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Abstract
BACKGROUND 
Extracellular vesicles (EVs) derived from hypoxia-preconditioned (HP) 
mesenchymal stem cells (MSCs) have better cardioprotective effects against 
myocardial infarction (MI) in the early stage than EVs isolated from normoxic 
(NC)-MSCs. However, the cardioprotective mechanisms of HP-EVs are not fully 
understood.

AIM 
To explore the cardioprotective mechanism of EVs derived from HP MSCs.

METHODS 
We evaluated the cardioprotective effects of HP-EVs or NC-EVs from mouse 
adipose-derived MSCs (ADSCs) following hypoxia in vitro or MI in vivo, in order 
to improve the survival of cardiomyocytes (CMs) and restore cardiac function. 
The degree of CM apoptosis in each group was assessed by the terminal 
deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/PI assays. 
MicroRNA (miRNA) sequencing was used to investigate the functional RNA 
diversity between HP-EVs and NC-EVs from mouse ADSCs. The molecular 
mechanism of EVs in mediating thioredoxin-interacting protein (TXNIP) was 
verified by the dual-luciferase reporter assay. Co-immunoprecipitation, western 
blotting, and immunofluorescence were performed to determine if TXNIP is 
involved in hypoxia-inducible factor-1 alpha (HIF-1α) ubiquitination and 
degradation via the chromosomal region maintenance-1 (CRM-1)-dependent 
nuclear transport pathway.
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RESULTS 
HP-EVs derived from MSCs reduced both infarct size (necrosis area) and apoptotic degree to a 
greater extent than NC-EVs from CMs subjected to hypoxia in vitro and mice with MI in vivo. 
Sequencing of EV-associated miRNAs showed the upregulation of 10 miRNAs predicted to bind 
TXNIP, an oxidative stress-associated protein. We showed miRNA224-5p, the most upregulated 
miRNA in HP-EVs, directly combined the 3’ untranslated region of TXNIP and demonstrated its 
critical protective role against hypoxia-mediated CM injury. Our results demonstrated that MI 
triggered TXNIP-mediated HIF-1α ubiquitination and degradation in the CRM-1-mediated nuclear 
transport pathway in CMs, which led to aggravated injury and hypoxia tolerance in CMs in the 
early stage of MI.

CONCLUSION 
The anti-apoptotic effects of HP-EVs in alleviating MI and the hypoxic conditions of CMs until 
reperfusion therapy may partly result from EV miR-224-5p targeting TXNIP.

Key Words: Extracellular vesicles; Myocardial infarction; Mesenchymal stem cells; Hypoxia precon-
ditioning; Thioredoxin-interacting protein; Hypoxia-inducible factor 1 alpha
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Core Tip: Extracellular vesicles (EVs) from adipose-derived mesenchymal stem cells treated with hypoxia 
preconditioning improve tolerance toward myocardial infarction or hypoxic conditions and alleviate the 
degree of cardiomyocyte apoptosis until reperfusion therapy. The anti-apoptotic effects may result from 
EV miR-224-5p targeting thioredoxin-interacting protein (TXNIP) and subsequent TXNIP-mediated 
hypoxia-inducible factor-1 alpha ubiquitination and degradation via the chromosomal region maintenance-
1-mediated nuclear transport pathway.
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INTRODUCTION
Myocardial infarction (MI) is an acute and fatal cardiovascular disease triggered by coronary occlusion, 
resulting ischemia-hypoxia of myocardial cells[1]. Despite significant progress in surgical treatment and 
medical therapy, MI remains remains a major cause of morbidity and mortality in clinical practice[2]. 
During the early period of MI, apoptosis is the predominant form of cardiomyocyte (CM) death[3]. 
However, if reperfusion therapy cannot be initiated in time to restore blood flow, initial apoptosis 
transitions into passive and irreversible necrosis[4]. Hence, patients with MI gain the greatest benefit 
from early intervention.

The molecular mechanisms underlying MI involve a double hit-related injury in CMs resulting from 
ischemia, hypoxia, and subsequent reoxygenation with reperfusion in infarcted tissue[5]. Sustained 
hypoxia and excessive mitochondrial reactive oxygen species (mROS) production are common triggers 
of myocardial apoptosis during early MI, which occur after the apoptosome activates caspase-3[6,7]. In 
addition, mROS and hypoxia-mediated upregulated thioredoxin-interacting protein (TXNIP)[8] interact 
with von Hippel–Lindau protein (pVHL) and hypoxia-inducible factor-1 alpha (HIF-1α) to promote the 
hypoxia-independent nuclear export and degradation of HIF-1α, hence weakening myocardial tolerance 
to hypoxia and eliciting anti-inflammatory responses[9]. The consequent activation of TXNIP and 
weakened tolerance to hypoxia both contribute to the larger number of CMs undergoing apoptosis and 
necrosis, which are difficult to reverse during the period from MI onset to reperfusion therapy[10]. 
Thus, due to CMs that are terminally differentiated and non-regenerative cells, the more CMs that die 
during the period before reperfusion, the worse the prognosis of MI[11]. Accordingly, despite some 
mechanisms remaining obscure, interference on TXNIP have been demonstrated to protect myocardial 
cells from hypoxic vulnerability, programmed death, and myocardial stunning caused by ischemia[12-
14].

Mesenchymal stem cells (MSCs) are a heterogeneous population of multipotent stem cells, 
progenitors, and differentiated cells that are existed in most stromal tissues. MSCs possess immunoreg-
ulation effects and the function of remaining internal environment stabilization and cell repair. The 
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above-mentioned characteristics have become a cornerstone of the development of several potential 
therapeutic applications of MSCs, among which extracellular vesicles (EVs) derived from MSCs are the 
most promising[15,16]. EVs are cell-derived membranous particles, which contains membranous 
structures of 30-2000 nm in diameter, which are packaged and secreted by most types of cells, including 
MSCs, and microorganisms[17]. EVs mainly include exosomes and microvesicles which can regulate 
intracellular signal transduction by delivering proteins, mRNAs, and microRNAs (miRNAs) to targeting 
cells and tissues. EV carries homologous molecules from the mother cells and can adjust the biological 
functions of target cells, tissues, and organs, including differentiation, proliferation, migration, 
secretion, and death[18,19]. In turn, changes in the microenvironment and physiological state of EV-
derived cells may influence the EV contents and their biological functions. Furthermore, a prevailing 
view is that the cellular origin of EVs significantly qualifies their biological function[20,21]. Accordingly, 
EVs derived from MSCs have potential in cardioprotection[22]. Thus, we determined if a precondi-
tioned method would improve the cardioprotective effects of EVs derived from MSCs.

