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Abstract

Box representation has been extensively used for object detection in computer vision. Such 

representation is efficacious but not necessarily optimized for biomedical objects (e.g., glomeruli), 

which play an essential role in renal pathology. In this paper, we propose a simple circle 

representation for medical object detection and introduce CircleNet, an anchor-free detection 

framework. Compared with the conventional bounding box representation, the proposed bounding 
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circle representation innovates in three-fold: (1) it is optimized for ball-shaped biomedical objects; 

(2) The circle representation reduced the degree of freedom compared with box representation; 

(3) It is naturally more rotation invariant. When detecting glomeruli and nuclei on pathological 

images, the proposed circle representation achieved superior detection performance and be more 

rotation-invariant, compared with the bounding box. The code has been made publicly available: 

https://github.com/hrlblab/CircleNet.
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I. Introduction

GLOMERULAR detection is widely used in renal pathology research for efficient and 

quantitative glomerular phenotyping [1]. The glomerulus is the basic functional unit of the 

kidney to filter excess fluid and waste products from blood into urine. Therefore, precisely 

detecting and phenotyping glomeruli is critical for investigating various kidney diseases [2].

While bounding box representation from the computer vision community is commonly 

utilized for detecting ball-shaped biomedical objects such as glomeruli [3]-[6], such 

representation is not necessarily optimized (Fig. 1). Certain biomedical images (e.g., 

microscopy imaging), unlike natural images, can be obtained and displayed at any angle 

of rotation of the same tissue. As a result, the traditional bounding box might yield inferior 

performance for representing such ball-shaped biomedical objects.

In this paper, we propose a simple circle representation for medical object detection and 

introduce CircleNet, an anchor-free detection framework based on the circle representation. 

After detecting the center location of the glomerulus, the proposed “bounding circle” 

requires one (radius) degree of freedom (DoF), while the bounding box needs two (height 

and width) DoF. The contributions of this study are in three key areas:

• Circle Representation We propose a simple circle representation for medical 

object detection that requires less DoF than the bounding box. We also introduce 

circle intersection over union (cIOU) as a metric for circle representation.

• Optimized Medical Object Detection To the best of our knowledge, CircleNet 

is the first anchor-free approach with optimized circle representation for 

detecting ball-shaped biomedical objects.

• Superior Detection and Rotation Consistency Our proposed method, 

CircleNet, achieves superior detection performance and better rotation 

consistency compared to the bounding box. As demonstrated in Fig. 1, the 

tissue samples can be scanned with any arbitrary angles using WSI. Therefore, 

the better rotation consistency might lead to higher robustness for detecting 

the same objects from the same tissue, which would eventually improve the 

reproducibility of the image analytics.
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To evaluate the performance of the proposed CircleNet, three experiments were conducted. 

The first experiment measured its performance in detecting glomeruli on renal biopsies. The 

second experiment evaluated its performance in detecting nuclei on tissue samples. Lastly, 

the third experiment demonstrated the rotation consistency of the proposed CircleNet.

Difference from Conference Version:

This work extends our previous conference paper [7] with the following new efforts: A more 

comprehensive introduction, related works, and detailed data description are provided in 

this manuscript. The methodology is presented with more detailed mathematical derivations, 

experimental design, and hyper-parameter settings. To evaluate the generalizability of the 

proposed CircleNet beyond the glomerular detection, a new experiment on a different 

application (detection of nuclei) using a publicly available dataset [8], [9] is provided.

II. Related Works

A. Object Detection

Recent object detection methods based on convolutional neural networks (CNN) are divided 

into anchor-based and anchor-free object detectors.

1) Anchor-Based Methods: Anchor-based object detection can be further categorized 

to two-stage [10], [11] and one-stage methods [12], [13].

Two-stage methods usually perform detection in two steps: (i) region proposal and (ii) object 

classification and bounding box regression. Faster-RCNN [11] lays the groundwork for 

two-stage anchor-based detectors. Faster-RCNN [11] consists of a region proposal network 

(RPN) and a prediction network (R-CNN) [14], [15] that detects objects within each region. 

