole-genome sequencing (WGS) followed
by alignment to a reference genome is a widely used first analysis
in the identification of genetic variants. Illumina sequencing and
alignment can confidently detect single-nucleotide substitutions
(SNSs) and small insertions or deletions (INDELs) but is limited
in several ways by its short ~100bp read lengths and other
biases. First, short query sequences are challenging to uniquely
align to repetitive or homologous reference regions (Li et al.,
2008; Li, 2014). Second, experimental parameters related to gen-
omic DNA extraction, sequencing chemistry and library prepar-
ation can introduce biases and systematic errors in certain
sequence contexts (Barbitoff er al., 2020; Goig et al., 2020;
Nakamura et al., 2011; Modlin et al., 2021; Ross et al., 2013;
Stoler and Nekrutenko, 2021). For example, regions with high
GC content and/or low sequence complexity may be particularly
prone to PCR-dropout and reduced sequencing coverage (Aird
et al., 2011; Benjamini and Speed, 2012; Modlin et al., 2021).
Third, the use of a single reference genome introduces bias, espe-
cially when the genome being analyzed differs substantially from
the reference sequence (Garrison et al., 2018; Paten et al., 2017).
As the sequenced genome diverges from the reference genome,
short-read alignment becomes increasingly inaccurate and
regions absent from the reference genome are missed or poorly
reconstructed.

In contrast, long-read sequencing can generate high confidence
complete genome assemblies, which can also be used to benchmark
Illumina WGS. For example, long-reads generated by PacBio
sequencing (with lengths on the order of ~10kb) are ideal for
assembling complete bacterial genomes and identifying variants in
repetitive regions (Schmid er al., 2018). Although individual
PacBio reads have a considerably higher per base error rate (10—
15%) than Illumina, the randomly distributed nature of the errors
allows for high coverage sequencing runs to converge to a high ac-
curacy consensus (Rhoads and Au, 2015). More recently, circular
consensus sequencing has further improved PacBio long-read per
base accuracy to levels on par with Illumina (Wenger et al., 2019).
Alternatively, hybrid strategies that combine less accurate long-
reads and short Illumina reads can offer both high base-level ac-
curacy and continuity of the final assembly (De Maio et al., 2019;
Schmid et al., 2018).

Mycobacterium tuberculosis (Mtb) is a globally prevalent
pathogenic bacterium with a ~4.4 Mbp genome known for high
GC content, large repetitive regions and an overall low mutation
rate. Owing to the clonality and stability of the Mtb genome, this
organism is particularly well suited for systematically identifying
the sources of error that arise when short-read data are used for
variant detection. Approximately 10% of the Mtb reference gen-
ome (H37Rv) is regularly excluded from genomic analysis because
it is purported to be more error prone and enriched for repetitive
sequence content (Meehan ez al., 2019). This 10% of the Mtb gen-
ome, hitherto regions of putative low confidence (PLC), span the
following genes/families: (i) PE/PPE genes (N=168), (ii) mobile
genetic elements (MGEs) (N=147) and (iii) 69 additional genes
with identified homology elsewhere in the genome (Coscolla and
Gagneux, 2014). The PE/PPE gene families, named after their con-
served proline-glutamate (PE) or proline-proline-glutamate (PPE)
motifs in their N-terminal domains, have been suggested to play
important roles in virulence and immune modulation but uncer-
tainty regarding their analysis with short-read sequencing has lim-
ited their study (Ates, 2019).

Due to their systematic exclusion from most Mtb genomic
analyses (Coscolla and Gagneux, 2014; Hicks et al., 2018; Holt
et al., 2018), PLC regions are yet to be evaluated systematically
for short-read variant calling accuracy. Here, we use long-read
sequencing data from 36 phylogenetically diverse Mtb isolates
to benchmark short-read variant detection accuracy and study
genome characteristics that associate with erroneous variant
calls.