Because hypoxia preconditioning can enhance and strengthen the tolerance and adaptability of CMs 
to an anoxic environment, inflammation, and oxidative stress[23,24], the cardioprotective mechanism of 
EVs derived from hypoxia-preconditioned MSCs (HP-EVs) has not been fully elucidated in previous 
studies. We hypothesized that HP-EVs can protect CMs from ischemia and hypoxia much more 
effectively than EVs derived from normoxic MSCs (NC-EVs). For this purpose, EVs were extracted from 
mouse adipose-derived mesenchymal stem cells (ADSCs) which were pretreated with either normoxia 
or hypoxia preconditioning. Cardiac protection effects of HP and NC-EVs were measured in vitro and in 
vivo. Additionally, we explored the molecular, morphologic and phenotypic changes with regard to MI-
triggered apoptosis in CMs and revealed the potential role for hypoxia-induced, EV-associated miRNAs 
in CM survival.

MATERIALS AND METHODS
MI and reperfusion mouse model
All animal care and procedures were approved by the Shanghai Ninth People’s Hospital Institutional 
Ethics Committee (Shanghai, China). Animal experimental procedures were strictly performed and 
followed Directive 2010/63/EU. Eight-week-old male C57BL/6 mice were purchased from Shanghai 
Jessie Experimental Animal Co., Ltd. (Shanghai, China). Mice were fed standard mouse chow and water 
ad libitum under specific pathogen-free conditions (20-24 °C, 50%-60% humidity). All invasive 
procedures were performed under anesthesia. An anesthesia box with 2.5% isoflurane (RWD Life 
Science Co., Ltd., Shenzhen, China) was used to induce anesthesia for 3 min, and thereafter an animal 
anesthetic mask with 1.5%-2.0% isoflurane was administered in the anesthesia maintenance stage. 
Excess carbon dioxide inhalation was applied for euthanasia. A total of 80 healthy wild-type (WT) 
C57BL/6 male mice (20-24 g) were used for the experiments. The MI model was established as 
described by Gao et al[25]. Briefly, the left coronary artery (LCA) was ligated with a slipknot for 30, 60, 
120, 240, and 480 min to establish a time-myocardial injury relationship. Then, the slipknot was released 
to achieve reperfusion therapy. Successful MI was confirmed based on dynamic electrocardiograph 
changes (ST-segment elevation). Sham-operated mice underwent the same procedure, with the 
exception that the left knot on the LCA was loosened.

Transthoracic echocardiography
Echocardiography was performed to assess (M mode) ejection fraction (EF) and fractional shortening 
(FS) in three sequential cardiac cycles on the third day after MI surgery using echocardiography (Vevo 
770 High-Resolution Imaging System; Visualsonics Inc., Toronto, Canada).

Evaluation of area at risk and infarct size
At 12 h after loosening the knot on the LCA, the chest wall was re-opened under 1.5-2% isoflurane 
anesthesia to expose the heart. Then, the LCA was re-ligated and the aortic arch was clipped. Next, 1% 
Evans Blue [normal saline (NS) as the solvent] was retrogradely injected through the ascending aorta, 
and the aortic arch was clipped until the non-infarction area turned blue. Then, the heart was removed 
and harvested, washed in NS, and sliced horizontally (parallel to the short axis of the heart) below the 
level of ligation. Each piece was approximately 1 mm thick. All tissue pieces were immediately 
incubated in 1.5% 2,3,5-triphenyltetrazolium chloride (TTC) for 20 min at 37 °C [phosphate-buffered 
saline (PBS) as the solvent]. The infarct area and area at risk (AAR) zone were calculated by Image-Pro 
Plus 6.0 software. Infarct size (IS)/AAR × 100% and AAR/left ventricle (LV) area × 100% were assessed.

Isolation and culture of mouse ADSCs
ADSCs were isolated from the adipose tissue of C57BL/6 mice as previously described[26]. The charac-
terization of ADSCs was performed by flow cytometry analyses of cluster of differentiation 34 (CD34), 
CD105, and CD106 (negative controls) and CD29, CD45, and CD90 (positive cell surface markers).
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Isolation and culture of neonatal mouse CMs
Primary neonatal mouse CMs were extracted from approximately 150 1-day-old neonatal C57BL/6 mice 
as previously described[27]. Briefly, 75% ethanol solution was used to disinfect the neonatal mice for no 
more than 1 min. Then, chests were opened with the hearts quickly clipped, cut into pieces 
(approximate volume of 1 mm3), and placed in PBS at 4 °C. The tissues were digested in 0.125% trypsin 
and 0.0075 g/mL collagenase IV diluted in PBS [without fetal bovine serum (FBS)] at 4 °C overnight. 
The supernatant was collected and centrifuged at 200 × g for 5 min. Then, the tissues and cells were 
resuspended and cultured in complete medium [Dulbecco’s Modified Eagle Medium (DMEM)-high 
glucose containing 5% FBS at 37 °C, 5% CO2] for 2 h to induce fibroblast attachment before CMs. The 
remaining supernatant (only containing CMs) was plated in new 2-cm dishes at a density of 1 × 106 

cells/mL for a subsequent study. α-actinin staining was applied to identify the purity of the CMs. See 
Figure 1A for a flow chart of the isolation procedures for ADSCs and CMs.

In vitro CM hypoxia model
An in vitro model of mouse CM hypoxia was established by incubating cells in oxygen-free, low-glucose 
DMEM in a controlled atmosphere (5% CO2, 95% N2) for 2 h. Then, the incubation conditions were 
converted to normoxia FBS-free medium for 12 h. After treatment, the myocardial cells were collected 
and analyzed.

