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Abstract

Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 

(Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and 

dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with 

impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While 

there has been extensive study of the protein kinases acting on Cx43, there has been limited 

studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this 

review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation 

state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic 

heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the 

therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical 

settings.
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1. Introduction

Cell-to-cell electrical coupling (intercellular coupling) is an essential form of 

electrophysiological communication between adjacent myocytes occurring mainly via gap 

junction channels in the heart. Conduction slowing from decreased gap junctional coupling 

(as well as from decreased depolarizing currents) can lead to reentry that underlies lethal 

ventricular arrhythmias in the setting of heart failure (HF), myocardial ischemia and atrial 

fibrillation (AF) [1–6].
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Gap junctional channels, composed of connexins, are specialized membrane structures 

between adjacent myocardial cells [7,8]. Connexins assemble into hexameric pores known 

as connexons, which integrate into the cell membrane forming gap junction channels to 

facilitate exchange of molecules between adjacent cells to allow for intercellular electrical 

and chemical communication [9–13]. Connexins have four transmembrane domains with 

two extracellular loops (EL), one cytosolic loop, and a N-terminus and C-terminus. 

Connexins also interact with scaffolding proteins at the C-terminus, and may play a role 

in signaling pathways and cell regulation [14–17]. Thousands of gap junction channels 

assemble to form macromolecular complexes known as gap junction plaques, located at the 

intercalated discs between adjacent myocytes, that facilitate exchange of molecules between 

cells as part of gap junctional intercellular communication.

Gap junctional channels open or close in response to numerous triggers, including changes 

in transmembrane potential, changes in intracellular or extracellular ion concentrations, 

or alterations in phosphorylation status of connexin proteins [14–18]. Connexins are 

phosphoproteins and their post-translational phosphorylation influences the functional 

status of intercellular coupling, and dysregulation of the connexin phosphorylation occurs 

under various pathological conditions. An extensive number of protein kinases regulates 

connexin phosphorylation, primarily at serine and threonine sites, while only a few protein 

phosphatases are involved in modulating the phosphorylation state of connexins via protein 

dephosphorylation [19]. Much is known about these kinases, their key phosphorylation sites, 

and their potential as therapeutic targets [20]. However, understanding of the role of protein 

phosphatases in the function of connexin remains an ongoing effort. The phosphatases 

function as holoenzymes with multiple regulatory units controlling the catalytic units [21], 

while the activity of phosphatases can be modified via post-translational modification [22].

Protein phosphatases directly catalyze the hydrolysis of the phosphorylated amino acid 

residue in a protein molecule substrate. Based on the substrate specificity, protein 

phosphatases can be divided into protein serine-threonine phosphatases, protein tyrosine 

phosphatases superfamilies and dual-specificity phosphatases. Because over one third of 

all cardiac proteins go through the reversible phosphorylation/dephosphorylation process 

[23], phosphatases affect a vast spectrum of physiological activities in the heart, including 

cell-to-cell communication, excitation-contraction [24], Ca handling [25,26] and metabolism 

[27]. The serine-threonine phosphatases include three major families – the phosphoprotein 

phosphatases family (PPP), the Mg2+ or Mn2+-dependent protein phosphatases family 

(PMP), and the recently discovered aspartate-based phosphatases [22,28–30]. Protein 

phosphatase 1 (PP1), protein phosphatase 2A (PP2A), and protein phosphatase 2B (PP2B, 

also known as calcineurin) are the well-studied PPP members, and are responsible for 

90% of dephosphorylation activities in the human heart [31,32]. This review focuses on 

the current understanding of protein phosphatase (PPase) regulation of the phosphorylation 

state of Cx43, the most abundantly expressed connexin in both ventricle and atria, and on 

intercellular coupling underlying ventricular arrhythmias in the setting of HF and ischemia 

as well as on AF. We will also address the therapeutic potential of modulating protein 

phosphatases at the level of Cx43 to treat arrhythmias in these clinical settings.
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2. Connexin expression and phosphorylation in the heart