2 Results

2.1 High confidence MTB assemblies with hybrid short-

and long-read sequencing

For this study, PacBio long-read and Illumina sequencing was per-
formed for 31 clinical Mtb isolates. The resultant data were com-
bined with publicly available paired PacBio and Illumina genome
sequencing of 18 Mtb isolates from two previously published studies
(Chiner-Oms et al., 2019; Ngabonziza et al., 2020). From these
datasets, a total of 38 clinical isolates were selected for having (i)
paired end Illumina WGS with median depth of coverage >40x
across the Mtb reference genome and (ii) no evidence of mixed infec-
tions or sample swaps (Supplementary File S2). We performed de
novo genome assembly and iteratively polished each assembly with
the PacBio and Illumina reads generating a complete circular assem-
bly for 36/38 isolates. To evaluate the accuracy of the final assem-
blies, we examined the corrections made during the Illumina
polishing step (Supplementary Results). We found that 98% correc-
tions made through short-read polishing pertained to erroneous 1 bp
INDELs, which is in line with the expected error profile of PacBio.
Only 2% of the corrections were SNVs (median of 0 SNV correc-
tions, interquartile range: 0-2, across the 36 assemblies). The final
set of 36 high confidence completed genome assemblies spanned the
Mtb global phylogeny (Fig. 1 and Supplementary Fig. S2).

2.2 Empirical base-level performance of lllumina

To measure the consistency and accuracy of Illumina genotyping
across the Mtb genome, we defined the empirical base-level recall
(EBR) metric for each position of the H37Rv reference genome
(4.4 Mb, Supplementary File S6). EBR was calculated as the propor-
tion of isolates for which Illumina variant calling made a confident
variant call that agreed with the ground truth, hence a site with a
perfect (1.0) EBR score requires Illumina read data to pass the de-
fault quality criteria (Section 4), and then agree with the PacBio
defined ground truth for 100% of the isolates (Examples in Fig. 2).

To evaluate EBR within our dataset, we used a variant calling
pipeline consisting of BWA-mem for alignment and Pilon for variant
calling. This decision was based on the published performance of
Pilon compared with other tools applied to Mtb genomes (Walker
et al., 2014). To further confirm the generalizability of our findings
using the chosen pipeline, we benchmarked 15 combinations of 3
aligners and 5 variant callers (Koboldt ez al., 2012; Li, 2011, 2013,
2018; Langmead and Salzberg, 2012; Poplin et al., 2018; Walker
et al., 2014; Fig. 3 and Supplementary Figs 9 and 10). We found
that using the BWA-mem aligner and the Pilon variant caller (BWA-
Pilon) demonstrated the highest overall recall of SNSs and small
INDELSs while maintaining precision above 99%. Complete bench-
marking results for all 15 tested pipelines can be found in
Supplementary Results.

EBR was significantly lower within PLC regions (mean EBR =
0.905, N=469 501bp) than the rest of the genome (mean EBR =
0.998, N=3 942 031 bp, Mann-Whitney U-test, P < 2.225¢—308)
(Fig. 4A and Supplementary Table S1). But EBR was not consistent-
ly low across PLC regions, with 67% of PLC base positions having
EBR > 0.97. EBR averaged by gene (gene-level EBR) also showed
heterogeneity across PLC regions with 62.6%, 61.3% and 82.6%,
respectively, of the MGEs, PE/PPE and previously classified repeti-
tive genes having gene-level EBR >0.97 (Fig. 4B, Supplementary
Fig. S3, Supplementary Tables S2 and S3 and Supplementary File
S7). Across all non-PLC genes (N =3695) the mean gene-level EBR
was 0.999, and among these only 14 non-PLC genes had a gene-
level EBR < 0.97. The top five lowest EBR non-PLC genes are
cysA2, cysA3, Rv0071, Rv0072 and Rv0073, representing genes
which have typically been included in analysis despite inconsistent
variant calling evaluation.
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Fig. 1. Overview of 36 clinical Mtb isolates with completed genome assemblies. (A)
Maximum likelihood phylogeny of Mtb isolates with PacBio complete genome
assemblies. (B) Representative isolates from each lineage sampled from the whole-
genome sequence alignment between the H37Rv reference genome and all com-
pleted circular Mtb genome assemblies. The complete alignment is visualized in
Supplementary Fig. S2. The whole-genome multiple sequence alignment was per-
formed using the progressiveMauve (Darling et al., 2010) algorithm. Each contigu-
ously colored region is a locally collinear block (LCB), a region without
rearrangement of homologous backbone sequence