Hypoxic preconditioning of ADSCs 
ADSCs were seeded in complete medium (DMEM/F12 with 10% EV-free FBS) for 24 h. Oxygen-free 
DMEM/F12 medium previously incubated overnight with 100% N2 was prepared in advance. Hypoxic 
preconditioning was performed by exposing the cells to five cycles of hypoxia (60 min in oxygen-free 
DMEM/F12 medium and 5% CO2, 95% N2 cultured atmosphere) with intermittent reoxygenation (30 
min in normal oxygen-containing DMEM/F12 medium and 5% CO2, 75% N2, 20% O2 cultured 
atmosphere) in a hypoxic chamber (Forma-1025 Anaerobic System; Thermo Fisher Scientific, Waltham, 
MA, United States). After hypoxic preconditioning, ADSCs were cultured in serum-free DMEM/F12 
medium in a normoxic environment (5% CO2), and the supernatant was collected for EV extraction after 
24 h.

Isolation and characterization of EVs
EVs were extracted from cultured ADSCs (approximately 107 per dish) in the absence or presence of 
exposure to hypoxic preconditioning by differential velocity centrifugation. Briefly, the cell culture 
supernatant was centrifuged at 2,000 × g for 30 min at 4 °C to remove cell debris. Then, the supernatant 
was collected and centrifuged at 100000 × g for 70 min to precipitate the EVs. The supernatant was 
discarded to remove contaminating proteins and EVs were re-suspended in PBS. Size distribution and 
concentration of the EVs were determined using the NanoSight NS300 Instrument (Malvern 
Instruments, Malvern, United Kingdom), and EV morphology was assessed by transmission electron 
microscopy (TEM). Expression of the EV surface markers [tumor susceptibility gene 101 (TSG101), 
CD63, CD81] was detected by western blotting.

EV injections
Eighty mice were randomly divided into the following four groups (n = 20 each): sham (no MI, control), 
MI, NC-EV (NC-EVs plus MI), and HP-EV (HP-EVs plus MI), which ensured a sample size of more than 
five mice per assay. In the NC-EV and HP-EV groups, EVs were administered at a dose of 1 μg/1 g body 
weight via injecting into the border zone of the infarcted heart at three sites immediately post-MI 
surgery.

Confirmation of EV uptake by CMs
EVs were labeled with PKH26 (Cat. MINI26; Sigma-Aldrich, St. Louis, MO, United States), and mouse 
CMs were labeled with phalloidin (Cat. A12379s; Thermo Fisher Scientific). Then, 500 μL EV solution 
was stained with 5 mL PKH26 and added to a culture of CMs, EVs, and cells followed by a 2-h 
incubation to allow endocytosis by mouse CMs. The CMs were washed three times with PBS and then 
fixed in 4% paraformaldehyde for 20 min, after which the nucleus was stained with Hoechst. An 
inverted microscope was used to detect the EVs phagocytized in the CMs.

Cell transfection
HEK 293T cells were transfected with miR-224-5p mimics and the TXNIP dual-luciferase plasmid 
(Ribobio, Shanghai, China). H9c2 CMs stably overexpressing TXNIP and TXNIP-L294A mutant were 
established by lentivirus (synthesis by ZoRin, Shanghai, China). ADSCs overexpressing miR-224 and 
miR224-negative control (NC) were infected with adeno-associated virus (AAV) containing the miR-224 
or miR-224-NC sequence (RiboBio), and miR-224 was knocked out by CRISPR/Cas9 in ADSCs 
(RiboBio).
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Figure 1 Identification of adipose-derived mesenchymal stem cells and neonatal mouse cardiomyocytes. A: Flow chart of extracellular vesicles 
and neonatal mouse cardiomyocyte (CM) isolation; B: Characterization of adipose-derived mesenchymal stem cells (ADSCs) was performed by flow cytometry 
analyses of cluster of differentiation 34 (CD34), CD105, and CD106 (negative controls) and CD29, CD45, and CD90 (positive cell surface markers); C: Identification 
of neonatal mouse CMs, which were specifically stained with α-actinin. CM: Cardiomyocyte; ADSC: Adipose-derived mesenchymal stem cells; CD: Cluster of 
differentiation.

Dual luciferase reporter assay
First, miR-224-5p mimics and PGL3 Luciferase plasmids containing WT, NC, or mutated TXNIP 3’-
untranslated region (3’-UTR) sequences were co-transfected in HEK 293T cells, which were cultured in 
24-well plates and co-transfected at approximately 70% confluence. After 12 h, the cells were re-cultured 
in 96-well luciferase assay plates. The ratio of firefly to Renilla luciferase activity was detected after 36 h 
using the Dual-GLOTM Luciferase Assay System (Cat. E2920; Promega, Madison, WI, United States).

Quantitative polymerase chain reaction and western blotting
We used the RNAiso Plus extraction reagent (Cat. 9108; Takara, Dalian, China) to extract EV-associated 
RNA. Stem-loop primers (Ribobio Biotech) were used to generate the cDNA of miRNA. The cDNA was 
amplified by SYBR green-based quantitative polymerase chain reaction (qPCR). U6 small nuclear RNA 
was used as the internal control. Cardiac tissues and CM protein were extracted using radioimmuno-
precipitation assay buffer. TSG101, CD63, CD81, TXNIP, HIF1, and ubiquitin antibodies were supplied 
by Abcam (Cambridge, MA, United States); α-tubulin was supplied by Cell Signaling Technology 
(Danvers, MA, United States).

Statistical analyses
SPSS 19.0 software was used for the data analyses (IBM Corp., Armonk, NY, United States). Whether the 
data fit the normal distribution was assessed by the Shapiro-Wilk test. Categorical variables were 
analyzed by the Pearson’s chi-square test (n ≥ 5) or Fisher’s exact test (n < 5) with subsequent multiple 
comparisons using Bonferroni correction. One-way analysis of variance with subsequent post-hoc 
multiple comparisons test (Student-Newman-Keuls test) was applied for continuous variables. The 
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Kruskal–Wallis test was applied for nonparametric testing of multiple independent samples, and a 
Dunn-Bonferroni test used for post-hoc comparisons.

