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Abstract

Motivation: Intrinsically disordered proteins (IDPs) are involved in numerous processes crucial for living organisms.
Bias in amino acid composition of these proteins determines their unique biophysical and functional features.
Distinct intrinsically disordered regions (IDRs) with compositional bias play different important roles in various bio-
logical processes. IDRs enriched in particular amino acids in human proteome have not been described consistently.

Results: We developed DisEnrich—the database of human proteome IDRs that are significantly enriched in particu-
lar amino acids. Each human protein is described using Gene Ontology (GO) function terms, disorder prediction for
the full-length sequence using three methods, enriched IDR composition and ranks of human proteins with similar
enriched IDRs. Distribution analysis of enriched IDRs among broad functional categories revealed significant overre-
presentation of R- and Y-enriched IDRs in metabolic and enzymatic activities and F-enriched IDRs in transport. About
75% of functional categories contain IDPs with IDRs significantly enriched in hydrophobic residues that are import-
ant for protein–protein interactions.

Availability and implementation: The database is available at http://prodata.swmed.edu/DisEnrichDB/.

Contact: Kirill.Medvedev@UTSouthwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Intrinsically disordered proteins (IDPs) are macromolecules lacking
distinct three-dimensional (3D) structure or containing a combin-
ation of ordered and intrinsically disordered regions (IDRs) under
natural conditions. Two decades ago, the first hypothesis of pro-
teins’ natural disorder was raised, and since that time it has been
developed into a new, fast evolving field (Tompa, 2012). Today, we
value the importance of these proteins that are involved in a large
variety of crucial processes in a living cell (Uversky, 2021).
Although estimations of IDP prevalence in different proteomes vary,
it is commonly accepted that the abundance of disorder generally
increases with an organism’s complexity (Peng et al., 2015; Xue
et al., 2012a, b). Indeed, around 25% of eukaryotic proteins are pre-
dicted to be mostly disordered, and about 50% of them contain long
IDRs (Peng et al., 2015). Human proteome is estimated to have up
to 50% of disordered residues (Oldfield and Dunker, 2014). Human
IDPs have been extensively studied due to their importance for a
large variety of crucial processes (Dunker et al., 2008; Dyson and
Wright, 2005; Iakoucheva et al., 2002). The abundance of IDPs in

living organisms [and viruses (Xue et al., 2012a)] emerged due to a
lack of rigid secondary structure, which allowed more promiscuous
binding, faster evolution and larger functional variety than their
structural protein counterparts (Uversky, 2021; Xie et al., 2007).
For a long period of time, the structure–function paradigm with
‘lock and key’ explanation of enzymatic function has remained un-
questioned due to the determination of static protein 3D structures
that supported the concept of a rigid active site (lock) binding a sin-
gle substrate (key; Uversky and Dunker, 2010). However, disor-
dered proteins, which function outside of this ‘lock and key’
paradigm, have shifted our explanation of enzyme function toward
Koshland’s induced fit theory where a flexible active site can adapt
to substrate binding and allow the reaction to take place (Koshland,
1958). Thus, functioning of IDPs outside of the limits of ‘lock and
key’ paradigm allows them to be multifunctional, non-specific bind-
ers, which are commonly involved in regulatory and signaling proc-
esses (Tompa, 2012; Wright and Dyson, 2015). Moreover, proteins
with long disordered regions have been correlated with such func-
tions as differentiation, transcription, cell cycle and RNA processing
(Tompa, 2012; Xie et al., 2007). Many IDPs are involved in
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processes linked to various diseases and might contain disease-
causing mutations, with up to 25% of disease-associated missense
mutations located in IDRs (Vacic and Iakoucheva, 2012).
Involvement of IDPs in such processes as carcinogenesis, protein ag-
gregation and amyloid formation makes them important targets for
the improvement of various diseases administration (Uversky et al.,
2008).