There are three major connexins in heart: Connexin 43 (Cx43), Connexin 40 (Cx40), and 

Connexin 45 (Cx45). Cx43 is the predominant ventricular gap junction protein, but is also 

expressed in atrial and endothelial cells. Connexin 40 (Cx40) and connexin 45 (Cx45) are 

found primarily in atria and the conduction system [18,33–35] and are less abundant overall 

in the heart. The conduction properties of cells are influenced by the relative amounts, 

composition, and distribution of these connexins [36–38]. The abundance of Cx43 proteins 

is critically regulated at the transcriptional level. The Cx43 promoter harbors a number of 

binding sites of transcription factors including SP1, AP-1, CREB, c-Myc, HSP90, retinoic 

acid, and STAT [39–41]. Several transcriptional factors have been reported to enhance the 

Cx43 promoter activity and thus increased Cx43 expression in non-myocytes. For instance, 

several kinases including PKC, P38, ERK1/2, and JAK can activate the Cx43 promoter 

via the recruitment of transcriptional factors such as AP-1, SP1, STAT to upregulate the 

expression of Cx43 [42–45]. Interestingly, phosphoinostide-3 kinase (PI3K)/Akt signaling 

also activates the Cx43 promoter, but it does so by enhancing the binding of β-catenin to 

the Cx43 promoter [46,47]. Overall, a number of signaling pathways have been found to 

be involved in Cx43 expression via transcriptional regulation in non-myocytes. It is notable 

that Cx43 down-regulation in cardiac myocytes is a common feature in diseased and aged 

hearts [19,48–52]. However, current understanding regarding the underlying mechanisms of 

reduced Cx43 gene expression in myocytes remain limited. The Ai Lab recently reported for 

the first time that c-jun N-terminal kinase, an important member of MAP kinase, directly 

suppresses the promoter activity of Cx43 in myocytes via increased binding of c-jun to 

the promoter region, and consequently downregulates the mRNA and protein expression of 

Cx43 under stressed conditions such as advanced age in both humans and animal models 

[49]. Notably, Cx43 dephosphorylation has been found to be frequently linked to reduced 

Cx43 expression under certain pathological conditions. The involvement of phosphatases 

in transcriptional regulation of Cx43, however, is completely unknown and thus further 

investigations are needed.

Connexins, including Cx43, are known to be regulated by a number of post-translational 

modifications including phosphorylation, ubiquitination, sumoylation, S-nitrosylation, 

palmitoylation, hydroxylation, acetylation, methylation, and γ-carboxyglutamination [53], 

which ultimately modulate the function of gap junction channels. Extensive studies show 

that post-translational phosphorylation of Cx43 critically influences intercellular coupling 

through gap junction remodeling under pathological conditions. The function of Cx43, 

including channel conductance, can change in response to phosphorylation of at least 

17 serine and 2 tyrosine sites located at the C-terminus. These include the serine sites 

S297, S306, S325, S328, S330, S365, S368, and the more recently characterized S282 

[54,55]. Cx43 phosphorylation occurs via several kinases, including protein kinase A 

(PKA), protein kinase C (PKC), casein kinase 1 (CK1), mitogen-activated protein kinase 

(MAPK), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and Src kinases [14–

16,20,23,32,33,48,56–59], and many of the kinases colocalize with Cx43 as part of the Cx43 

macromolecular complex (interactome or connexome) [53,60–62]. Studies showed that PKA 

activation can increase or decrease conductance and alter cell-to-cell communication, while 
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activation of PKC decreases gap junctional communication [63,64]. While MAPK promotes 

gap junction channel closure and destabilizes cytoskeletal anchoring, phosphorylation by 

CK1 promotes assembly and channel opening [49]. For instance, reduced phosphorylation 

of Cx43 either at Ser365 (PKA-dependent site) or Ser325/328/330 (CK1δ-dependent 

site) resulted in slowed cardiac conduction and enhanced arrhythmogenicity [65–67]. 

