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Abstract

Learning maps between data samples is fundamental. Applications range from representation 

learning, image translation and generative modeling, to the estimation of spatial deformations. 

Such maps relate feature vectors, or map between feature spaces. Well-behaved maps should 

be regular, which can be imposed explicitly or may emanate from the data itself. We explore 

what induces regularity for spatial transformations, e.g., when computing image registrations. 

Classical optimization-based models compute maps between pairs of samples and rely on an 

appropriate regularizer for well-posedness. Recent deep learning approaches have attempted 

to avoid using such regularizers altogether by relying on the sample population instead. We 

explore if it is possible to obtain spatial regularity using an inverse consistency loss only and 

elucidate what explains map regularity in such a context. We find that deep networks combined 

with an inverse consistency loss and randomized off-grid interpolation yield well behaved, 

approximately diffeomorphic, spatial transformations. Despite the simplicity of this approach, our 

experiments present compelling evidence, on both synthetic and real data, that regular maps can 

be obtained without carefully tuned explicit regularizers, while achieving competitive registration 

performance.

1. Motivation

Learning maps between feature vectors or spaces is an important task. Feature vector 

maps are used to improve representation learning [7], or to learn correspondences in 

natural language processing [4]. Maps between spaces are important for generative models 

when using normalizing flows [24] (to map between a simple and a complex probability 

distribution), or to determine spatial correspondences between images, e.g., for optical flow 

[16] to determine motion from videos [12], depth estimation from stereo images [25], or 

medical image registration [39, 40].
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Regular maps are typically desired; e.g., diffeomorphic maps for normalizing flows to 

properly map densities, or for medical image registration to map to an atlas space [20]. 

Estimating such maps requires an appropriate choice of transformation model. This entails 

picking a parameterization, which can be simple and depend on few parameters (e.g., an 

affine transformation), or which can have millions of parameters for 3D nonparametric 

approaches [14]. Regularity is achieved by 1) picking a simple transformation model 

with limited degrees of freedom, 2) regularization of the transformation parameters, 3) or 

implicitly through the data itself. Our goal is to demonstrate and understand how spatial 

regularity of a transformation can be achieved by encouraging inverse consistency of a map. 

Our motivating example is image registration/optical flow, but our results are applicable to 

other tasks where spatial transformations are sought.

Registration problems have traditionally been solved by numerical optimization [28] of a 

loss function balancing an image similarity measure and a regularizer. Here, the predominant 

paradigm is pair-wise image registration1 where many maps may yield good image 

similarities between a transformed moving and a fixed image; the regularizer is required 

for well-posedness to single out the most desirable map. Many different regularizers have 

been proposed [14, 28, 33] and many have multiple hyperparameters, making regularizer 

choice and tuning difficult in practice. Deep learning approaches to image registration and 

optical flow have moved to learning maps from many image pairs, which raises the question 

if explicit spatial regularization is still required, or if it will emanate as a consequence of 

learning over many image pairs. For optical flow, encouraging results have been obtained 

without using a spatial regularizer [10, 32], though more recent work has advocated for 

spatial regularization to avoid “vague flow boundaries and undesired artifacts” [18, 19]. 

Interestingly, for medical image registration, where map regularity is often very important, 

almost all the existing work uses regularizers as initially proposed for pairwise image 

registration [36, 42, 2] with the notable exception of [3] where the deformation space is 

guided by an autoencoder instead.

Limited work explores if regularization for deep registration networks can be avoided 

entirely, or if weaker forms of regularizations might be sufficient. To help investigate this 

question, we work with binary shapes (where regularization is particularly important due 

to the aperture effect [15]) and real images. We show that regularization is necessary, but 

that carefully encouraging inverse consistency of a map suffices to obtain approximate 

diffeomorphisms. The result is a simple, yet effective, nonparametric approach to obtain 

well-behaved maps, which only requires limited tuning. In particular, the in practice often 

highly challenging process of selecting a spatial regularizer is eliminated.

Our contributions are as follows: (1) We show that approximate inverse consistency, 

combined with off-grid interpolation, results in approximate diffeomorphisms, when using a 

deep registration model trained on large datasets. Foregoing regularization is insufficient; (2) 

Bottleneck layers are not required and many network architectures are suitable; (3) Affine 

preregistration is not required; (4) We propose randomly sampled evaluations to avoid 

transformation flips in texture-less areas and an inverse consistency loss with beneficial 

1A notable exception is congealing [45].
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boundary effects; (5) We present good results of our approach on synthetic data, MNIST, 

and a 3D magnetic resonance knee dataset of the Osteoarthritis Initiative (OAI).

2. Background and Analysis

Image registration is typically based on solving optimization problems of the form

θ* = argmin
θ

ℒsim IA ∘ Φθ
−1, IB + λℒreg(θ), (1)

where IA and IB are moving and fixed images, ℒsim ( ⋅ , ⋅ ) is the similarity measure, ℒreg ( ⋅ )
is a regularizer, θ are the transformation parameters, Φθ is the transformation map, and λ ≥ 

0. We consider images as functions from ℝN to ℝ and maps as functions from ℝN to ℝN. 

We write ∥f∥p for the Lp norm on a scalar or vector-valued function f.