IDP amino acid sequences are characterized by distinct compos-
itional biases relative to ordered proteins, namely enrichment in
polar amino acids and deficiency in hydrophobic amino acids (van
der Lee et al., 2014). This feature is the key to the functional charac-
teristics of these proteins. Based on the physico-chemical properties
of amino acids, the concept of order- and disorder-promoting resi-
dues has been proposed (Williams et al., 2001). The majority of
order-promoting residues are hydrophobic and usually reside within
the hydrophobic core of the ordered protein structure, whereas
disorder-promoting residues are polar and reside on the surface of
ordered structures (Campen et al., 2008). However, proline repre-
sents an exception to this rule: it is a hydrophobic residue; however,
it is the most disorder-promoting due to its unique chemical struc-
ture (Theillet et al., 2013). Distinct compositional biases in sequence
have led to inability of IDPs to fold independently (Lise and Jones,
2004; van der Lee et al., 2014). However, due to distinct subsets of
sequences (sequence archetypes), some structural characteristics can
be identified within IDPs that are capable of collapsing and forming
compact globules (Crick et al., 2006) or participating in liquid–li-
quid phase separation that help define proteinaceous membrane-less
organelles such as stress granules (Uversky, 2021). The most import-
ant sequence archetypes for IDPs are polar tracts, polyampholytes
and polyelectrolytes (Mao et al., 2013). Polar tracts are enriched in
polar amino acids and deficient in charged and hydrophobic resi-
dues. They are capable to collapse and form globules that lack sig-
nificant secondary structure preferences (Crick et al., 2006) and can
be as compact as well-folded domains (Mao et al., 2013). Moreover,
polar tracts have distinct effects on amyloid formation and are im-
portant for phase separation (Halfmann et al., 2011). Amino acid
composition of polyelectrolytes is biased toward charge residues of
one type. This sequence archetype can reverse the preference for col-
lapsed structure of IDPs (Mao et al., 2013). And finally, polyampho-
lytes are also enriched in charged residues but contain
approximately equal portions of positively and negatively charged
amino acids (Das and Pappu, 2013). Here, we studied IDRs in the
human disordered proteome that are significantly enriched in differ-
ent amino acids and calculated their over- and underrepresentation
in biological processes (BPs). We developed the DisEnrich database,
where this information is available for the whole human proteome
along with scored comparison of enriched IDRs between proteins.

2 Materials and methods

2.1 Prediction of disordered consensus for human

proteome
We used protein sequences from the reference human proteome
from UniProt KB (UniProt Consortium, 2019), proteome ID:
UP000005640. Eighty-five collagen proteins were excluded from the
dataset. Three methods were used to predict disorder regions:
DISOPRED (cutoff¼0.5; Ward et al., 2004), IUPred2A
(cutoff¼0.5; M�eszáros et al., 2018) and SPOT-disorder
(cutoff¼0.46; Hanson et al., 2017). Regions that can be character-
ized as: (i) signal peptide; (ii) transit peptide; (iii) transmembrane
segment; (iv) intramembrane segment were excluded from the ana-
lysis. This information was retrieved for each protein from UniProt
KB. Minimal disorder region length was set to 10 residues. We also
tested a longer minimal IDR cutoff of 25 residues (as suggested by
Mei et al. (2014)). Our analysis showed that increase of minimal
IDR length does not significantly affect the functional distribution
of human IDPs—top six overrepresented BPs remain the same
(Supplementary Fig. S1). Predicted disordered consensus (DisEnrich
consensus) was generated in the following way: if any of two meth-
ods, mentioned above, predicted a particular residue as disordered,

it was considered as disordered. Additionally, if there are up to three
ordered residues between two disorder regions and if any method
predicted these residues as disordered, we consider them as disor-
dered. Additionally, disordered consensus from MobiDB version
3.1.0 was used (Piovesan et al., 2018).

2.2 Identification of enriched IDRs
To identify IDRs that are enriched in a particular amino acid com-
bination (amino acid category), two algorithms were used: ‘win-
dows’ algorithm and fLPS (Harrison, 2017). ‘Windows’ algorithm
was implemented as a script, which slides the window of a particular
size along the protein sequence and finds IDR enriched in a particu-
lar amino acid category. IDR is considered enriched if the frequency
of amino acid category inside this region is higher or equals to the
frequency cutoff. For this algorithm, we used three window sizes:
10, 15 and 20 residues. Frequency cutoff was defined by cumulative
binomial frequency for each amino acid category. Binominal fre-
quency was calculated using the overall frequency of amino acid cat-
egory in the whole disordered proteome. Overall frequency of any
particular amino acid was calculated as the ratio of occurrences of
this amino acid in all IDRs in the proteome over the overall length
of all IDRs in the proteome. As amino acid categories, we consid-
ered single amino acids, as well as all their combinations as pairs
and triplets. For each amino acid category, we used a cumulative bi-
nomial frequency cutoff which is less or equals 0.01. Additionally, if
a category consists of more than one amino acid, we set cumulative
binomial frequency cutoff to 0.05 for each single amino acid in this
category.