RESULTS
Characterization of ADSCs, ADSC-derived EVs, and mouse CMs
ADSCs isolated from mouse adipose tissue were identified by using cell surface markers of stem cells. 
The positive cell surface markers were CD29, CD45, and CD90 which demonstrated positive expression 
(> 95%) in flow cytometry assessment. Likewise, negative cell surface markers(CD34, CD105, and 
CD106) revealed low/negative expression (Figure 1B). Subsequently, neonatal mouse CMs were 
identified via α-actinin staining (Figure 1C). Sequential supercentrifugation was adapted to gain EVs 
from supernatant of ADSCs. TEM and the NanoSight Instrument were applied to verify the isolated EVs 
(Figure 2A and B). Results showed that the isolated EVs had a average diameter of 115 nm. Western blot 
assay revealed that EVs expressed three EV-associated markers: CD63, CD81, and TSG101 (Figure 2C). 
CMs’ endocytosis of EVs was verified by PKH26-stained EVs detected via fluorescence microscopy 
(Figure 2D).

HP-EVs reduce myocardial injury in the early stage of MI and hypoxia
To access the temporal relationship of HP-EV cardioprotective effects in vitro and in vivo, MI models 
were established and LCAs were ligated for 0.5, 1, 2, 4, and 8 h followed by reperfusion for 12 h. Evans 
Blue/TTC staining was used to evaluate the area of viable myocardium in the HP-EV and MI groups in 
vivo (Figure 3A). The results demonstrated that, within the first 2 h, HP-EVs contributed to significant 
cardiomyocyte survival compared to the MI group, which peaked after 1 h of LCA ligation followed by 
12 h of reperfusion (HP-EVs vs MI; P = 0.0021). Similarly, the Cell Counting Kit-8 assay was used to 
study the temporal relationship of HP-EV cardioprotective effects in vitro (Figure 3B). Neonatal mouse 
CMs were exposed to hypoxic conditions for 0.5, 1, 2, 4, and 8 h followed by 12 h of reoxygenation. CMs 
treated with HP-EVs showed significant cardioprotective effects against hypoxia compared to the 
control group, which peaked at 2 h (HP-EV vs hypoxia-CMs; P = 0.0009) and decreased with a 
prolonged period of hypoxia. Thus, 2-h hypoxia in vitro and 1-h MI in vivo were applied to subsequent 
experiments.

HP-EVs fail to alleviate myocardial injury in CMs subjected to a long period of hypoxia
We evaluated the cardioprotective effects of HP-EVs in improving heart function and alleviating the 
degree of CM apoptosis after a long period of hypoxia and ischemia (8 h of hypoxia for CMs and 8 h of 
LCA ligation in mice). The cardioprotective effects of HP-EVs did not reduce apoptosis nor improve 
heart function after a long period of hypoxia or ischemia (P = 0.400 and P = 0.7136 for CM apoptosis in 
vitro, Figure 4A and B; P = 0.1519 for myocardial apoptosis in vivo, Figure 4C; P = 0.486 for EF% and P = 
0.785 for FS%, Figure 4D). These results indicated that the cardioprotective effects of HP-EVs might 
decrease with prolonged ischemia or hypoxia. Thus, in the case of late-stage apoptosis and irreversible 
necrosis induced by protracted and prolonged ischemia or hypoxia, ADSC-derived EVs (ADSC-EVs) 
contribute little to ameliorating myocardial injury, which is consistent with our conventional 
understanding that patients with MI gain the greatest benefit from early intervention.

ADSC-EVs reduce apoptosis in CMs subjected to hypoxia
To determine the anti-apoptotic effects of ADSC-EVs in preventing or attenuating MI-triggered 
apoptosis in CMs, apoptosis assays were performed by the Annexin V/PI, terminal deoxynucleotidyl 
transferase dUTP nick end-labeling (TUNEL), and caspase-3 activation assays in cultured neonatal 
mouse CMs subjected to hypoxia and were exposed to NC-EVs or HP-EVs prior to hypoxia. As is 
revealed in Figure 5A, pretreatment with NC-EVs decreased the apoptotic rate of CMs [P = 0.0021 
compared to the hypoxia/reoxygenation (H/R) group]. However, the downregulation of apoptosis was 
significantly higher after exposure to HP-EVs (P = 0.0080 compared to NC-EVs). Over again, the 
cardioprotective effects were significantly greater in HP-EV-treated cells as determined by the TUNEL 
assay (P = 0.0001 compared to the H/R group; P = 0.0291 compared to NC-EVs) (Figure 5B). Meanwhile, 
as shown in Figure 5C, caspase-3 activation assays demonstrated a reduced trend in the enzymatic 
activity of caspase-3 after CM treatment with ADSC-EVs, with HP-EVs eliciting more significant anti-
apoptotic effects (P = 0.0001 compared to the H/R group; P = 0.0001 compared to NC-EVs).

ADSC-EVs ameliorate myocardial damage in a mouse model of MI 
To assess cardioprotective effects in alleviating MI-triggered myocardial injury of ADSC-EVs in vivo, in 
situ apoptosis was evaluated in infarct tissues by the TUNEL assay. Figure 6A demonstrates that the 
degree of in situ apoptosis was significantly improved in the NC-EV and HP-EV groups. Moreover, the 
HP-EV group had a greater ameliorative apoptotic rate than the NC-EV group. Cardiac IS and AAR 
were evaluated in ischemic myocardium injected with ADSC-EVs post-MI models establishment. As is 
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Figure 2 Identification of extracellular vesicles. A: Transmission electron microscopy characterization of extracellular vesicles (EVs); B: Size distribution by 
intensity was detected using the NanoSight Instrument; C: EV biomarkers cluster of differentiation 63 (CD63), CD81, and tumor susceptibility gene 101 were identified 
by western blotting of adipose-derived mesenchymal stem cell (ADSC)-derived EVs and ADSCs; D: EV tracer assay was used to identify exosomes phagocytosed by 
cardiomyocytes. ADSC: Adipose-derived mesenchymal stem cell; EV: Extracellular vesicles.

revealed in Figure 6B, among the sham, MI, NC-EV, and HP-EVs groups, AAR/LV values were similar 
(LCA was re-ligated prior to Evans Blue staining to calculate the AAR/LV values). Significantly, the 
NC-EV and HP-EV groups showed markedly mitigated post-MI IS compared to the ischemia-
reperfusion (IR) group. Once again, HP-EV group demonstrated a conspicuously mitigated IS region 
(NC-EV vs IR, P = 0.0115; HP-EV vs NC-EV, P = 0.0213).