To tackle the challenge of proposing regions for objects of varying size and aspect ratios 

within the RPN, reference boxes called anchors were associated with a scale and aspect 

ratio. As the RPN checked each sliding window location, k proposals were parameterized 

corresponding to the k anchors. After Faster-RCNN, many algorithms were proposed to 

improve its performance, including different architectures [10], [16]-[18], attention and 

context mechanism [19]-[22], different training strategy and loss function [23]-[26], better 

proposal and balance [27], [28], feature fusion [29], and multi-scale training and testing 

[30], [31]. While these two-stage detectors produce state-of-the-art results, they are often 

structurally complex and slower to inference.

One-stage methods eliminate the region proposal step and encapsulate all computations in 

a single network. With the introduction of SSD [12], these types of methods have attracted 

academic attention for their high computational efficiency. SSD directly predicts object 

category and bounding box offsets by distributing the anchor boxes on multi-scale layers 

within a CNN. After SSD, various improvements have been suggested including redesigning 

the architecture [32], [33], combining context from different layers [34], [35], training 

from scratch [36], [37], introducing different loss functions [13], [38], anchor matching 

and refinement [39], [40], and feature enrichment and alignment [39], [41], [42]. Currently, 

one-stage anchor-based object detectors obtain performance very close to two-stage anchor-

based detectors but at faster inference speeds.
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2) Anchor-Free Methods: Anchor-free methods remove the need for preset anchors. 

One approach to anchor-free detection is to localize several pre-defined or self-learned 

keypoints which generates the bounding boxes to detect objects (keypoint detection). 

CornerNet [43] detects a pair of keypoints using a single convolutional neural network: 

the top-left corner and bottom-right corner of a bounding box. By detecting the keypoints 

of the bounding box, the need for anchor boxes is eliminated. ExtremeNet [44] improves on 

CornerNet by detecting five keypoints: the four corners of the bounding box and the center 

point of the object. However, CornerNet and ExtremeNet both require a computationally 

combinatorial grouping stage after keypoint detection which slows down each approach. So, 

CenterNet [45] approaches object detection by only extracting the center point of an object, 

removing the need for a grouping stage.

B. Medical Object Detection

In the past, there have been many image processing methods proposed to detect biomedical 

objects. Historically, these methods strongly rely on human-designed imaging features such 

as edge detection [46]-[49], median filtering [50], Histogram of Gradients (HOG) [51]-[53], 

shape features [54], color-based and texture-based [55]. However, these methods are limited 

by the lack of completeness of these hand-crafted features and their inability to generalize.

In the last decade, deep convolutional neural network (CNN) based methods that rely on 

data-driven features have produced superior performance on detecting biomedical objects. 

Cirean et al. [56] conducted mitosis detection in breast histology images by utilizing 

deep max-pooling convolutional neural networks. Temerinac-Ott et al. [57] conducted 

glomerulus detection by integrating CNN performance on different stains. Gallego et al. [58] 

proposed combining detection and classification, and other researchers [59]-[63] integrated 

segmentation and classification.

1) Anchor-Based Methods: Anchor-based methods, namely Faster-RCNN [11], have 

shown superior performance in computer vision tasks. Lo et al. [3] and Kawazoe et al. [4] 

applied the Faster-RCNN method to glomerulus detection which achieved state-of-the-art 

performance on the detection task. Mask-RCNN [64] was also adapted to detect the location 

of nuclei within a mask [65]. However, anchor-based methods such as Faster-RCNN [11] 

require anchors to be preset and refined throughout training, which typically yields lower 

flexibility and higher model complexity. Thus, detection methods without preset anchors 

resulting in simpler network design, fewer hyperparameters, and even superior performance 

have been the target of recent academic attention [43]-[45].

2) Anchor-Free Methods: Anchor-free methods such as CenterNet [45] have the 

potential to be faster and simpler. Feng et al. [66] adapts ideas from CenterNet [45] and 

RetinaNet [13] to nuclei detection which achieves superior performance. However, such 

a method utilizes the traditional bounding box representation which is not necessarily 

optimized for circular biomedical objects.
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III. Methods

A. Anchor Free Backbone

The overall framework of the proposed CircleNet is presented in Fig. 2. The network 

backbone is designed based on the anchor-free CenterNet implementation [45] for its high 

performance and simplicity. In addition, CenterNet is one of the most validated anchor-free 

methods. Many existing works are built upon CenterNet [67]-[69].

We follow Zhou et al. to define the key variables [45]. Let I be the input image where 

I ∈ RW×H×3 with width W and height H. From the network, the output is a heatmap 

Y ∈ [0, 1]
W
R × H

R × C containing the center point localization of each object where C is 

the number of candidate classes and R is the downsampling factor of the prediction. 