fLPS algorithm requires minimal and maximal window size val-
ues, which cannot be equal. Similarly, we used three window sizes
for fLPS: 10–11, 15–16 and 20–21 residues. As background frequen-
cies, we used overall amino acids frequencies in disordered proteome
for DisEnrich and MobiDB consensuses. Finally, enriched IDRs
obtained by three window sizes for a particular protein and amino
acid category were combined to generate total enriched IDRs. All
intersected regions were merged together. Most of the enriched
IDRs are around 20 residues (Supplementary Fig. S3). However,
they originate from significantly longer IDRs and only a very small
number of enriched IDRs (<1%) originate from IDRs shorter than
30 residues (Supplementary Fig. S4).

2.3 Analysis of IDP-involved BPs
Gene Ontology (GO; Ashburner et al., 2000) BP information was
retrieved for each protein from UniProt KB (UniProt Consortium,
2019). BP GO terms were mapped to GO terms from a generic slim
subset. Overall there are 69 top level BPs in GO generic slim subset.
One protein can take part in several BPs. We limit our definition of
IDPs to proteins with disordered content no <70% of the protein’s
length. We tested three different cutoffs for disordered content:
60%, 70% and 80%. Our analysis did not reveal significant differ-
ences in functional distribution of human IDPs—top five overrepre-
sented BPs remain the same (SupplementaryFigs S1 and S2). For
70% or more disordered proteins, we checked over and underrepre-
sentation for each BP using the following algorithm. Over and
underrepresentation of proteins with disordered content no <70%
in BPs were calculated as ratio of observed and expected frequen-
cies. The observed frequency in each BP was calculated as a ratio of
the total number of the proteins with disordered content no <70%
in a particular BP over the sum of all proteins with disordered con-
tent no <70% mapped to any BP. The expected frequency in each
BP was calculated as ratio of total number of proteins with IDRs
(with any length of disordered content) found for each particular BP
to the total amount of proteins with IDRs mapped to any BP.
Significance of overrepresentation was checked using chi-square test
(P-value�0.0001 is considered significant). Statistical analysis was
conducted using the R package, v3.6.0 (R Core Team, 2013).
Amino acid categories, which showed significant overrepresentation
in a particular BP in both disordered consensuses and obtained using
both algorithms, are shown in Supplementary Table S1. All BPs
from GO generic slim subset were grouped into five broad
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categories: metabolic and enzymatic, signaling, structural, transport
and regulation. Over and underrepresentation of proteins with
enriched IDRs in broad functional categories were calculated as
ratio of observed and expected frequencies. The observed frequency
in each broad functional category was calculated as a ratio of the
total number of BPs with IDRs enriched in particular amino acid in
this broad functional category over the sum of BPs with IDRs
enriched in particular amino acid in all broad functional categories.
The expected frequency in each broad functional category was cal-
culated as ratio of total number of BPs with IDRs enriched in all
amino acids to the total amount of BPs with IDRs mapped to any
functional category. Sankey diagram was built using networkD3 li-
brary for R package v3.6.0. Significance of overrepresentation was
calculated using the chi-square test (P-value�0.0001 is considered
significant).

2.4 Cosine similarity calculation
For each amino acid category ‘share of enriched regions in disor-
dered part of the protein’ (S) was calculated as a ratio of length of
enriched IDR to the overall length of IDRs in this protein. Each pro-
tein was represented as a vector of S values for all observed amino
acid categories in all datasets. We studied four datasets, obtained by
combination of two disordered consensus (DisEnrich and MobiDB)
and two algorithms of defining enriched IDRs (‘windows’ and
fLPS). Protein vectors were compared pairwise, all against all.
Cosine similarity between vectors of proteins A and B was calcu-
lated using following equation:

similarity ¼ cos hð Þ ¼ A � B
Aj jj j � Bj jj j

¼

Pn
i¼1

AiBiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

A2
i

s ffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

B2
i

s (1)

.