ADSC-EVs improve cardiac function after MI reperfusion injury
Echocardiography on Day 3 post-MI revealed that EF and LV fractional shortening were markedly 
turned better of cardiac systolic function that treated with ADSC-EVs (Figure 6C), particularly HP-EVs 
(EF Day 3: NC-EVs vs IR, P = 0.022; HP-EVs vs NC-EVs, P = 0.030; FS Day 3: NC-EVs vs IR, P = 0.031; 
HP-EVs vs NC-EVs, P = 0.017).

Hypoxia preconditioning upregulates miR-224-5p, a potential TXNIP regulator, in ADSC-EVs
To discover the molecular mechanism of much more significant cardioprotective effects of HP-EVs 
against ischemia and hypoxia-induced CMs damage, sequencing analysis was applied to reveal nucleic 
acid molecular (miRNA) expression differences between NC-EVs and HP-EVs. The result of sequencing 
detected 88 miRNAs expression differences between HP-EVs and NC-EVs. Further analysis revealed 10 
of them were potentially predicted to bind with TXNIP by the TargetScan and miRanda algorithms in 
the Encyclopedia of RNA Interactomes database (Figure 7A). The expression differences of these 
miRNAs were verified by quantitative polymerase chain reaction (Figure 7A). Then we chose miR-224-
5p as candidate for further study for its most markedly upregulated expression among the 10 miRNAs 
in HP-EVs. In the follow-up verification work�we used the dual-luciferase reporter assay to determine 
that miR-224-5p directly bind to TXNIP WT-3’-UTR region of its mRNA to inhibit translation process of 
TXNIP (P = 0.0026; Figure 7B).

ADSC-EV miR-224-5p ameliorates HIF-1α degradation and hypoxia-induced CM apoptosis by 
targeting TXNIP
To assess whether ADSC-EV miR-224-5p can attenuate the degradation of HIF-1α and hypoxia-induced 
apoptosis in CMs by inhibiting TXNIP, we established AAV-miR-224 ADSCs and ADSCs with miR-224 
knocked out to obtain miR-224-5p overexpressing EVs and miR-224-5p knockout EVs, respectively. 
TXNIP, HIF1-αexpression level and apoptotic degree of CMs were evaluated on hypoxia-treated 
neonatal mouse CMs pre-processed with EVs derived from ADSCs, ADSCs overexpressing miR-224, 
and ADSCs with miR-224 knocked out by CRISPR/Cas9. As shown in Figure 7C, pre-treatment with 
EVs derived from ADSCs overexpressing miR-224 Led to the significant suppression of TXNIP 
expression relative to NC-ADSCs (P = 0.0006) and increase in HIF-1α expression (P < 0.0001). In EVs 
derived from ADSCs with miR-224 knocked-out, TXNIP expression was not inhibited (P = 0.0018) and 
HIF-1α expression was decreased (P = 0.0002) compared to the NC group. Furthermore, Annexin V/PI 
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Figure 3 Evaluation of the temporal relationship of the cardioprotective effects of hypoxia-preconditioned extracellular vesicles. A: 
Temporal relationship of the cardioprotective effects of hypoxia-preconditioned extracellular vesicles (HP-EVs) in vivo. Myocardial infarction (MI) models were 
established with left coronary artery ligation for 0.5, 1, 2, 4, and 8 h followed by 12 h of reperfusion. Evans Blue/2,3,5-triphenyltetrazolium chloride staining was used 
to evaluate the area of viable myocardium in the HP-EV and MI groups (n = 5); B: Temporal relationship of the HP-EV cardioprotective effects in vitro. Hypoxia injury 
models were established for 0.5, 1, 2, 4, and 8 h of hypoxia followed by 12 h of reoxygenation. Cell Counting Kit-8 assay was used to evaluate the cell survival rate in 
the HP-EV and hypoxia groups (x axis was time of hypoxia, y axis was the value of absorbance of experimental/control group, which reflected the survival rate of cells 
in the experimental condition; n = 5). The arrows indicate the most significant difference, and the corresponding time points were adopted for subsequent research. 
MI: Myocardial infarction; HP-EV: Hypoxia-preconditioned extracellular vesicles.

staining indicated, as expected, a significant improvement in apoptosis in CMs treated with miR224-5p-
overexpressing EVs compared to NC-EV-treated cells (P = 0.0002; Figure 7D). This effect was sig-
nificantly reversed by miR-224-5p knockout EVs compared to the NC group (P = 0.0059).

TXNIP regulates the ubiquitination of HIF-1α in a chromosomal region maintenance-1-dependent 
manner
TXNIP binds to the β-domain of pVHL and promotes the degradation of HIF1α independently of 
hypoxia. A functional nuclear export signal (NES) in the chromosomal region maintenance-1 (CRM-1)-
binding site (Leu294) of TXNIP is important for the formation of the TXNIP-pVHL-HIF-1α complex[9]. 
To further explore the mechanism by which TXNIP regulates HIF-1α degradation in CMs, TXNIP-
overexpressing and TXNIP L294A mutant H9c2 cell lines were established (Cyagen Biosciences, 
Guangzhou, China). Our results demonstrated that the nuclear expression of HIF-1α was abolished in 
TXNIP-overexpressing cells in hypoxia. In TXNIP L294A mutant cells, the nuclear expression of HIF-1α 
was recovered. After treatment with leptomycin B, which specifically blocks CRM1-dependent nuclear 
export and is extensively used to investigate this process, TXNIP-induced HIF-1α degradation was 
inhibited (Figure 8A). Western blot analysis revealed that TXNIP induced the degradation of HIF-1α in 
H9c2 CMs in the presence and absence of hypoxia (Figure 8B). Moreover, the increased ubiquitination 
of HIF-1α induced by overexpressed TXNIP was detected (Figure 8C and D). However, this effect was 
not detected in TXNIP L294A mutant cells, which indicated that, as a functional NES binding site of 
CRM-1 in TXNIP, TXNIP-mediated ubiquitination and degradation of HIF-1α by the proteasome might 
be dependent on CRM-1-mediated nuclear transport and stabilization.