2.3 Characteristics of regions with low empirical

performance

Across all 36 isolates evaluated, we observed 1 825 385 sites where
Mlumina failed to confidently agree with the inferred ground truth.
These low recall sites were spread across 267 471 unique positions
of the H37Rv reference genome with EBR < 1. Of these low EBR
positions, 5962 positions (2.2%) were poorly recalled in nearly all
isolates (EBR < 0.05). We explored the underlying factors associ-
ated with low recall at these positions using the associated filter and
quality tags provided by the variant caller, Pilon (Section 4 and
Supplementary Table S4). Across the 1 829 181 low recall sites, the
distribution of outcomes included: (i) 62.78% low coverage
(LowCov), (ii) 30.74% falsely called as deleted (Del) with or with-
out low coverage or other tags, (iii) 6.24% were missed deletions
tagged as PASS, (iv) 0.03% (669 sites) were false base calls (refer-
ence or alternate) tagged as PASS and (v) 0.25% remaining positions
were labeled as ambiguous (Amb) due to evidence for two or more
alleles at a frequency >25%.

Among all low recall sites annotated with a low coverage tag: (i)
45.8% were due to insufficient total coverage of aligned reads
(sequencing bias or extreme sequence divergence, total depth < §),
(ii) 27.6% lacked uniquely aligning reads [repetitive sequence con-
tent, mapping quality (MQ) = 0] and (iii) 26.6% were due to low
confidence paired-end alignments that did not pass Pilon’s heuristics

[likely structural variation (SV) causing improper paired-alignment
orientation].

2.4 Repetitive sequence content

We identified repetitive regions in H37Rv and evaluated their rela-
tionship with low EBR using the pileup mappability metric (Section
4). Pileup mappability scores range from 0 to 1, where 1 represents
a genomic position where all overlapping sequence K-mers are
unique in the genome of interest within a similarity threshold of E
mismatches. We calculated pileup mappability conservatively with a
K-mer size of 50 base pairs and up to 4 mismatches (P-Map-K50E4,
Supplementary File S6). P-Map-K50E4 is lower in PLC regions
(mean = 0.856) than non-PLC regions (mean = 0.997) (Mann—
Whitney U-Test, P <0.001) (Fig. 4A). Yet, 69.7% of positions in
PLC regions had P-Map-K50E4 scores of 1, indicating uniquely
alignable sequence content even with sequence lengths as short as
50bp (Supplementary Table S5). At the gene level, PE/PPEs and
MGEs had lower P-Map-K50E4 than the rest of the genome
(Wilcoxon, P <2e—308) (Fig. 4B, Supplementary Table S6 and
Supplementary File S7) but 34.5% and 32.7% of these genes, re-
spectively, had perfect (1.0) P-Map-K50E4 across the entire gene
body. Previously identified repetitive genes (N = 69) had a gene-level
P-Map-K50 below 1, which is expected given that this was their
defining feature (Coscolla et al., 2015), but for the majority (51 of
69), median mappability was greater than 0.99, indicating that a
high proportion of their sequence content was actually unique. Non-
PLC functional categories had a median gene level P-Map-
K50E4 =1.0 (Supplementary Fig. S4 and Supplementary Table S7).
Genome-wide P-Map-K50E4 and EBR scores were moderately cor-
related (Spearman’s p=0.47, P <2e—308). Thirty percent of all
genome positions with EBR < 1.0 also had a P-Map-K50E4 score
below 1.0.
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Fig. 3. Variant calling performance across five variant calling pipelines using the
BWA-mem aligner. (A) SNS variant calling performance was evaluated when using
the BWA-mem aligner with the following variant calling pipelines: Pilon, mpileup-
call, Varscan2, GATK-HaplotypeCaller-HardFiltering, and GATK-
HaplotypeCaller-CNN. (B) INDEL (1-15 bp) variant calling performance was eval-
uated when using the BWA-mem aligner with the five variant calling pipelines listed
above. The mean precision and recall across all 36 isolates were calculated for each
set of filtering parameters evaluated. All benchmarking results at the aggregate and
individual sample level can be found in Supplementary File S24