2.5 Identification of enriched IDRs sequence archetypes

and high-frequency repeats
Three sequence archetypes were considered for enriched IDRs: polar
tracts, polyelectrolytes and polyampholytes (van der Lee et al.,
2014). IDRs enriched in polar amino acids and deficient (frequency
inside the IDR � 0.1) in charged and hydrophobic ones were con-
sidered as polar tracts. IDRs enriched in charged residues of one
type (positive or negative) were considered as polyelectrolytic. IDRs
were considered as polyampholytic if it is enriched in charged resi-
dues, but the number of positive and negative charged is nearly
equal (the ratio of positive/negative is no lesser than 0.8 and no
higher than 1.2). Additionally, if the frequency of residues, in which
a particular IDR is enriched, is higher than or equal to 0.9, this IDR
is considered as a high-frequency repeat. Over and

underrepresentation were calculated based on the length of IDRs.
Significance of overrepresentation was checked using chi-square test
(P-value�0.0001).

3 Results and discussion

3.1 Human proteome disordered consensus
We predicted IDRs for 20 150 proteins from the reference human
proteome (UP000005640) retrieved from UniProt KB (UniProt
Consortium, 2019) using an approach described in Section 2. To
compare results obtained using our DisEnrich disordered consensus,
we additionally retrieved disordered consensus for human proteome
from MobiDB version 3.1.0 (Piovesan et al., 2018). In this study, we
considered 10 residues as minimal IDR length. IDRs smaller than 10
residues were not considered. We tested a longer minimal IDR cut-
off (25 residues as suggested by Mei et al. (2014)) and showed that
increase of minimal IDR length did not change our main conclusions
(see Section 2). Using this cutoff, we obtained 15 935 proteins with
IDRs for DisEnrich consensus dataset (79%) and 11 719 proteins
with IDRs for MobiDB consensus dataset (58%). Comparison of
IDR length distribution between the two datasets revealed differen-
ces for short, disordered regions (Fig. 1A). MobiDB-lite, one of the
main methods used for disorder prediction in MobiDB, utilizes 20
residues as the minimal IDR (Necci et al., 2017). However, overall
MobiDB consensus might contain IDRs even shorter than 10 resi-
dues. Comparison of protein contents of both datasets revealed
11 476 common proteins that contain disordered regions (Fig. 1B).
It constitutes 98% of the MobiDB dataset and 72% of our predicted
dataset (DisEnrich).

3.2 DisEnrich—a database of enriched disordered

regions in human proteins
We developed the DisEnrich database (http://prodata.swmed.edu/
DisEnrichDB/) with web interfaces that display disordered consen-
sus and enriched IDRs for any individual human protein, as well as
a list of GO BP terms assigned to the protein. A web interface ex-
ample is shown for the Mucin-4 (gene name: MUC4, UniProt acces-
sion: Q99102) in Figure 2. The top of the webpage lists the UniProt

Fig. 1. Comparison of DisEnrich and MobiDB disordered consensus datasets: (A)

length distribution of IDRs in DisEnrich and MobiDB consensus datasets; (B) com-

parison of disordered proteins number in DisEnrich and MobiDB consensus

datasets

Fig. 2. Example from the DisEnrich database: (A) basic information about protein

with GO BPs; (B) cosine similarity of enriched IDRs with another proteins; (C) pro-