Transgenic knock-in mice with phosphomimetic Ser325/328/330Glu mutant Cx43 (S3E) 

was found to be resistant to ventricular arrhythmia with normal Cx43 channel function 

and normal calcium homeostasis in response to insults, while mutant Cx43 mice (S3A) 

with non-phosphorylatable Ser325/328/330 showed an enhanced arrhythmia risk [14,67]. 

Also, Cx43 dephosphorylation at S282 (PKA phosphorylation site) was found to mitigate 

ischemia/reperfusion-induced cardiac injury, and S282A mutation knock-in mice with non-

phosphorylatable Cx43-S282 was reported to promote myocyte apoptosis and arrhythmias 

[54]. Moreover, recent studies indicate that Cx43 remodeling could mediate contractile 

dysfunction and arrhythmias via the opening of Cx43 hemichannels [68–70]. While 

numerous kinases have been shown to phosphorylate Cx43, only Akt, MAPK and PKC 

have been shown to regulate the activity of Cx43 hemichannels, and thereby potentially 

affect cardiac excitability. For instance, Akt (PKB) phosphorylation on Ser373 increases 

hemichannel function by enhancing the levels of surface Cx43 [71,72], while PKC’s inhibit 

hemichannel activity by phosphorylation of Ser368 [73–77]. MAPK’s have also been shown 

to promote hemichannel opening [78–80], but other studies show inhibition of hemichannel 

opening [81,82]. It is clear that further studies are needed to advance our understanding of 

the functional impact of MAPKs on gap junction channels.[83,84]

3. Phosphatases and Cx43 channel function

Although kinases are critical in regulating Cx43 phosphorylation, protein phosphatases are 

also important in maintaining the phosphorylation status by dephosphorylation of Cx43 

proteins. In contrast to the growing literature on the role of phosphorylation on hemichannel 

function, little is known about the role of phosphatases on gap junction regulation [85].

Cx43 dephosphorylation, often in the setting of reduced Cx43 expression and redistribution, 

is a major contributor to altered intercellular coupling and slowing of conduction under 

certain pathological conditions [14–16,18,19,58,86–88]. On the other hand, dysregulation of 

the key protein phosphatases has been found in numerous pathologic settings including HF, 

myocardial ischemia, and AF. Cx43 can be dephosphorylated by a limited number of protein 

phosphatase, mainly the ubiquitous serine-threonine protein phosphatase – PP1, PP2A, and 

PP2B(calcineurin) [32,33,89]. While these phosphatases are present in the cytoplasm, PP1 

[19] and PP2A [19,90] have been shown to colocalize with Cx43 [19,90], suggesting their 

local control of Cx43 phosphorylation state at the level of the gap junction. Inhibiting 

phosphatase activity was indeed found to improve intercellular coupling by improving the 

phosphorylation state of Cx43, supporting the critical role of PPase’s in reduced intercellular 

coupling and arrhythmia development via Cx43 dephosphorylation [19,89,91].

It is known that the activity of PP1 can be specifically regulated by two endogenous PP1 

inhibitors (heat-stable protein inhibitors), inhibitor-1 (I-1) and inhibitor-2 (I-2) [92–95], 

that are expressed in heart [96,97]. Likewise, PP2A has endogenous inhibitor proteins, 
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inhibitor1PP2A (I1PP2A) and inhibitor2PP2A (I2PP2A) [98–100], that are also expressed 

in heart [97]. Intrinsic or extrinsic PPase inhibition, as well as modulation of upstream 

regulators of PPase activity, may be effective therapeutic approaches to reduce PPase 

activity, improve Cx43 channel function, and ultimately modify conduction. Unfortunately, 

there is nothing known about the effects of these endogenous PPase inhibitors on Cx43 and 

gap junctional conductance. Thus, future investigations are required. Calcineurin is another 

serine-threonine PPase, and its activity is Ca2+-calmodulin-dependent. Studies suggest that 

calcineurin activation by raised intercellular [Ca2+] reduces gap junctional conductance 