2.5 Sequencing bias in high GC-content regions

Across several sequencing platforms, high-GC content associates
with low sequencing depth due to low sequence complexity, PCR
biases in the library preparation and sequencing chemistry
(Barbitoff et al., 2020; Goig et al., 2020; Nakamura et al., 2011;
Ross et al., 2013). We assessed the sequencing bias of Illumina and
PacBio across each individual genome assembly using the relative
depth metric (Ross et al., 2013) (the depth per site divided by aver-
age depth across the entire assembly) to control for varying depth
between isolates. On average with Illumina, 1.2% of the genome
had low relative depth (<0.25), while for PacBio sequencing the
average proportion of the genome with low relative depth was
0.0058% (Mann-Whitney U-test, P < 0.001). Both sequencing tech-
nologies demonstrated coverage bias against high-GC regions, with
more extreme bias for Illumina than PacBio (Supplementary Fig. S5
and Supplementary File S8). Across all base pair positions with local
GC% >80%, using a window size of 100bp, the mean relative
depth was 0.79 for PacBio and 0.35 for Illumina. Genome-wide,
EBR was significantly negatively correlated with GC content
(Spearman’s p=—0.12, P<2e—308), but this correlation was
weaker than that observed with sequence uniqueness (P-Map-
K50E4, as above Spearman’s p =0.47).

2.6 False positive SNS variant calls

Next, we focused specifically on regions with high numbers of false
positive SNSs identified through comparison with the ground-truth
variant calls. We examined the distribution of false positive SNS
calls across the H37Rv reference genome using a realistic intermedi-
ate variant filtering threshold of mean MQ at the variant site (MQ
> 30, Fig. 5 and Supplementary File S9). The top 30 regions ranked
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ity (P-Map, K =50, E =4) scores of PLC and non-PLC regions. (B) The distribution
of gene-level mean EBR and P-Map (K=350, E=4) between PLC and non-PLC
regions. The pe and ppe gene families (PE/PPEs) and MGEs, which make up 82% of
PLC genes, demonstrated significantly lower mean EBR and pileup mappability
than other non-PLC genes

by the number of false positives (23 genes and 7 intergenic regions)
contained 89.4% (490/548) of the total false positive calls and
spanned 65 kb, 1.5% of the H37Rv genome. Of these 30 false posi-
tive hotspot regions, 29 were either a PLC gene or an intergenic re-
gion adjacent to a PLC gene: 17 PE/PPE genes, 3 MGEs, 2 were
previously identified repetitive genes (Coscolla et al., 2015) and 7
PLC-adjacent intergenic regions. Across all false positives, the PE-
PGRS and PPE-MPTR sub-families of the PE/PPE genes were re-
sponsible for a large proportion (45.4%) of total false positive vari-
ant calls. Of all the 556 false positives SNSs evaluated (MQ > 30),
only 14 were detected across 4 non-PLC genes: Rv3785 (9 FPs),
Rv2823c (1 FP), plsB2 (2 FPs) and Rv1435c (2 FPs).

2.7 Masking to balance precision and recall

A common approach for reducing Mtb false positive variant calls is
to mask/exclude all PLC regions from variant calling. Here, we
investigated two variations on this that utilize directly reference se-
quence uniqueness and variant quality metrics. We compared: (i)
masking of regions with non-unique sequence, defined as positions
with P-Map-K50E4 < 1, (ii) No a priori masking of any regions and
(iii) masking of all PLC genes (the current standard practice). We
then filtered potential variant calls by whether the variant passed all
internal heuristics of the BWA-Pilon-based variant calling pipeline
(Section 4) and studied the effect of varying the mean MQ filtering
threshold from 1 to 60 (Fig. 6). We computed the F1-score, precision
and recall of detection of SNSs and small indels (<15 bp) for each
masking schema and MQ threshold across all 36 clinical isolates
(Section 4 and Supplementary File $10).