tein sequence with disorder predictions, consensuses and enriched IDRs
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accession, UniProt entry name, gene name and protein name fol-
lowed by the list of GO BPs (Fig. 2A). The second section of the
webpage shows a table with the top 10 most similar proteins, based
on cosine similarity of enriched IDRs (see Section 2) and up to three
of their GO BPs (Fig. 2B). The Mucin-4 protein exhibits a high simi-
larity of enriched IDRs with other mucins [cosine similarity is higher
than 0.9 (Fig. 2B)]. The final section of the webpage illustrates the
protein sequence (in sequence blocks of 100 amino acids), the STMI
line [it denotes the location of signal peptide (S), transit peptide (T),
transmembrane segment (M) and intramembrane regions (I) if they
are present], disorder predictions by DISOPRED (Ward et al.,
2004), IUPred2A (M�eszáros et al., 2018) and SPOT-disorder
(Hanson et al., 2017), DisEnrich and MobiDB (Piovesan et al.,
2018) consensuses, and enriched IDRs (D stands for disordered, dot
stands for ordered residue; Fig. 2C). The first 55 amino acids of
Mucin-4 are shown in Figure 2C. There are four types of enriched
IDRs: RICH–IDRs defined by the ‘windows’ algorithm using
DisEnrich consensus (see Section 2); RICH_fLPS–IDRs defined by
fLPS (Harrison, 2017) using DisEnrich consensus; RICH_MOBI–
IDRs defined by the ‘windows’ algorithm using MobiDB consensus;
RICH_fLPS_MOBI–IDRs defined by fLPS using MobiDB consen-
sus. Additionally, using the top main menu one can access two lists
of proteins in the human proteome: by UniProt accession and gene

name. Full information about enriched IDRs in human proteins and
full cosine similarity lists are also available for download in a plain
text format.

3.3 Functional distribution of human proteins with long

IDRs
The IDR content of proteins can vary significantly, from containing
a single short disordered region to the entire protein sequence being
disordered (van der Lee et al., 2014). For example, almost 80% of
the human proteome (15 935 out of 20 150 proteins defined by
DisEnrich consensus) contain IDRs longer than 10 residues. We
limit our definition of IDPs to proteins with disordered content no
<70% of the protein’s length. Using this definition only 9% of
human proteins (1955) are IDPs. Figure 3 shows the ratio of
observed and expected frequencies of BPs for these IDPs based on
DisEnrich consensus. All BPs were grouped into five broad catego-
ries: metabolic and enzymatic (e.g. mRNA processing), signaling
(e.g. signal transduction), structural (e.g. chromosome organiza-
tion), transport (e.g. nucleocytoplasmic transport) and regulation
(e.g. homeostatic process). In general, our data confirm the observa-
tion that disorder is closely related to signaling and regulation, ra-
ther than metabolic and enzymatic activities (van der Lee et al.,
2014). The top three BPs, in which IDPs are significantly overrepre-
sented, are embryo development, mRNA processing and nucleocyto-
plasmic transport (Fig. 3). Moreover, our data showed that long
disorder correlates with differentiation, cell cycle, mRNA processing
and anticorrelates with transport in general, consistent with previ-
ous findings (Tompa, 2012; Xie et al., 2007).

Embryogenesis is a crucial process for every multicellular organ-
ism involving several pathways where IDPs play important roles,
including Wnt (Xue et al., 2012b) and Notch (Popovic et al., 2006),
NF-jb (Dyson and Komives, 2012). Moreover, these pathways are
associated with embryonic stem cell development and cancer
(Dreesen and Brivanlou, 2007; Dunker et al., 2015). Disordered
regions were shown to play an important role in DNA demethyla-
tion during preimplantation embryonic development (Han et al.,
2019). Indeed, 75% of proteins from our IDP dataset that function
in embryo development are DNA-binding transcription factors,

Fig. 3. The ratio of observed and expected frequencies of BPs from GO generic sub-

set defines over (ratio> 1) and under (ratio<1) represented process categories for

proteins with long disorder (with disordered content no <70%). Asterisks denote

significant values according to chi-square test (P<0.0001)

Fig. 4. Broad functional categories and amino acid categories enriched in IDRs,

which are significantly overrepresented in BPs included in broad categories. Left col-

umn shows amino acids, right column broad functional categories. Each functional

category and lines pointed toward it are denoted by separate color. The thickness of

the lines shows the number of BPs from GO generic slim subset. Red lines denote

significant overrepresentation (P<0.0001) of particular enriched IDRs among

broad functional categories
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which also play important roles in embryogenesis (Rizzino and
Wuebben, 2016). Abundance of disordered proteins in embryogen-
esis and development might be one of the reasons why IDPs are
linked to the great variety of diseases.