DISCUSSION
EVs are biocompatible, high-tissue penetrating, nano-sized secreted vesicles containing many types of 
biomolecules, including proteins, RNAs, DNAs, lipids, and metabolites. Their low immunogenicity and 
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Figure 4 Cardioprotective effects of hypoxia-preconditioned extracellular vesicles after long periods of hypoxia and ischemia. A: Degree of 
in situ apoptosis of cardiomyocytes (CMs) in hypoxia and hypoxia-preconditioned extracellular vesicle (HP-EV) groups after a long period (8 h) of hypoxia followed by 
12 h of reoxygenation, as determined by the terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay (n = 5); B: Degree of CM apoptosis in the 
hypoxia and HP-EVs groups after a long period (8 h) of hypoxia followed by 12 h of reoxygenation, as determined by flow cytometry (n = 5); C: Degree of in situ 
apoptosis of CMs in the myocardial infarction (MI) and HP-EVs groups after a long period of MI [left coronary arteries (LCAs) were ligated for 8 h followed by 12 h of 
reperfusion], as determined by the TUNEL assay (n = 5); D: Echocardiography was used to examine the heart function of the MI and HP-EVs groups on Day 3 after a 
long period of MI (LCAs were ligated for 8 h followed by 12 h of reperfusion); ejection fraction and fractional shortening were detected (n = 5). MI: Myocardial 
infarction; HP-EV: Hypoxia-preconditioned extracellular vesicles.

ability to functionally modify recipient cells by transferring diverse bioactive constituents make them an 
excellent candidate for a next-generation drug delivery system[20,28,29]. Despite the tremendous 
achievements, clinical application of EVs remains challenging for the following reasons. There is no 
universally accepted gold standard for EVs extraction methods to meet clinical application, biosafety 
concerns regarding editing and modification of EVs, and the question of whether long-term clinical use 
of EVs could produce unacceptable side effects has not been resolved[30,31]. Thus, the goal of this study 
was to improve the therapeutic efficacy of MSC-derived EVs against MI-induced CM death by using a 
safe hypoxia preconditioning method in vitro, and to explore the mechanisms of the protective effects of 
EVs.

The idea of hypoxia preconditioning of ADSCs came from remote ischemic preconditioning (RIPC), 
which is a novel method where ischemia followed by reperfusion of one organ is believed to protect 
remote organs either due to release of biochemical messengers in the circulation or activation of nerve 
pathways, resulting in release of messengers that have a protective effect[32]. With regard to the 
underlying mechanism of RIPC in cardioprotection, whether such preconditioning efficacy may 
extended application in vitro to provide a promising treatment by using EVs generated by ADSCs 
exposure to hypoxia preconditioning[33]. For example, EVs generated by HP MSCs were adapted to 
improve traumatic spinal cord injury via its paracrine mechanisms and unfolded a myocardium preser-
vation effect against ischemia-reperfusion injury[34,35]. Thus, we proposed to explore whether an in 
vitro RIPC process can change contents of EVs derived from ADSCs to strengthen its intrinsical 
cardioprotective potential. Our results revealed that HP-EVs elicited more significant inhibiting effect of 
MI-triggered CM death than NC-EVs. Notably, HP-EVs were changed its contained miRNA expression 
(88 miRNA) after ADSCs exposure to preconditioning, 10 of these upregulated miRNA are putative 
regulators of inflammasome activation based on the predicted binding affinity for TXNIP. We focused 
on the most upregulated miRNA (i.e. miR-224-5p) and verified both direct binding to TXNIP and a 
critical role for this interaction in the inhibition of MI-induced CM death.

Additionally, our results also objectively illustrated the fact that the timely opening of the infarction 
vessels and reducing the apoptosis of CMs during MI are equally crucial. Once delayed treatment 
occurs, CMs would change from a reversible injury state to necrosis, apoptotic necrosis, fibrous tissue 
replacement, and eventually to ventricular remodeling, which is often irreversible. Hence, for the 
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Figure 5 Hypoxia-preconditioned extracellular vesicles alleviated hypoxia/reoxygenation-induced apoptosis in vitro. A: Degree of 
cardiomyocyte (CM) apoptosis in control, hypoxia, normoxic extracellular vesicle (NC-EV), and hypoxia-preconditioned EV (HP-EV) groups after 2 h of hypoxia 
followed by 12 h of reoxygenation, as determined by the Annexin V/PI assay (n = 5); B: Degree of CM apoptosis in control, hypoxia, NC-EV, and HP-EV groups after 
2 h of hypoxia followed by 12 h of reoxygenation, as determined by the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay (n = 5); C: Caspase-3 
activity of CMs in the control, hypoxia, NC-EV, and HP-EV groups after 2 h of hypoxia followed by 12 h of reoxygenation (n = 5). All data are expressed as the mean 
± SD. aP < 0.05, bP < 0.01 compared with Hypoxia group; cP < 0.05, dP < 0.01 compared with Hypoxia + NC-EVs group. HP-EV: Hypoxia-preconditioned extracellular 
vesicles; NC-EV: Normoxic extracellular vesicle.

treatment of MI, on the one hand, we should emphasize timely reperfusion therapy; on the other hand, 
we should preserve more CMs without irreversible injury, even death, until the moment of artery 
recanalization to maintain overall heart function after reperfusion therapy by enhancing hypoxia 
tolerance. In this study, HP-EVs exhibited a significant cardioprotective effect against aggravated 
apoptosis in MI caused by hypoxia and ischemia. Mechanistically, the benefit of CMs was mainly 
derived from effective hypoxia tolerance induced by HP-EVs.