(Gj) via dephosphorylation of Cx43 at the Ser365 site, which is the result of calcineurin- 

mediated activation of PP1 [101]. Notably, phosphorylation of S365 is known to promote 

gap junction assembly and channel opening, while phosphrylation of S368 promotes channel 

closure. Since phosphorylation of S365 and S368 are mutually exclusive, enhancing the 

phosphorylation status of S365 could be a therapeutic intervention approach to improve the 

cell-to-cell communication under certain pathological conditions.

4. Phosphatases and Cx43 in heart failure

HF affects over 5 million people in the US, and nearly half of these patients die suddenly, 

primarily from ventricular tachycardia (VT) that degenerates into ventricular fibrillation 

(VF) [1]. In 3-dimensional cardiac mapping studies, the Pogwizd lab previously showed that 

spontaneously occurring VT in nonischemic HF (both in a rabbit HF model and in patients 

with nonischemic HF) is initiated and maintained by a nonreentrant mechanism such as 

triggered activity from delayed or early afterdepolarizations [2]. However, mapping in their 

rabbit HF model and in patients with nonischemic HF [102] revealed altered anisotropic 

conduction and conduction block that could underlie the development of reentry (especially 

during the transition from VT to VF) [3], and that was likely due to altered intercellular 

coupling.

Cx43 remodeling has been found to be critical in impaired intercellular coupling and 

enhanced reentrant arrhythmias in HF. Down-regulation of Cx43 expression occurs in 

HF models and in failing human hearts [7,19,38,51,52,86,103,104], with subepicardial 

Cx43 reduced more than midmyocardial and subendocardial Cx43 [52]. Moreover, Cx43 

is redistributed from the intercalated discs (at end-to-end junctions) to the lateral sides 

(side-to-side junctions) in a process known as lateralization [105,106], and Cx45 levels 

are elevated [52,107–109]. In the arrhythmogenic rabbit model of HF and idiopathic 

dilated cardiomyopathy (IDCM, nonischemic HF) patients, Cx43 protein and mRNA levels 

were decreased in left ventricular (LV) myocardium [19]. In control rabbit LV, Cx43 

was primarily in the phosphorylated state, but with HF there was a significant increase 

in dephosphorylated Cx43 (similar results were noted in human IDCM LV myocytes). 

Moreover, PPase’s were found to dephosphorylate Cx43 [19], evidenced by increased 

amount of PP2A co-localized with Cx43 in HF, whereas colocalized PP1 was unchanged 

[19]. These changes in local expression were considerably different from changes in global 

expression, where total PP2A was decreased and total PP1 levels were increased in HF 

myocytes. This PP2A-modulated dephosphorylation of Cx43 led to decreased intercellular 

coupling, while was improved with the treatment of the PPase inhibitor okadaic acid (at a 
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concentration that inhibited PP2A but not PP1) [110,111], suggesting decreased intercellular 

coupling in HF myocytes can be enhanced by PPase inhibition.

PAKs are another family of serine-threonine kinases (PAK 1 to 6) that phosphorylate 

a variety of substrates [112–114]. PAK1, PAK2, and PAK3 have been shown to play 

important roles in cardiac function [112–115]. PAK1, in particular, has been shown to 

co-localize with PP2A and to modulate PP2A activity [103,116–118]. PAK1 and activated 