As mentioned above disordered proteins play crucial role during
mRNA processing (Tompa, 2012; Xie et al., 2007). Most of the pro-
teins involved in mRNA processing in our dataset are linked to pre-
mRNA splicing and alternative splicing, processes that are catalyzed
by the spliceosome. The protein components of the spliceosome
were studied in details and were shown to be highly enriched in in-
trinsic disorder (Korneta and Bujnicki, 2012; Wright and Dyson,
2015). Moreover, disordered proteins are capable to form
membrane-less organelles by phase transition, which also contain
RNA molecules and have been described as RNA granules (Frege
and Uversky, 2015). Different types of these granules play important
role in various processes including RNA metabolism (Weber and
Brangwynne, 2012). IDPs involved in nucleocytoplasmic transport
are disordered phenylalanine–glycine-rich nucleoporins. These pro-
teins contain disordered FG-repeat regions, which play the role as
the gate of the nuclear pore and for binding different proteins (Chug
et al., 2015; Lemke, 2016).

3.4 Distribution of enriched IDRs in broad functional

categories
We defined IDRs enriched in particular amino acid categories for
DisEnrich and MobiDB disordered consensuses within proteins with
long disorder (with disordered content no <70%, see Section 2).
Proteins with these IDRs were mapped to GO generic slim BPs,
which were grouped into broad categories (see Section 3.3). Figure 4
shows broad functional categories that contain proteins with IDRs
significantly enriched (P-value<0.0001) in particular amino acids.
The thickness of the lines shows the number of BPs from GO generic
slim subset. For this analysis, we selected amino acid categories,
which IDRs are significantly overrepresented in a particular BP for
both disordered consensuses: DisEnrich and MobiDB. Our analysis
showed that GO generic slim BPs include proteins with IDRs

significantly enriched in all amino acids except cysteine, leucine and
tryptophan, which are considered order-promoting residues
(Campen et al., 2008; Williams et al., 2001). However, at the same
time, there are BPs that include proteins with IDRs significantly
enriched in other order-promoting amino acids (e.g. aromatic resi-
dues tyrosine and phenylalanine), which are relatively rare in disor-
dered proteins (Fig. 4). Overall, our results reveal that IDRs
enriched in Tyr and Arg are significantly overrepresented in proteins
linked to metabolic and enzymatic processes and Phe-enriched IDRs
are significantly overrepresented in proteins linked to different types
of transport (red lines in Fig. 4).

Proteins with Tyr-enriched IDRs are mostly involved in metabol-
ic and enzymatic processes, such as mRNA processing and mRNA
stabilization. For example, TATA-binding protein-associated factor
2N (gene name: TAF15, UniProt accession: Q92804) is a transcrip-
tion factor that plays an important role during transcription initi-
ation (Jobert et al., 2009). C-terminal part of this protein contains a
tri-RGG motif (IDRs enriched in Arg and Gly) that is required for
RNA binding (Thandapani et al., 2013). RGG motif in TAF15 (and
some other proteins with similar enriched IDRs, e.g. RNA-binding
protein FUS; cosine similarity between FUS and TAF15 is 0.923) is
intertwined with Tyr-enriched IDRs, which also play a significant
role in RNA recognition (Kondo et al., 2018). Phe-enriched IDRs
are mostly linked to transport processes and were discussed
previously.

There are two amino acid categories that are exclusively signifi-
cantly enriched in IDRs of only one broad functional category: Thr-
enriched IDRs are observed only for structural processes and Gln-
enriched IDRs are observed only for regulatory and signaling proc-
esses. The only BP which includes proteins with Thr-enriched IDRs
and belongs to structural functional category is cell adhesion.
Mucins are known to contain long IDRs enriched in serine and
threonine that anchor the O-glycans (Ambort et al., 2012).
Involvement of mucins in modulation of cell adhesion has been pro-
posed (Wesseling et al., 1995). Moreover, mucin-4 (Fig. 2) was
shown to represses cell aggregation in cancer cells (Singh et al.,
2004). Gln-enriched IDRs are significantly overrepresented in

Fig. 5. The ratio of observed and expected frequencies of BPs from GO generic subset defines overrepresented (ratio> 1) and underrepresented (ratio< 1) process categories

for (A) polar tracts, (B) polyelectrolytic IDRs, (C) polyampholytic IDRs. Asterisks denote significant values according to chi-square test (P<0.0001)

1874 K.E.Medvedev et al.



proteins involved in cell differentiation, cell death and anatomical
structure development (Supplementary Table S1). One example is
myocyte-specific enhancer factor 2D, which is a transcription factor
involved in all processes mentioned above and contains signature
Gln- and Pro-enriched IDRs. These enriched IDRs play important
role in activation of transcription (Aude-Garcia et al., 2010; Wang
et al., 2016).