For SNSs, mean recall ranged from 63.6% to 89.0% and preci-
sion ranged from 98.5% to 99.97% across the three schemas
(Fig. 6A). At a threshold of MQ > 40, we observed the following
mean SNS performances: (i) Masking non-unique regions, F1=0.87
(precision = 99.8%, recall = 77.9%), (ii) no masking of the genome,
F1=0.92 (precision = 99.1%, recall = 85.8%) and (iii) masking
PLC genes, F1=0.82 (precision = 99.6%, recall = 70.2%). Based
on F1 score, no masking of the genome had the highest overall per-
formance, but masking non-unique regions had the highest preci-
sion. Decreasing the MQ threshold to an optimal value for F1 score
resulted in similar performance for Schema-1 and -3, but a balance
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For INDELs (1-15bp), precision was comparable to SNSs
(96.2-100%, Fig. 6B), while recall was lower (48.9-82.4%). At a
threshold of MQ > 40, we observed the following mean INDEL per-
formances: (i) masking non-unique regions, F1=0.83 (precision =
98.2, recall = 72.1%), (ii) no masking of the genome, F1=0.89
(precision = 98.9, recall = 80.8%) and (iii) masking PLC genes,
F1=0.76 (precision = 99.1%, recall = 61.5%). Variant calling per-
formance of short (1-5 bp) INDELs was comparable to SNSs and
the limited performance for INDELSs was largely driven by low recall
of longer (6-15 bp) INDELs (Supplementary Fig. S6 and
Supplementary File S11).

2.8 Structural variation

We assessed the effect of SV, of length >50bp, a common source of
reference bias, on variant calling performance (Section 4). Detected
SVs included the known regions of difference associated with Mtb
lineages 1, 2 and 3 (RD239, RD181 and RD750, respectively)
(Sharifipour et al., 2016; Thomas et al., 2011; Supplementary Fig.
S7). Across all 36 isolate assemblies, we observed a strong negative
correlation between average nucleotide identity to the H37Rv refer-
ence and the number of SVs detected (Spearman’s R = —0.899,
p < 1.1e—13, Supplementary Fig. S8). Additionally, we observe that
70% of detected SVs overlapped with regions with low pileup
mappability (P-Map-K50E4 < 1.0).

We compared SNS variant calling performance by proximity to
an SV and sequence uniqueness (Fig. 7 and Supplementary File $12),
dividing variants into four groups: (1) SNSs in regions with perfect
mappability (Pmap-K50E4 =1) with no identified SV (87.3% of
total 47 412 SNSs), (2) SNSs in regions with low mappability
(Pmap-K50E4 < 1) with no identified SV (10.9% of SNSs), (3) SNSs
in regions with perfect mappability within 100 bp of any identified
SV (0.8% of SNSs) and (4) SNSs in regions with low mappability
within 100 bp of any identified SV (1.0% of SNSs). Variant calling
performance decreased most sharply in regions with evidence for
SV, especially when sequence content is also non-unique (Region
types 3 and 4, respectively). Additionally, region type (2), or low
mappability sequence content with no nearby SV, demonstrated
reduced performance.

2.9 Refined regions of low confidence

Based on the presented analysis, we define a set of refined low confi-
dence (RLC) regions of the Mtb reference genome. The RLC regions
are defined to account for the largest sources of error and uncer-
tainty in analysis of Illumina WGS, and is defined as the union of

Recall

Fig. 6. Mean SNV and INDEL variant calling performance across different masking
approaches. (A) SNS variant calling performance was evaluated across the following
three schemas: (1) masking of regions with non-unique sequence, as defined as posi-
tions with P-Map-K50E4 < 1, (2) no a priori masking of any regions, and compared
with (3) masking of all PLC genes (the current standard practice). (B) short INDEL
(1-15 bp) variant calling performance was evaluated across the same schemas. The
orange diamonds represent the mean precision and recall using a MQ threshold of
40 for both (A) and (B). Shaded regions represent the SEM of precision across all 36
isolates evaluated. For all masking approaches evaluated, the MQ thresholds eval-
uated ranged from 1 to 60. Complete benchmarking results can be found for each
individual isolate in Supplementary File S$10

(A) The 30 false positive hot spot regions identified (65 kb), (B) low
recall genomic regions with EBR < 0.9 (142 kb with 30kb overlap
with (A)) and (C) regions ambiguously defined by long-read
sequencing (Section 4, 16 kb). We additionally evaluated the overlap
between all detected SVs and the three RLC categories: RLC subset
(A) overlapped 28% of SVs, RLC subset (B) overlapped with 65%
of SVs and RLC subset (C) overlapped with 14% of SVs.