PAK1 (pPAK1 that is phosphorylated at the Thr423 site) protein levels were enhanced 

with HF. We investigated the regulation of PAK1 in dephosphorylation of Cx43 via 

PAK1-regulated PP2A activity in HF [103]. While PAK1 colocalized with Cx43, and 

the levels of colocalized PAK1 and PP2A increased in rabbit and human HF, PAK1 

overexpression in nonfailing myocytes increased PP2A activity, dephosphorylated Cx43, and 

decreased intercellular coupling, effects that were blocked by PP2A-specific inhibition with 

okadaic acid [103]. These findings suggest that enhanced PAK1 contributes to increased 

PP2A activation at the local level of Cx43 proteins in HF, resulting in increased Cx43 

dephosphorylation that is associated with decreased intercellular coupling [103]. PAK1-

mediated regulation of Cx43 through PP2A may therefore be used as a potential therapeutic 

approach for preventing ventricular arrhythmias in HF through improved intercellular 

coupling.

In HF, a number of studies have shown enhanced PP1 activity in the heart [119–123], 

but other studies demonstrated conflicting results [23,124–127]. Notably, most of these 

studies measured only the PP1 catalytic subunit (PP1c) and assessed global levels or 

activity, and did not explore its diverse set of interactors, which confer localization and 

substrate specificity to PP1. Chiang et al. [128] recently assessed the PP1 interactome during 

HF progression in mice. Affinity purification with anti-PP1c antibodies was followed by 

high-resolution mass spectrometry. Seventy-one PP1c interactors were quantified, and they 

demonstrated 9 PP1c interactors (Ppp1r7, Ppp1r18, and 7 novel interactors) with changes 

in their binding to PP1c strongly associated with HF progression. The interactors involved 

with PP1 activation at the level of Cx43 remain to be determined, but this novel approach 

could identify key local targets in the failing heart. To explore why there are decreased 

PP2A levels in HF, expression level of the PP2A catalytic subunits B56α and B56δ were 

assessed and found to be decreased in the failing heart [129,130]. B56α is a potential target 

to indirectly inhibit PP2A via its interaction with ankyrin-B [131,132]. Interestingly, mice 

deficient in B56α exhibited increased PP2A activity and slow conduction [133]. The role of 

B56α-PP2A and its association with ankyrin-B at the level of Cx43 remains unknown, but 

ankyrin-B is involved in the localization of B56α-PP2A, which could have effects on PP2A 

activity and, subsequently, Cx43 dephosphorylation. Future investigation is clearly needed in 

this regard.

5. Phosphatases and Cx43 in myocardial ischemia

Ventricular arrhythmias such as VT and VF occur within minutes of onset of myocardial 

ischemia [134,135]. Three-dimensional cardiac mapping during early ischemia showed 

intramural reentry in nearly 75% of cases of VT [134] as well as during the transition 
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from VT to VF [135], from slow conduction likely arising from altered cellular coupling (as 

well as altered ion channel function) [136].

Downregulation of Cx43 expression occurs in myocardial ischemia in both humans 

and animal models [134,135,137,138]. However, the role of Cx43 dephosphorylation in 

intercellular uncoupling and arrhythmogenesis began with the seminal work by Beardslee 

et al. [138]. In the perfused rat heart, they showed progressive Cx43 dephosphorylation, 

with dephosphorylated Cx43 accumulation at sites of gap junctions, with a time course 

similar to ischemia-induced electrical uncoupling. Total Cx43 expression was unchanged 

over that time period, suggesting that accumulation of dephosphorylated Cx43 could 

underlie gap junctional uncoupling in that setting. With ischemia, Cx43 is found to 

redistributed from end-to-end to side-to-side (i.e. lateralization) and is mainly in the 

dephosphorylated state [50]. Considerable work has focused on specific Cx43 serine 

sites and their phosphorylation state during ischemia [139–141]. Axelsen et al. [142], for 

example, used a mass spectroscopy approach and identified 13 serine phosphorylation sites 

(3 of which were not previously described), and they found dephosphorylation at Ser306, 

Ser297, and Ser368, as well as phosphorylation at Ser330 in the ischemic heart [142]. 