Interestingly, 75% of BPs from GO generic slim subset contain
proteins with IDRs significantly enriched in hydrophobic residues
that are order-promoting (Campen et al., 2008) (Supplementary
Table S1). In spite of being order-promoting, IDRs enriched in
hydrophobic residues are crucial for protein–protein interaction. It
was revealed that IDRs involved in protein binding tend to be
enriched in hydrophobic residues (M�eszáros et al., 2007; Wong
et al., 2013).

3.5 Functional distribution of major sequence

archetypes of IDRs
We studied the distribution of IDPs’ three broad sequence arche-
types (van der Lee et al., 2014) and high-frequency repeats in GO
BPs. Figure 5 shows over and underrepresentation of polar tracts,
polyelectrolytic IDRs and polyampholytes IDRs in BPs. Distribution
of high-frequency repeats is shown in Supplementary Figure S5.
Overall, sequence archetypes are more overrepresented in metabolic
and enzymatic BPs than IDRs in general (Fig. 3). All three sequence
archetypes and high-frequency repeats are significantly overrepre-
sented mostly in groups linked to metabolic and enzymatic and
structural BPs (exception—nucleocytoplasmic transport).
Involvement in these BPs is not common for disordered proteins
(van der Lee et al., 2014).

Nucleocytoplasmic transport stands out of the rest BPs with sig-
nificant overrepresentation of sequence archetypes, being the only
top group linked to transport activity. Polar tracts and polyelectro-
lytic regions are significantly overrepresented in nucleocytoplasmic
transport in human IDPs in comparison to the whole proteome
(Fig. 5A and B). Nucleocytoplasmic transport group contains 55
proteins, most of them bind DNA or RNA, and polar tracts take
part in these processes as well. For example, RNA-binding protein
with serine-rich domain 1 (RNPS1, UniProt accession: Q15287),
which is the component of the splicing-dependent exon-junction
complex (EJC) involved in pre-mRNA splicing and mRNA export
from nucleus, contains serine-enriched polar tract at the N-terminal
region (McCracken et al., 2003). Serine-enriched polar tract of
RNPS1 is crucial for RNA recognition and binding (Sakashita et al.,
2004). In fact, most of the proteins from nucleocytoplasmic trans-
port group, which bind DNA or RNA, are also linked to metabolic
and enzymatic activities (e.g. RNA splicing).

4 Conclusion

We developed DisEnrich database that contain all IDRs in human
proteome significantly enriched in particular amino acids. Analysis
of IDP distribution in broad functional categories based on
DisEnrich disordered consensus revealed that disorder is closely
related to regulation and signaling, rather than metabolic and en-
zymatic activities. Among GO BPs IDPs are significantly overrepre-
sented in embryogenesis and take part in pathways that have been
implicated in embryogenesis, embryonic stem cell development and
cancer. In general, our results reveal that IDRs enriched in Tyr and
Arg are significantly overrepresented in proteins linked to metabolic
and enzymatic processes and Phe-enriched IDRs are significantly
overrepresented in proteins linked to different types of transport.
Moreover, IDPs involved in 75% of BPs contain IDRs significantly
enriched in hydrophobic residues, that are known to be important
for protein–protein interactions. Analysis of distinct sequence biases
of IDRs revealed that polar tracts, polyelectrolytic and polyampho-
lytic disordered regions are significantly overrepresented in metabol-
ic and enzymatic and structural BPs.

Funding

This work was supported by the National Institutes of Health [GM127390 to

N.V.G.] and the Welch Foundation [I-1505 to N.V.G.].

Conflict of Interest: none declared.

References

Ambort,D. et al. (2012) Perspectives on mucus properties and formation—les-

sons from the biochemical world. Cold Spring Harb. Perspect. Med., 2,

a014159.

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology.

The Gene Ontology Consortium. Nat. Genet., 25, 25–29.