Maps, Φθ, can be parameterized using few parameters (e.g., affine, B-spline [14]) 

or nonparametrically with continuous vector fields [28]. In the nonparametric case, 

parameterizations are infinite-dimensional (as one deals with function spaces) and represent 

displacement, velocity, or momentum fields [2, 36, 42, 28]. Solutions to Eq. (1) are 

classically obtained via numerical optimization [28]. Recent deep registration networks are 

conceptually similar, but predict θ*, i.e., an estimate of the true minimizer θ*.

There are three interesting observations: First, for transformation models with few 

parameters (e.g., affine), regularization is often not used (i.e., λ = 0). Second, while deep 

learning (DL) models minimize losses similar to Eq. (1), the parameterization is different: 

it is over network weights, resulting in a predicted θ* instead of optimizing over θ directly. 

Third, DL models are trained over large collections of image pairs instead of a single (IA, IB) 

pair. This raises the following questions: Q1) Is explicit spatial regularization necessary, or 

can we avoid it for nonparametric registration models? Q2) Is using a single neural network 

parameterization to predict all θ* beneficial? For instance, will it result in simple solutions 

as witnessed for deep networks on other tasks [35] or capture meaningful deformation 

spaces as observed in [42]? Q3) Does a deep network parameterization itself result in 

regular solutions, even if only applied to a single image pair, as such effects have, e.g., been 

observed for structural optimization [17]?

Regularization typically encourages spatial smoothness by penalizing derivatives (or 

smoothing in dual space). Commonly, one uses a Sobolev norm or total variation. Ideally, 

one would like a regularizer adapted to deformations one expects to see (as it encodes 

a prior on expected deformations e.g., as in [29]). In consequence, picking and tuning 

a regularizer is cumbersome and often involves many hyperparameters. While avoiding 

explicit regularization has been explored for deep registration / optical flow networks [10, 

32], there is evidence that regularization is beneficial [18].

Our key idea is to avoid complex spatial regularization and to instead obtain approximate 
diffeomorphisms by encouraging inverse consistent maps via regularization.
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2.1. Weakly-regularized registration

Assume we eliminate regularization (λ = 0) and use the p-th power of the Lp norm of 

the difference between the warped image, IA ∘ Φθ
−1, and the fixed image, IB, as similarity 

measure. Then, our optimization problem becomes

θ* = argmin
θ ∫ IA Φθ

−1(x) − IB(x) pdx, p ≥ 1, (2)

i.e., the image intensities of IA should be close to the image intensities of IB after 
deformation. Without regularization, we are entirely free to choose Φθ. Highly irregular 

minimizers of Eq. (2) may result as each intensity value IA is simply matched to the 

closest intensity value of IB regardless of location. For instance, for a constant IB(x) = 

c and a moving image IA(y) with a unique location yc, where IA(yc) = c, the optimal 

map is Φθ
−1(x) = yc, which is not invertible: only one point of IA will be mapped to the 

entire domain of IB. Clearly, more spatial regularity is desirable. Importantly, irregular 

deformations are common optimizers of Eq. (2).

Optimal mass transport (OMT) is widely used in machine learning and in imaging. Such 

models are of interest to us as they can be inverse consistent. An OMT variant of the discrete 

reformulation of Eq. (2) is

θ* = argmin
θ

dx ∑
i = 1

S
IA Φθ

−1 xi − IB xi
p, p ≥ 1 (3)

for p ≥ 1, where i indexes the S grid points xi, Φθ
−1 xi  is restricted to map to the grid 

points yi of IA, and dx is the discrete area element. Instead of considering all possible 

maps, we attach a unit mass to each intensity value of IA and IB and ask for minimizers 

of Eq. (3) which transform the intensity distribution of IA to the intensity distribution of 

IB via permutations of the values only. As we only allow permutations, the optimal map 

will be invertible by construction. This problem is equivalent to optimal mass transport for 

one-dimensional empirical measures [31]. One obtains the optimal value by ordering all 

intensity values of IA I1
A ≤ ⋯ ≤ IS

A  and IB I1
B ≤ ⋯ ≤ IS

B . The minimum is the p-th power 

of the p-Wasserstein distance (p ≥ 1)Wp
p = ∑i Ii

A − Ii
B p

. In consequence, minimizers for Eq. 

(2) are related to sorting, but do not consider spatial regularity. Note that solutions might 

not be unique when intensity values in IA or IB are repeated. Solutions via sorting were 

empirically explored for registration in [34] to illustrate that they, in general, do not result in 

spatially meaningful registrations. At this point, our idea of using inverse consistency (i.e., 

invertible maps) as the only regularizer appears questionable, given that OMT often provides 

an inverse consistent model (when a matching, i.e., a Monge solution, is optimal), while 

resulting in irregular maps (Fig. 2).