More recently, Ser282 has been shown to have an important role in ischemia [54,55]. The 

role of protein phosphatases in ischemia-induced Cx43 dephosphorylation was reported in 

both isolated myocytes and isolated perfused heart. PP1 + PP2A inhibition with okadaic 

acid and calyculin (but not the PP2A inhibitor fostreicin) decreased dephosphorylated Cx43 

accumulation at the intercalated discs [143]. PP1 inhibitors also improved gap junctional 

uncoupling during ATP depletion [91]. These findings point to an important role for PP1, 

but the fact that okadaic acid and calyculin did not completely prevent the ischemia-induced 

Cx43 dephosphorylation suggest that other phosphatases could also be involved. In support 

of this are the findings that calcineurin activity is increased in ischemic rat heart [144,145], 

and inhibition of calcineurin by cyclosporine A in rats prevented Cx43 dephosphorylation 

after myocardial ischemia; but the functional contribution of calcineurin in intercellular 

coupling remains to be determined [137]. Moreover, the role of PPase’s was explored in 

studies of ischemic preconditioning (IP), where repeated short bursts of non-lethal ischemia 

and reperfusion are given prior to prolonged ischemic/reperfusion period. IP has been shown 

to prevent ischemia-induced Cx43 dephosphorylation [146–148]. The role of PP1, PP2A and 

calcineurin in preconditioned myocardium was studied in mini pigs subjected to IP + 90 min 

of low-flow ischemia. Totzek et al [90] found that Cx43 co-immunoprecipitated with PP2A, 

but not with PP1, and the amount of co-immunoprecipitated PP2A with Cx43 did not change 

with IP. These findings suggest that there may be species differences in the direct association 

of PPase’s at the level of Cx43. While coprecipitated PP2A (with Cx43) did not change with 

IP+ ischemia, changes in PP2A activity at the level of Cx43 and/or contributions from other 

PPase’s such as calcineurin could not be ruled out.

6. Phosphatases and Cx43 in atrial fibrillation

AF is the most common arrhythmia in clinical practice and is associated with a high risk of 

morbidity (stroke and HF) [149,150]. While aging is inevitable and the most prevalent risk 

factor for AF, various conditions (e.g. alcohol abuse, obesity, diabetes, HF, valvular diseases, 

myocardial ischemia) have been well recognized as independent AF risk factors [151–
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158]. The electrophysiological mechanisms underlying AF [159,160] include reentry (from 

slow conduction due to altered gap junctions, interstitial fibrosis, and sodium channels) 

[48,49,161–164] as well as non-reentrant activation from triggered activity due to delayed 

and/or early afterdepolarization as a result of altered Ca2+ handling [5,163,165–170]. Over 

the years, significant progresses have been made regarding the underlying mechanisms of 

altered gap junctions in AF and potential approaches for therapeutic interventions.

Atrial gap junctions, composed of Cx43 and Cx40, form specialized membrane channel 

structures that critically influence electrical and chemical signal propagation between 

adjacent atrial myocytes [171,172]. Atrial gap junction remodeling leads, at least in 

part, to slowed action potential propagation that facilitates arrhythmic reentry circuits 

[19,48,86,172,173]. However, gap junctional remodeling in atrial tissue from AF patients 

has been variably reported as an increase or a decrease in one or more connexins 

(Cx43 and/or Cx40), and as increased heterogeneity in the distribution of the connexins. 

Each of these results is dependent on comorbid cardiovascular diseases, the type of AF 

(paroxysmal or chronic), or the AF animal model used [174,175]. The Ai lab found 

significantly decreased Cx43 in aged atria from humans, rabbits, and mice [48,49,176]. 

Moreover, reduced Cx43 was also reported in the tachy-pacing induced AF model of swine. 

Overexpression of Cx43 using atrial gene transfer corrected Cx43 downregulated-caused 

slow conduction and AF propensity [162], suggesting the critical role of Cx43 in AF.