In total, the proposed RLC regions account for 177 kb (4.0%) of
the total H37Rv genome (Supplementary File S13) and their mask-
ing represents a conservative approach to variant filtering. Across
the 36 isolates evaluated, masking of the RLC regions with filtering
threshold of MQ > 40 for BWA-Pilon’s SNS variant calling would
produce a mean F1-score of 0.882, with a mean precision of 99.9%
and a mean recall of 78.9%.

3 Discussion

The analysis and interpretation of Illumina WGS is critical for both
research and clinical applications. Here, we study the ‘blindspots’ of
paired-end Illumina WGS by benchmarking reference-based variant
calling accuracy using 36 Mtb isolates with high confidence com-
plete genome assemblies. Overall, our results improve our general
understanding of the factors that affect Illumina WGS performance.
In particular, we systematically quantify variant calling accuracy
and the effect of sequence uniqueness, GC-content, coverage bias
and SV. For Mtb, we demonstrate that a much greater proportion of
the genome can be analyzed with Illumina WGS than previously
thought and provide a systematically defined set of low confidence/
troublesome regions for future studies.

Approaches to benchmarking variant calling from Illumina WGS
vary by field and species of interest and more standardization is
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Fig. 7. SNS variant calling performance stratified by proximity to structural variants
and low pileup mappability sequence. Mappability is dichotomized at Pmap-
KS50E4=100% or <100%. Regions within 100 bp of a SV categorized as ‘with SV’.
Mean precision and recall of SNS detection is plotted for the following genomic
contexts: (1) regions with high mappability with no SV (blue), (2) regions with low
mappability and no SV (green), (3) regions with high mappability with SV (orange)
and (4) regions with low mappability and with SV (red) The standard error of the
mean (SEM) for precision is shaded for each curve. Orange diamonds represent the
precision and recall using the same MQ threshold of 40

needed (Walter et al., 2020). Variant calling accuracy is usually
benchmarked through in silico variant introduction with read simu-
lation or otherwise using a small number of reference genomes that
seldom capture the full range of diversity within a particular species.
Our benchmarking exercise is unique in using a large and diverse set
of high-quality genome assemblies that are built using a hybrid long-
and short-read approach. Our results further support existing evi-
dence that PacBio long-read sequencing is much less prone to cover-
age bias and can generate complete circular bacterial assemblies
bridging repetitive regions in the majority of isolates with a median
depth >180x. The assemblies we generate will be an important
community resource for benchmarking future variant calling or
other WGS-based bioinformatics tools.

The benchmarking results clearly demonstrate that low variant
recall is a major limitation of reference-based Illumina variant call-
ing, which achieved at most 89% recall at the optimal F1 score.
Precision of variant calling using Illumina on the other hand was
very high, with the small number of false variant calls concentrated
in repetitive and structurally variable regions. We find that the best
balance between precision and recall is achieved by tuning the vari-
ant mean MQ threshold, i.e. confidence of the read mapping. The
specific MQ threshold will likely vary by species. For a GC-rich or-
ganism with highly repetitive sequence content like Mtb, a MQ
threshold of 40 achieved 85.8% recall and 99.1% precision.

Studying specific sources of low recall from Illumina, we identified
insufficient read coverage to be the major driver, due not only to re-
petitive sequence content but also due to high-GC content and other
sources of coverage bias. We further identified regions near SV to be
particularly prone to low recall and precision. Of the variants we
study, longer INDELs were recalled at lower rates than SNSs or
INDELs <6 bp in length. These observations support ongoing efforts
by the bioinformatics research community to build graph-reference
genomes and align short reads to these graphs. Using a graph pan-
genome built with a diverse set of Mtb reference genomes, there is
great potential to both increase recall and precision of variant calling
in structurally divergent regions of the genome.

An alternative and generalizable approach to maximize precision
of reference-based Illumina variant calling is to mask repetitive (low
mappability) regions. This simple approach does not require tuning
filtering thresholds against a ground truth set of assemblies and
relies instead on computing the pileup mappability metric across the
reference sequence. This fills a gap for variant calling in other organ-
isms using short-read mapping where low confidence regions may
not already be defined. Compared with tuning against a ground-
truth set of assemblies, this masking approach is conservative: for
Mtb and filtering by MQ > 40 with the BWA-Pilon variant calling
pipeline, precision is slightly higher at 99.8% versus 99.1%, respect-
ively, and recall is lower at 77.9% versus 85.8%, respectively.