The heatmap Y  is expected to be 1 at the center of an object and 0 otherwise. Per 

convention [43], [45], ground truth of each object’s center point is splat onto a heatmap 

Y xyc ∈ [0, 1]
W
R × H

R × C using a 2D Gaussian kernel:

Y xyc = exp − (x − px)2 + (y − py)2

2σp2
(1)

where the x and y are the center point of the ground truth, px and py are the downsampled 

ground truth center point, and σp is the kernel standard deviation. The training loss is Lk 

penalty-reduced pixel-wise logistic regression with focal loss [13]:

Lk = −1
N ∑

xyc

(1 − Y xyc)α log(Y xyc) if Y xyc = 1

(1 − Y xyc)β(Y xyc)α

log(1 − Y xyc)
otherwise

(2)

where α and β are hyper-parameters to the focal loss and N is the number of keypoints [13]. 

We empirically set α = 2 and β = 4 experiments, following Law and Deng [43].

B. Center Point to Bounding Circle

The top n peaks are extracted from the heatmaps such that each peak’s value is greater than 

or equal to its 8-connected neighbors. Let Pc be the set of n detected center points where 

P = {(xi, yi)}i = 1
n . The keypoint location of each object are given by integer coordinates (xi, 

yi) from Y xiyic and Lk. Then, the offset (δxi, δyi) is obtained from Loff. With center point p

and radius r , the bounding circle is defined as:

p = (xi + δxi, yi + δyi) . r = Rxi, yi . (3)

where R ∈ ℛ
W
R × H

R × 1 is the prediction of the radius for each pixel location, optimized by
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Lradius = 1
N ∑

k = 1

N
Rpk − rk . (4)

where rk is the ground truth of the radius for each circle object k. Finally, the overall 

objective is

Ldet = Lk + λradiusLradius + λoffLoff . (5)

Referring from [45], we fix λradius = 0.1 and λoff = 1.

C. Circle IOU

To measure the similarity between two bounding boxes, () is the most popular evaluation 

metric in canonical object detection. The is defined as the ratio between the area of 

intersection and area of union. Analogously, to measure the similarity between two bounding 

circles, we introduce () as:

cIOU = Area(A ∩ B)
Area(A ∪ B) (6)

where A and B represent the two circles in Fig. 3. The center coordinates of A and B are 

defined as (Ax, Ay) and (Bx, By) which are calculated as:

Ax = xi + δxi, Ay = yi + δyi (7)

Bx = xj + δxj, By = yj + δyj (8)

Then, the distance between the center coordinates d is defined as:

d = (Bx − Ax)2 + (By − Ay)2 (9)

Lx =
rA

2 − rB
2 + d2

2d , Ly = rA
2 − Lx

2 (10)

Finally, the cIOU can be calculated from the following:

Area (A ∩ B) = rA
2 sin−1 Ly

rA

+ rB
2 sin−1 Ly

rB
− Ly Lx + rA

2 − rB
2 + Lx

2
(11)

Area (A ∪ B) = πrA
2 + πrB

2 − Area (A ∩ B) (12)

Nguyen et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. Experimental Design

A. Data

To obtain examples of glomeruli, whole slide images were captured from renal biopsies 

and annotated. The kidney tissue was routinely processed, paraffin-embedded, and 3μm 
thickness sections cut and stained with hematoxylin and eosin (HE), periodic acid–Schiff 

(PAS) or Jones. The samples were deindentified, and the studies were approved by the 

Institutional Review Board (IRB). 42 biopsy samples containing 704 glomeruli were used 

for training data, 7 biopsy samples containing 98 glomeruli for validation data, and 7 

biopsy samples containing 147 glomeruli for testing data. Considering the ratio and size 

of a glomerulus with a patch [70], the original high-resolution (0.25 μm per pixel) whole 

scan images were downsampled to a lower resolution (4 μm per pixel). Then, 10 random 

512 × 512 patches per glomerulus image (original image contains at least one glomerulus 

as determined by the ground truth) were obtained as input images. Due to the foreground-

background class imbalance, at least one positive object exists in all training patches 

following [13]. Another rationale is from the widely used COCO dataset [71], in which 

only around 20 images do not have any objects given the total 328,000 images. Finally, these 

data formed a cohort containing 7040 training, 980 validation, and 1470 testing images.