The hypoxia tolerance of CMs induced by HP-EVs revealed that the HIF-1 transcription factor partly 
contributed to this benefit. HIF-1, of which the active subunit 1α undergoes proteasomal oxygen-
dependent degradation, has an essential cardioprotective role and is a key mediator of the adaptability 
of the myocardium to hypoxia[36]. Under aerobic conditions, hydroxylated HIF-1α is recognized by 
pVHL, which combines with HIF-1α in a ubiquitin ligase form to be exported into the cytoplasm, where 
HIF-1α is degraded. By contrast, hypoxia promotes the accumulation of unhydroxylated HIF-1α and 
translocation to the nucleus to initiate transcriptional activity[37]. The role of HIF-1 in ischemic 
cardiomyopathy is different from its role in mediating oxygen homeostasis, inflammation, autoim-
munity, and tumor metastasis under hypoxic conditions[38]. In MI, hypoxia and slight mROS 
generation induced by the unstable membrane potential of mitochondria, which are two independent 
factors that increase TXNIP expression in CMs, expedite the export and degradation of HIF-1α through 
the pro-oxidative stress function of TXNIP[39,40]. Considering that CMs contain a large number of 
mitochondria, once ischemia and hypoxia occur, mitochondria dysfunction induces the high expression 
of TXNIP and high level of HIF-1α degradation, which decreases the tolerance of hypoxia of CMs, 
accelerating their death. Clinically, if the duration of the MI exceeds its 12 h-therapeutic time window or 
time from first medical contact to re-opening blocked blood vessels, which was defined as “90 min door-
to-balloon time”, CMs would enter an irreversible process of death, when even reperfusion therapy did 
not help[40,41]. It is assumed that reperfusion therapy can be performed in a fixed time period; thus, 
therapies that facilitate CM survival from onset of MI to reperfusion therapy (elevating the hypoxia 
tolerance of CMs in this fixed time period) are particularly significant. Moreover, when 
reperfusion/reoxygenation therapy is delayed or prolonged, enhancing the hypoxia tolerance of CMs 
may be an ideal choice in order to preserve more CMs that cannot regenerate rather than waiting for 
irreversible injury to occur before treatment. Thus, increasing hypoxia tolerance and timely reperfusion 
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Figure 6 Hypoxia-preconditioned extracellular vesicles alleviated hypoxia/reoxygenation-induced apoptosis in vivo. A: Degree of 
cardiomyocyte (CM) apoptosis in the control, sham, myocardial infarction (MI), normoxic extracellular vesicle (NC-EV), and hypoxia-preconditioned EV (HP-EV) 
groups after 2 h of left coronary artery (LCA) ligation followed by 12 h of reperfusion, as determined by the terminal deoxynucleotidyl transferase dUTP nick end-
labeling assay (n = 5); B: HP-EV cardioprotective effects were assessed in vivo, and MI models were established with LCA ligation for 1 h followed by 12 h of 
reperfusion. Evans Blue/2,3,5-triphenyltetrazolium chloride staining was used to evaluate the area of viable myocardium in the sham, MI, NC-EV, and HP-EV groups (
n = 5); C: Heart function of the sham, MI, NC-EV, and HP-EV groups was evaluated by echocardiography; ejection fraction and fractional shortening were detected (n 
= 6). All data are expressed as the mean ± SD. eP < 0.05, fP < 0.01 compared with MI group; gP < 0.05, hP < 0.01 compared with MI + NC-EVs group. MI: Myocardial 
infarction; HP-EV: Hypoxia-preconditioned extracellular vesicles; NC-EV: Normoxic extracellular vesicle.

therapy appear to be ‘two-horse carriages’ in preserving CMs in the early stage of MI.
As a core transcription factor antagonizing apoptosis and inflammation and promoting proliferation 

and hypoxia tolerance under hypoxia conditions, HIF-1α is key for controlling the expression of a 
myriad of genes involved in the hypoxic response; thus, its role in ischemic cardiomyopathy has 
received increasing attention[42]. In our previous study, we revealed that HP-EVs primarily target 
TXNIP to alleviate myocardial IR injury post-reperfusion therapy[43]. Theoretically and mechanistically, 
we demonstrated that TXNIP, which interacts with HIF-1α, involves the degradation of HIF1α through 
accelerating the nuclear export of ubiquitinated HIF-1α via the CRM-1 nuclear export pathway in 
hypoxic conditions. Thus, HIF-1α-induced tolerance to hypoxia is weakened under hypoxic conditions 
to exert severe ischemia or hypoxia injury in CMs, unlike its effect on tumor metabolism and angi-
ogenesis under hypoxic conditions. HIF-1α has long been mainly considered an oxygen homeostasis 
regulator, probably because of its characteristic transcriptional activation[44,45]. However, recent 
studies have indicated that HIF-1α contributes to anti-apoptosis, regulation of energy metabolism, and 
collateral vessel generation[46,47]. Therefore, considering that HIF-1α has the potential to regulate 
hypoxia-related injury and our previous studies on the inhibitory effects of HP-EV on TXNIP, we 
confirmed that highly expressed TXNIP in hypoxic conditions triggers the degradation of HIF-1α. 
Furthermore, by targeting TXNIP, HP-EVs improve the prognosis of MI.

The limitation of this study was, due to the difficulty in effectively inhibiting the action of the 
myocardial proteasome, we did not assess HIF-1α ubiquitination in vivo. The interaction among pVHL, 
TXNIP, and HIF-1α as well as the mechanism of the CRM-1 nuclear export pathway under hypoxia/MI 
conditions remains to be further studied.
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Figure 7 Extracellular vesicle-associated miR-224-5p inhibits hypoxia-induced apoptosis in cardiomyocytes by downregulating 
thioredoxin-interacting protein. A: MicroRNA (miRNA) sequencing analysis in adipose-derived stem cell-extracellular vesicles (ADSC-EVs). A total of 88 
miRNAs were upregulated in hypoxia preconditioned EVs (HP-EVs) compared to normoxic EVs (NC-EVs), of which 10 (shown in the heatmap) were predicted to 
associate with thioredoxin-interacting protein (TXNIP). Validation of differential EV-associated miRNA expression through quantitative PCR. U6 small nuclear RNA 
served as the internal reference; B: Dual luciferase reporter assay. HEK 293 T cells were co-transfected with miR-224-5p mimics and PGL3 Luciferase reporter 
plasmids containing wild-type (WT) or mutated TXNIP 3′-untranslated region (3’-UTR). mutated-TXNIP 3′-UTR served as the control. Dual luciferase reporter assay 
(All data are expressed as the mean ± SD , kP < 0.05, lP < 0.01, miR-224-5p + TXNIP WT 3′-UTR vs miR-224-negative + 3’-UTR-mutant groups; n = 3); C: Neonatal 
mouse CMs subjected to hypoxia were pre-treated with EVs derived from ADSCs (ADSCs group), ADSCs overexpressing miR-224 (ADSCs-AAV-miR-224 group), 
ADSCs overexpressing miR-224-NC (ADSCs-AAV-miR-224NC group) and ADSCs with miR-224 knocked-out (ADSCs-cas9-miR-224 group). Western blotting was 
used to detect the expression of hypoxia-inducible factor-1 alpha and TXNIP (n = 5); D: Neonatal mouse CMs subjected to hypoxia were pre-treated with EVs derived 
from ADSCs (ADSCs group), ADSCs overexpressing miR-224 (ADSCs-AAV-miR-224 group), ADSCs overexpressing miR-224-NC (ADSCs-AAV-miR-224NC group) 
and ADSCs with miR-224 knocked-out (ADSCs-cas9-miR-224 group). Annexin V/PI assay was used to assess the degree of apoptosis in four groups (n = 5). All data 
are expressed as the mean ± SD, iP < 0.05, jP < 0.01, compared with CMs subjected to hypoxia were pre-treated with EVs derived from ADSCs group(ADSCs 
group). HP-EV: Hypoxia-preconditioned extracellular vesicles; NC-EV: Normoxic extracellular vesicle; ADSC: Adipose-derived mesenchymal stem cell; WT: Wild-
type.