While growing evidence has supported the functional contribution of Cx43 in reentrant 

arrhythmias and AF, the underlying mechanisms of altered Cx43 and its functional impact 

in stressed or diseased hearts remains unclear. The c-jun N-terminal kinase (JNK) is 

a stress-response protein kinase, one member of the mitogen-activated protein kinases 

(MAPKs) family, which is known to be critical in the development of cardiovascular 

diseases including HF, hypertrophy, and atherosclerosis [177,178]. The Ai lab recently 

elucidated the pivotal roles of the stress kinase JNK in suppressing Cx43 expression and 

enhancing abnormal triggered Ca2+ activities, both of which promote the formation of 

the arrhythmogenic substrate of AF [48,49,165–167]. Specifically, activated atrial JNK 

downregulated Cx43 expression via suppressed transcriptional activity by increased binding 

of the JNK-downstream transcriptional factor c-Jun to the Cx43 gene promoter, which 

consequently led to impaired intercellular coupling and slowing of conduction in the 

atrium [49]. Meanwhile, activated atrial JNK also drove a pathogenic kinase-to-kinase 

crosstalk between JNK kinase and the ‘pro-arrhythmic kinase’ CaMKIIδ in the control of 

intercellular Ca2+ signaling and consequently Ca2+-mediated aberrant triggered activities. 

Overall, these studies provided direct evidence for the causative action of JNK in atrial 

arrhythmogenic remodeling and a novel molecular mechanism underlying JNK-regulated 

Cx43 gene expression and impaired intercellular coupling. It also supports that JNK 

kinase activity modulation could be a potential therapeutic approach for improved atrial 

conduction and AF prevention in the aged heart. To date, the direct regulation of JNK on 

the phosphorylation status of Cx43 remains unknown. However, it is interesting to note 

that the JNK activator anisomycin has been shown to stimulate JNK activity by inducing 

ubiquitination and degradation of the dual-specificity phosphatase 8 (DUSP8, M3/6) [179]; 

and other DUSP’s such as DUSP1 inhibit JNK in heart [180]. The relationship between JNK 

kinase and PPases in Cx43 is clearly worthy of further investigation.
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Cx43 dephosphorylation and lateralization, as well as reduced coupling were observed in 

atria from patients with AF and in dilated atria from infarcted rats [181]. However, little 

is known about the role of phosphatases at the level of Cx43 in AF. Altered expression 

and activity of protein phosphatases in human chronic AF have been reported, although 

reported findings are inconsistent [119,182,183]. One study reported increased PP2A but 

not PP1 [119,182], while another study found increased PP1 and PP2A activity along 

with hyperphosphorylated inhibitor 1 of PP1 (I-1) in atria from chronic AF patients 

[183]. In addtion, atrial samples from chronic coronary artery disease patients showed 

expression of I1PP2A and I2PP2A, and a significant decline in PP2Ac and I2PP2A in 

older patients [97]. In the end, it remains to be determined whether alteration in PP1 and 

PP2A activity and endogenous inhibitors I-1, I-2, I1PP2A and/or I2PP2A could modulate 

Cx43 phosphorylation and channel function at the level of Cx43 proteins, and contribute to 

development of AF.

7. Therapeutic implications of phosphatase modulation on Cx43 and 

future studies

PP1 and PP2A can be directly inhibited by small molecule serine/threonine phosphatase 

inhibitors. Although some of these inhibitors are selective for PP1 and/or PP2A, they all 

may also inhibit PP4, PP5, and PP6 to an extent, which may have undesirable effects [184]. 