B. Experimental Design

The implementation of CircleNet’s detection and backbone networks followed the 

CenterNet’s official PyTorch implementations. The COCO pre-trained model [71] was used 

to initialize all models. All experiments were conducted on the same workstation with an 11 

GB Nvidia 1080 Ti, Ubuntu 18.04, PyTorch 0.4.1, CUDA 9.0, and CUDNN 7.1. For data 

augmentation, random flip, cropping, and color jitter were used. The hyperparameters were 

50 epochs, a learning rate of 2.5e − 4, and an Adam optimizer to adaptively alter the learning 

rate. Due to memory constraints, we set the batch size to 4.

As baseline methods, Faster-RCNN [11], CornerNet [43], ExtremeNet [44], CenterNet 

[45] were chosen for their superior object detection performance. ResNet-50 [72], stacked 

Hourglass-104 [73] network and deep layer aggregation (DLA) network [74] were used as 

backbone networks for these different detection methods. For CircleNet, we followed the 

original implementation [7] and use Hourglass-104 and DLA for the backbone networks.

C. Evaluation Metrics

Mean average precision was the primary metric used to evaluate detection performance. For 

a given threshold IOU, average precision was obtained by calculating the area under the 

101-point interpolated precision-recall curve. Then, the mean average precision (AP) is the 

mean of the average precision for IOU thresholds from 0.5 to 0.95 with a step size of 0.05. 

AP50 is the average precision with an IOU threshold at 0.5. AP75 is the average precision 

with an IOU threshold at 0.75. APS is the mean average precision for small objects (area 

less than 322). APM is the mean average precision for medium objects (area between 322 and 

962). Since no objects contained an area greater than 962, the large mean average precision 

(APL) was not utilized.
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V. Results

A. Glomerular Detection Performance

As seen in Table I, the proposed CircleNet method using the deep layer network (DLA) 

as a backbone outperforms the baseline methods on glomerular detection with a significant 

margin in all metrics except for APM. However, the proposed method still achieves the 

second-best performance for APM. In addition, when comparing CenterNet and CircleNet 

using the hourglass network (HG), the proposed CircleNet also performs better. Thus, across 

both backbone networks, CircleNet produces superior performance for glomerular detection.

A qualitative comparison between CenterNet and CircleNet can be seen in (Fig. 4). As 

indicated by the arrows, CircleNet generally produces a representation more robust to 

rotation.

B. Circle Representation and cIOU

It was also investigated if the improved detection results of the bounding circle sacrificed 

its effectiveness for detection representation. To accomplish this, 50 glomeruli from the 

test dataset were manually annotated to obtain segmentation masks. Subsequently, the ratio 

between the mask area and bound box/circle area, called Mask Detection Ratio (MDT), 

were calculated for each glomerulus. As presented in the right panel of Fig. 5, the box and 

circle representations both have comparable mean MDT, which demonstrates the bounding 

circle does not sacrifice effective detection representation and contributes to the improved 

detection performance.

Next, we compared the performance of the IOU and cIOU as metrics for similarity 

since metrics were used as overlap metrics for evaluating detection performance (e.g. 

AP(50) and AP(75)). To measure their performance as similarity metrics, we simulated 

different detection results by adding random translations varying from 0 to 100 on the 

glomeruli in the testing dataset. To ensure a fair comparison, the same displacements were 

applied to each glomerulus (with bounding box and bounding circle representation). The 

results demonstrated in Fig. 6 show that cIOU behaves nearly the same as IOU, which 

validates cIOU as an overlap metric for the detection of glomeruli with the same random 

displacements.

C. Rotation Consistency

An additional advantage of the bounding circle compared to the bounding box is better 

rotation consistency. We evaluated the consistency of the bounding box/circle by rotating 

the original test images by 90 degrees rather than an arbitrary angle to avoid the impact 

of intensity interpolation. Through this approach, the detected box/circle on rotated images 

were able to be converted to the original space. Furthermore, the rotation was only applied 

during testing and was not used as a data augmentation technique for training all methods. 