CONCLUSION
In conclusion, our study demonstrated that EVs generated by ADSCs subjected to hypoxia precondi-
tioning showed more significant cardioprotection against MI than EVs derived from normoxic ADSCs, 
partly due to the abundance of miRNAs targeting TXNIP in HP-EVs. TXNIP-aggravated ubiquitination 
of HIF-1α in CMs exposed to MI determines the tolerance of cells to hypoxia (Figure 9). Therefore, we 
propose that the downregulation of TXNIP by EV-associated miRNAs prevents the nuclear export and 
ubiquitination of HIF-1α, which protect CMs against early-stage ischemic injury by sustaining the 
transcriptional activity of HIF-1α. Our study provides novel insights into therapeutic approaches and 
the pathogenesis of MI and reveals that EVs derived from HP MSCs could help improve myocardial 
hypoxia tolerance when applied in the early stage of MI.
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Figure 8 Thioredoxin-interacting protein promotes the ubiquitination of hypoxia-inducible factor-1 alpha through the chromosomal 
region maintenance-1 nuclear export pathway. A: H9C2 cardiomyocytes (CMs) overexpressing thioredoxin-interacting protein (TXNIP) or TXNIP-L294A 
mutant as indicated and leptomycin B were used to inhibit the chromosomal region maintenance 1 nuclear export pathway. The expression and cellular localization of 
hypoxia-inducible factor-1 alpha (HIF-1α) was analyzed by immunofluorescence staining; B: H9C2CMs were treated with hypoxia or normoxia and TXNIP was 
overexpressed as indicated. The expression of HIF-1α was analyzed by western blotting; C: H9C2 CMs were pretreated with MG132 for 2 h and TXNIP or TXNIP-
L294A-mutant were overexpressed as indicated. The interaction of TXNIP and HIF-1α, and HIF-1α ubiquitination were assessed by immunoprecipitation with an anti-
HIF-1α antibody; D: H9C2 CMs were pretreated with MG132 for 2 h. TXNIP was overexpressed and hypoxia treatment was applied as indicated. The interaction of 
TXNIP and HIF-1α, and HIF-1α ubiquitination were assessed by immunoprecipitation with an anti-HIF-1α antibody.

Figure 9 During myocardial infarction or hypoxia, hypoxia-inducible factor-1 alpha export is chromosomal region maintenance-1-
dependent in the presence of thioredoxin-interacting protein, based on the association of thioredoxin-interacting protein with 
chromosomal region maintenance-1. Thioredoxin-interacting protein (TXNIP)-induced hypoxia-inducible factor-1 alpha (HIF-1α) nuclear export may be 
hypoxia-independent, which triggers ubiquitination and degradation by the proteasome in cardiomyocytes. As a transcription factor, the function of HIF-1 in promoting 
targeted gene transcription is abolished by hypoxia/myocardial infarction-triggered TXNIP activation. Our research aimed to clarify this process by hypoxia-
preconditioned extracellular vesicles and the underlying mechanism.
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ARTICLE HIGHLIGHTS
Research background
Previous studies have demonstrated that extracellular vesicles (EVs) derived from mesenchymal stem 
cells (MSCs) reveal the cardioprotective effects against myocardial infarction (MI). Hypoxia-precondi-
tioned EVs (HP-EVs) derived from MSCs are thought to have better cardioprotective effects, and the 
underlying mechanisms have garnered increasing attention from scholars.

Research motivation
Although some scholars have focused on the effect of hypoxia preconditioning on MSCs, the underlying 
mechanisms remain unclear. Thus, this study focused on the mechanism underlying the cardiopro-
tective effect of HP-EVs from MSCs.

Research objectives
We explored the cardioprotective mechanism of HP-EVs from MSCs.

Research methods
HP-EVs from mouse adipose-derived MSCs (ADSCs) were extracted, and their cardioprotective effect 
on improving the survival of cardiomyocytes (CMs) and ameliorating cardiac function were evaluated 
by Evans Blue/2,3,5-triphenyltetrazolium chloride staining and echocardiography. Mechanistically, 
microRNA (miRNA) sequencing was adopted to investigate the functional RNA diversity between HP-
EVs or normoxic EVs (NC-EVs) from mouse ADSCs. Subsequently, the molecular mechanism of EVs in 
mediating thioredoxin-interacting protein (TXNIP) and TXNIP-mediated hypoxia-inducible factor-1 
alpha (HIF-1α) ubiquitination were verified by the dual-luciferase reporter assay, immunoprecipitation, 
western blotting, and immunofluorescence.

Research results
HP-EVs reduced both infarct size (necrosis area) and the degree of apoptosis to a greater extent than 
NC-EVs in CMs subjected to hypoxia in vitro and mice suffering from MI in vivo. We showed that EV 
miRNA224-5p directly bound to the 3’-untranslated region of TXNIP and had a critical protective role 
against hypoxia-associated CM injury. Our results suggested that MI triggered TXNIP-mediated HIF-1α 
ubiquitination and degradation via the chromosomal region maintenance 1-dependent nuclear transport 
pathway in CMs, which led to aggravated injury and hypoxia tolerance in CMs in the early stage of MI.

Research conclusions
The anti-apoptotic effect of HP-EVs, which improves tolerance toward MI or hypoxic conditions and 
alleviates the degree of CM apoptosis until reperfusion therapy, may partly result from EV miR-224-5p 
targeting TXNIP.

Research perspectives
This study partly reveals the mechanism underlying the cardioprotective effect of HP-EVs and provides 
insights into potential therapies against MI.
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