The most selective and widely available PPase inhibitors are okadaic acid, calyculin A, and 

fostreicin. However, broad-acting phosphatase inhibitors such as okadaic acid and calyculin 

(that inhibit both PP1 and PP2A) are known to have significant toxicity precluding any 

therapeutic use. Fostreicin has been reported to be highly selective for PP2A over PP1 

[185]. While fostreicin did not reduce ischemia-induced Cx43 dephosphorylation [143], it 

was protective during myocardial ischemia [186–188]. It is of particular interest since it is 

being investigated as a cancer treatment for its antitumor activity in vivo. It showed in vitro 

activity against leukemia, lung cancer, breast cancer and ovarian cancer [185,189,190] that 

is thought to be due to PP2A’s assumed role in regulating cell apoptosis by activation of 

cytotoxic T-lymphocytes and natural killer cells involved in tumor surveillance. Fostreicin 

has been safely administered to patients in pharmacokinetic studies and clinical trials, 

supporting its possible use in clinical applications [191]. Likewise, the more selective PP2A 

inhibitor LB-100 [192–194] is in clinical trials in cancer patients, and further attests to the 

feasibility for focused phosphatase inhibition as a viable therapeutic approach.

With regard to potential phosphatase modulation of Cx43, the peptide rotigaptide (ZP123), a 

derivative of antiarrhythmic peptide, has been shown to improve gap junctional conductance 

in vitro [195,196], and to have antiarrhythmic activity in vivo [197,198]. The mechanisms of 

rotigaptide’s effects have remained unclear, and its decreased phosphorylation of serines 297 

and 368 [142] on Cx43 could be due to effects on an unknown phosphatase. Unfortunately, 

rotigaptide is no longer in development, but the intriguing antiarrhythmic effects with 

rotigaptide [198–206], as well as that of a derivative, danegaptide (ZP1609 or GAP-134) 

[199,202], suggest that Cx43 phosphorylation state remains a viable therapeutic target for 

antiarrhythmic therapy for HF, myocardial ischemia, and AF.

Ai et al. Page 9

Cell Signal. Author manuscript; available in PMC 2022 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another potential approach to phosphatase modulation of Cx43 is microRNA’s. Protein 

phosphatases are regulated by microRNA’s. In particular mirR-1 and miR-133 have been 

shown to contribute to arrhythmogenesis through changes in RyR2 dephosphorylation by 

PP2A, leading to abnormal Ca2+ handling by the sarcoplasmic reticulum [130,207]. Cx43 is 

a direct target of miR-1 [208–210], and miR-1 has been shown to modulate conduction 

through its effects on Cx43 [211]. Whether miR-1’s effect on Cx43 is mediated by 

phosphatase activation requires further investigation.

A number of early studies including studies in knockout mice have suggested that gap 

junctions may not be the only means by which cells can electrically couple [212]. Recent 

work suggests that non-GJ-mediated coupling between cells (i.e. ephaptic coupling) could 

underlie intercellular transfer of electrical activation by means of electric fields within a 

confined extracellular space such as the perinexus, a perijunctional domain around the GJ’s 

[213,214]. The beta subunit of Nav1.5 sodium channels play an essential role [215,216], 

and ephaptic coupling is sensitive to extracellular concentrations of Na, K and Ca ions 

[217,218]. If intact GJ’s are required for bringing perinexal membranes in close enough 

proximity to allow for ephaptic signaling, interventions that maintain Cx43 gap junctions at 

the intercalated discs may be effective in preserving ephaptic signaling that would otherwise 

be lost. While several studies have shown effects on ephatic coupling independent of 

changes in Cx43 phosphorylation state [217,219], little is known about the direct effects 

of kinases and phosphatases on this non-GJ coupling mechanism. Further investigations are 

needed.

Taken together, the phosphorylation state of Cx43 at various serine, threonine and tyrosine 

sites can significantly impact Cx43 expression and function in various pathological states 

such as HF, myocardial ischemia, and atrial fibrillation. While much work has focused on a 

large number of interacting kinases, the functional role of phosphatases is worthy of future 

studies. Moreover, the therapeutic potential of modulating phosphatase activity at the level 

of the gap junction should be further explored as a potential targeted antiarrhythmic strategy.
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