We calculated the rotation consistency by dividing the number of overlapped bounding 

boxes/circles (IOU or cIOU > 0.5 before and after rotation) by the average number 

of total detected bounding boxes/circles (before and after rotation). This percentage of 

overlapped detection is named the “rotation consistency” ratio, where 1 means all boxes/
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circles overlapped while 0 means no boxes/circles overlapped. As seen in Table II, the 

proposed CircleNet-DLA approach achieved better rotation consistency.

D. Nuclei Detection Performance

To validate our proposed method on another application, CircleNet was evaluated on a 

dataset from the 2018 Multi-Organ Nuclei Segmentation (MoNuSeg) Challenge [8], [9].

1) Data: The MoNuSeg challenge training/validation dataset includes 30 1000×1000 

tissue images containing 21,623 hand-annotated nuclear boundaries. Each image was 

sampled from a separate whole slide image of H&E stained tissue at 40× magnification of 

several organs from The Cancer Genomic Atlas (TCGA). A new testing dataset containing 

14 1000×1000 pixel images was also prepared using the same method as the training/

validation data. This testing dataset contains lung and brain tissue images exclusive to the 

test dataset.

From the 30 1000×1000 pixel images in the training/validation dataset, 10 512× 512-pixel 

patches were randomly sampled from each image, generating 300 images for training/

validation. Similarly, from the 14 1000×1000 testing images, 140 images were obtained 

for testing. These data formed a cohort containing 200 training, 100 validation, and 140 

testing images.

While the original MoNuSeg training/validation dataset has relatively few images, 

those images contain more objects than the glomeruli dataset. Specifically, before data 

augmentation, the glomeruli dataset contains 802 glomeruli as compared to 21,623 nuclei in 

the MoNuSeg 2018 dataset. MoNuSeg 2018 is also publicly available.

2) Approach: The implementation and hyperparameters were the same as for glomerulus 

detection.

3) Results: The results were evaluated using mean average precision similar to the 

metrics for glomerulus detection. As seen in Table III, the proposed CircleNet-HG method 

outperforms the baseline methods on nuclei detection with a significant margin, except 

for APM. Additionally, when we compare CircleNet and CenterNet using the DLA 

network, CircleNet produces better results. A qualitative comparison between CenterNet 

and CircleNet can be seen in Fig. 7. As displayed in Table IV, the proposed CircleNet-HG 

approach achieved better rotation consistency. Lastly, the FROC curve can be seen in Fig. 8.

VI. Discussion

In this study, we propose an anchor-free method, CircleNet, optimized for the detection of 

biomedical ball-shaped objects. Instead of using a bounding box representation, CircleNet 

uses a circle representation which is shown to offer superior detection performance and 

rotation consistency. The associated cIOU evaluation metric is shown to act similarly to IOU 

for bounding boxes. Thus, the results support that the circle representation indeed is more 

effective while requiring fewer degrees of freedom.

Nguyen et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As seen in Table II and IV, the proposed circle representation achieved better rotation 

consistency. one explanation for this result is that while length and width metrics are 

sensitive to rotation, radii are naturally more spatially invariant metrics.

Although only pathological image analysis is presented, we believe that circle representation 

is generalizable in radiology. Work by Luo et al. [75] has extended the circle representation 

into a sphere representation for lung nodule detection in 3D Computer Tomography scans. 

Compared with existing anchor-based and anchor-free methods, their anchor-free framework 

achieves superior performance. In addition, the sphere representation is verified to produce 

higher detection accuracy on long nodules than the traditional bounding box representation. 

overall, their results support the potential generalizability of the circle representation within 

medical object detection.

One key limitation is that the circle representation may not be optimal for other types of 

shapes such as a stick-like shape or oval shape. Specifically, as seen in Table IV, CircleNet 

performs worse than baseline methods for APM which covers 2% of the objects in the testing 

dataset. Upon further analysis, larger nuclei tend to be more elongated and elliptical-like, 

unlike glomeruli which generally remain circular. An interesting potential improvement 

could be to add a second degree of freedom to the circle, transforming the circle into an 

ellipse. To define an ellipse representation, the network would predict the length of each axis 

within the ellipse in addition to the center point. In comparison to the circle representation, 

the ellipse representation may more effectively represent objects that are stick-like in shape.

While the circle representation achieves superior results within an anchor-free framework, 

a similar increase in performance may be obtained when adapting circle representation 

for anchor-based methods. The fact that the circle representation requires fewer degrees 

of freedom compared to the box representation could reduce the number of anchors are 

used. Instead of having bounding boxes of varying sizes and aspect ratios, an anchor-based 

approach with circle representation would only require bounding circles of varying radii. 