Given Mtb’s genomic stability and clonality, this organism is
particularly well suited for systematically identifying the sources of
variant calling error from short-read data. Although 10.7% of the
Mtb reference sequence is commonly excluded from genomic ana-
lysis, our results demonstrate that more than half of these regions
are accurately called using Illumina WGS. For the PE/PPE family, of
highest concern for sequencing error, nearly one-third (52/168) had
perfect mappability and near perfect gene-level EBR (>0.99). The
PE/PPE genes with poor performance were largely the PE_PGRS and
PPE_MPTR sub-families. Only 65kb (1.5%) of the reference gen-
ome H37Rv were responsible for the majority of false positives
(89.2% of false positives across 36 isolates).

We present a set of RLC regions of the Mtb genome, designed to
account for the largest sources of error and uncertainty in analysis
of Illumina WGS (Supplementary File S13). Long-read data can
allow RLC regions to be defined for other species to improve accur-
acy of Illumina WGS. The Mtb RLC regions span 4.0% of the refer-
ence genome and their masking provides a conservative approach to
variant calling, appropriate for applications where precision is pri-
oritized over recall. At the same time, RLC region masking offers
higher recall than the current field standard where more than 10%
of the Mtb reference genome is masked. One limitation is that RLC
regions were largely defined based on EBR of Illumina sequencing in
our dataset that was restricted by design to 100+ bp paired-end
sequencing. We do not recommend the use of these RLC regions for
Illumina sequencing at shorter read lengths or single-end reads.
Instead we make available a more appropriate masking scheme of
RLC regions + low pileup mappability (Supplementary File S14).
Another limitation is that we defined RLC regions using the same
set of high confidence assemblies evaluated. The reported precision
and recall with RLC region masking are thus likely overestimates.
On the other hand, we expect precision and recall estimates of the
alternative approaches of masking low mappability regions or filter-
ing at MQ > 40 to be more robust.

In summary, we show that Illumina WGS has high precision but
limited recall in repetitive and structurally variable regions when
benchmarked against a diverse set of complete assemblies. We dem-
onstrate that filtering variants based on variant quality annotations,
such as mean MQ, allows for a greater range of precision and recall
than masking of specific low confidence regions of the genome.
Masking repetitive sequence content is a second generalizable solu-
tion, albeit a more conservative one, that maintains high precision.
For Mtb, these two approaches increase recall of variants by 15.6%
and 7.7%, respectively, with a minimal change in precision (—0.5%
and +0.1%, respectively, at MQ > 40), allowing high variant recall
in >50% of regions previously considered by the field to be error-
prone. Our results improve variant recall from Illumina data with
broad implications for clinical and research applications of sequenc-
ing. Improving Illumina variant recall has significant implications.
For clonal Mtb, for example transmission inference using genomic
data often relies on a very small number of SNS or INDEL differen-
ces between genome pairs. The observed large increase in recall we
observe has the potential to substantially improve transmission in-
ference (Jajou et al., 2019) and/or our understanding of genome sta-
bility and adaptation.

4 Materials and methods

4.1 Summary of sequencing data

From a combination of newly sequenced clinical isolates and public-
ly available data (Supplementary Methods), 38 Mtb isolates were
selected for having (i) lllumina WGS with paired-end reads with a
depth of coverage >40x across the Mtb reference genome (H37Rv).
All aggregated metadata and SRA/ENA accessions for PacBio and
Illumina sequencing data associated with this analysis can be found
in Supplementary File S15. DNA extraction, sequencing, assembly
and variant calling methods are further detailed in Supplementary
Methods.
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4.2 Calculation of EBR of lllumina variant calling

The goal of the EBR for score is to summarize the consistency by
which Illumina WGS correctly evaluated any given genomic pos-
ition. The EBR for a genomic position was defined as the proportion
isolates where Illumina WGS confidently and correctly agreed with
the PacBio defined ground truth. The details of the EBR calculation
are described in Supplementary Methods. The base-level EBR scores
are available in TSV and BEDGRAPH format for easy visualization
in a genome browser (Supplementary Files S6 and S18).
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