Aude-Garcia,C. et al. (2010) Dual roles for MEF2A and MEF2D during

human macrophage terminal differentiation and c-Jun expression. Biochem.

J., 430, 237–244.

Campen,A. et al. (2008) TOP-IDP-scale: a new amino acid scale measuring

propensity for intrinsic disorder. Protein Pept. Lett., 15, 956–963.

Chug,H. et al. (2015) Crystal structure of the metazoan

Nup62•Nup58•Nup54 nucleoporin complex. Science, 350, 106–110.

Crick,S.L. et al. (2006) Fluorescence correlation spectroscopy shows that

monomeric polyglutamine molecules form collapsed structures in aqueous

solutions. Proc. Natl. Acad. Sci. USA, 103, 16764–16769.

Das,R.K. and Pappu,R.V. (2013) Conformations of intrinsically disordered

proteins are influenced by linear sequence distributions of oppositely

charged residues. Proc. Natl. Acad. Sci. USA, 110, 13392–13397.

Dreesen,O. and Brivanlou,A.H. (2007) Signaling pathways in cancer and em-

bryonic stem cells. Stem Cell Rev., 3, 7–17.

Dunker,A.K. et al. (2008) Function and structure of inherently disordered pro-

teins. Curr. Opin. Struct. Biol., 18, 756–764.

Dunker,A.K. et al. (2015) Intrinsically disordered proteins and multicellular

organisms. Semin. Cell Dev. Biol., 37, 44–55.

Dyson,H.J. and Komives,E.A. (2012) Role of disorder in IjB-NFjB inter-

action. IUBMB Life, 64, 499–505.

Dyson,H.J. and Wright,P.E. (2005) Intrinsically unstructured proteins and

their functions. Nat. Rev. Mol. Cell Biol., 6, 197–208.

Frege,T. and Uversky,V.N. (2015) Intrinsically disordered proteins in the nu-

cleus of human cells. Biochem. Biophys. Rep., 1, 33–51.

Halfmann,R. et al. (2011) Opposing effects of glutamine and asparagine gov-

ern prion formation by intrinsically disordered proteins. Mol. Cell, 43,

72–84.

Han,C. et al. (2019) Functions of intrinsic disorder in proteins involved in

DNA demethylation during pre-implantation embryonic development. Int.

J. Biol. Macromol., 136, 962–979.

Hanson,J. et al. (2017) Improving protein disorder prediction by deep bidirec-

tional long short-term memory recurrent neural networks. Bioinformatics,

33, 685–692.

Harrison,P.M. (2017) fLPS: fast discovery of compositional biases for the pro-

tein universe. BMC Bioinform., 18, 476.

Iakoucheva,L.M. et al. (2002) Intrinsic disorder in cell-signaling and

cancer-associated proteins. J. Mol. Biol., 323, 573–584.

Jobert,L. et al. (2009) PRMT1 mediated methylation of TAF15 is required for

its positive gene regulatory function. Exp. Cell Res., 315, 1273–1286.

Kondo,K. et al. (2018) Plastic roles of phenylalanine and tyrosine residues of

TLS/FUS in complex formation with the G-quadruplexes of telomeric DNA

and TERRA. Sci. Rep., 8, 2864.

Korneta,I. and Bujnicki,J.M. (2012) Intrinsic disorder in the human spliceoso-

mal proteome. PLoS Comput. Biol., 8, e1002641.

Koshland,D.E. (1958) Application of a theory of enzyme specificity to protein

synthesis. Proc. Natl. Acad. Sci. USA, 44, 98–104.

Lemke,E.A. (2016) The multiple faces of disordered nucleoporins. J. Mol.

Biol., 428, 2011–2024.

Lise,S. and Jones,D.T. (2004) Sequence patterns associated with disordered

regions in proteins. Proteins, 58, 144–150.

Mao,A.H. et al. (2013) Describing sequence-ensemble relationships for intrin-

sically disordered proteins. Biochem. J., 449, 307–318.

McCracken,S. et al. (2003) An evolutionarily conserved role for SRm160 in

30-end processing that functions independently of exon junction complex

formation. J. Biol. Chem., 278, 44153–44160.

Mei,Y. et al. (2014) Intrinsically disordered regions in autophagy proteins.

Proteins, 82, 565–578.
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