Further, having fewer anchors would reduce runtime and complexity. Overall, anchor-based 

methods may also benefit from using circle representations.

A promising application of CircleNet is within a detect-then-segment approach for the 

instance segmentation network of ball-shaped objects for Whole Slide Imaging (WSI). 

For instance, a single glomerulus from a 40× WSI can have a resolution of more than 

1000×1000 pixels. When using a standard segmentation approach like Mask-RCNN [64], 

the corresponding feature maps are downsampled to 28×28-pixel resolution which loses a 

substantial amount of information about the object. Therefore, applying CircleNet within 

a detect-then-segment approach may achieve superior segmentation performance for high-

resolution WSI.

VII. Conclusion

In this paper, we propose CircleNet, an anchor-free detection framework. The CircleNet 

method is optimized for ball-shaped biomedical objects, offering superior glomeruli and 

nuclei detection performance and rotation consistency. The circle representation and the 

Nguyen et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cIOU evaluation metric were also comprehensively evaluated. The results show that, for 

detecting glomeruli and nuclei, the circle representation does not sacrifice effectiveness 

despite having fewer degrees of freedom compared with the traditional bounding box 

representation.
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Fig. 1. 
This figure showcases a comparison of the rectangular bounding box and CircleNet. The left 

panel shows how, unlike natural images, biomedical images can be commonly obtained with 

any angle of rotation. The right panel displays how the bounding box is not optimized for 

ball-shaped biomedical objects. The proposed CircleNet method produces a more consistent 

representation while requiring fewer degrees of freedom.
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Fig. 2. 
Overview of CircleNet. A backbone network serves as a feature extracter for the resulting 

three head networks. The heatmap and local offset head determines the center point of the 

circle while the circle radius head determines the radius of the circle.
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Fig. 3. 
This figure showcases the parameters used to calculate circle IOU (cIOU).
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Fig. 4. 
Qualitative comparison of glomerular detection results with confidence score ≥ 0.2. The 

confidence score was empirically selected for all experiments to balance the sensitivity and 

specificity.
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Fig. 5. 
This figure showcases how the mean mask detection ratio (MDT) was calculated. The mask 

was originally traced on 50 randomly selected glomerulus from the testing dataset. The 

mean Mask Detection Ratio (MDT) was calculated from the average ratio between the mask 

area and bounding box/circle area. The mean MDT for both the rectangular box and circle 

representations were close.
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Fig. 6. 
A comparison of IOU and cIOU. The bounding box/circle for every glomerulus in the 

testing dataset was shifted a random displacement (left panel). Then, the IOU and cIOU 

metrics were calculated to measure the similarity between the original and shifted bounding 

boxes/circles (right panel).
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Fig. 7. 
Qualitative comparison of nuclei detection results with confidence score ≥ 0.5. The 

confidence score was empirically selected for all experiments to balance the sensitivity and 

specificity. Within the orginal images, each red box indicates the location of each selection. 

Within each selection, a yellow box or circle indicates inconsistent detections. Arrows with 

the same color indicate the area of inconsistent detection across similar images.
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Fig. 8. 
FROC curve of various methods on the test set of the nuclei dataset.
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TABLE II

COMPARISON OF THE ROTATION CONSISTENCY BETWEEN BOUNDING BOX AND BOUNDING CIRCLE ON GLOMERULAR 

DETECTION

Representation Methods Backbone Rotation
Consistency

  Bounding Box CenterNet-HG [45] HG-104 0.833

  Bounding Box CenterNet-DLA [45] DLA 0.851

Bounding Circle CircleNet-HG (Ours) HG-104 0.875

Bounding Circle CircleNet-DLA (Ours) DLA 0.886
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TABLE IV

COMPARISON OF THE ROTATION CONSISTENCY BETWEEN BOUNDING BOX AND BOUNDING CIRCLE ON MONUSEG 2018

Representation Methods Backbone Rotation
Consistency

  Bounding Box CenterNet-HG [45] HG-104 0.793

  Bounding Box CenterNet-DLA [45] DLA 0.853

Bounding Circle CircleNet-HG (Ours) HG-104 0.891

Bounding Circle CircleNet-DLA (Ours) DLA 0.870
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