Yet, we will show that a registration network, combined with an inverse consistency loss, 
encourages map regularity.
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2.2. Avoiding undesirable solutions

Simplicity.—The highly irregular maps in Fig. 2 occur for pair-wise image registration. 

Instead, we are concerned with training a network over an entire image population. Were 

one to find a global inverse consistent minimizer, a network would need to implicitly 

approximate the sorting-based OMT solution. As sorting is a continuous piece-wise linear 

function [5], it can, in principle, be approximated according to the universal approximation 

theorem [26]. However, this is a limit argument. Practical neural networks for sorting are 

either approximate [27, 11] or very large (e.g., O(S2) neurons for S values [6]). Note that 

deep networks often tend to simple solutions [35] and that we do not even want to sort all 
values for registration. Instead, we are interested in more local permutations, rather than the 

global OMT permutations, which is what we will obtain for neural network solutions with 

inverse consistency.

Invertibility.—Requiring map invertibility implies searching for a matching (a Monge 

formulation in OMT) which is an optimal permutation, but which may not be continuous2. 

Instead, our goal is a continuous and invertible map. We therefore want to penalize 

deviations from

Φθ
AB ∘ Φθ

BA = Id, (4)

where Φθ
AB denotes a predicted map (by a network with weights θ) to register image IA to 

IB; Φθ
BA is the network output with reversed inputs and Id denotes the identity map.

Inverse consistency of maps has been explored to obtain symmetric maps for pair-wise 

registration [13, 8] and for registration networks [43, 36]. Related losses have been proposed 

on images (instead of maps) for registration [22, 21] and for image translation [44]. 

However, none of these approaches study inverse consistency for regularization. Likely, 

because it has so far been believed that additional spatial regularization is required for 

nonparametric registration.

2.3. Approximate inverse consistency

As we will show next, approximate inverse consistency by itself yields regularizing effects 

in the context of pairwise image registration.

Denote by Φθ
AB(x)  and Φθ

BA(x) the output maps of a network for images (IA, IB) and (IB, 

IA), respectively. As inverse consistency by itself does not prevent discontinuous solutions, 

we propose to use approximate inverse consistency to favor C0 solutions. We add two 

vector-valued independent spatial white noises n1(x), n2(x) ∈ ℝN (x ∈ [0, 1]N with N=2 or 

N=3 the image dim.) of variance 1 for each space location and dimension to the two output 

maps and define

2It would be interesting to study how well a network approximates an OMT solution and if it naturally regularizes it.
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Φθε
AB(x) = Φθ

AB(x) + εn1 Φθ
AB(x) ,

Φθε
BA(x) = Φθ

BA(x) + εn2 Φθ
BA(x) ,

with ε > 0. We then consider the loss ℒ = λℒinv + ℒsim, with inverse consistency 

component ℒinv 

ℒinv = Φθε
AB ∘ Φθε

BA − Id 2
2 + Φθε

BA ∘ Φθε
AB − Id 2

2
(5)

and similarity component ℒsim

ℒsim = IA ∘ Φθ
AB − IB

2
2 + IB ∘ Φθ

BA − IA
2
2 . (6)

Importantly, note that there are multiple maps that can lead to the same IA ∘ Φθ
AB and 

IB ∘ Φθ
BA. Therefore, among all these maps, minimizing the loss ℒ drives the maps towards 

those that minimize the two terms in Eq. (5).

Assumption. Both terms in Eq. (5) can be driven to a small value (of the order of the noise), 
by minimization.

We first Taylor-expand one of the two terms in Eq. (5) (the other follows similarly), yielding

Φθε
AB ∘ Φθε

BA − Id 2
2 ≈ Φθ

AB ∘ Φθ
BA + εn1 Φθ

AB ∘ Φθ
BA + dΦθε

AB εn2 Φθ
BA − Id 2

2
.

Defining the right-hand side as A, developing the squares and taking expectation, we obtain

E[A] = Φθ
AB ∘ Φθ

BA − Id 2
2

+ ε2E n1 ∘ Φθε
AB ∘ Φθε

BA
2
2

+ ε2E dΦθε
AB n2 ∘ Φθ

BA
2
2 ,

(7)

since, by independence, all the cross-terms vanish (the noise terms have 0 mean value). The 

second term is constant, i.e.,

E n1 ∘ Φθε
AB ∘ Φθε

BA
2
2 =

∫ E n1 2
2(y) Jac Φθε

BA −1 ∘ Φθε
AB −1 dy =  const . ,

(8)

where we performed a change of variables and denoted the determinant of the Jacobian 

matrix as Jac. The last equality follows from the fact that the variance of the noise term is 
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spatially constant and equal to 1. By similar arguments, the last expectation term in Eq. (7) 

can be rewritten as

E dΦθε
AB n2 ∘ Φθ

BA
2
2 =

∫ Tr d Φθε
AB ⊤dΦθε

AB Jac Φθ
BA −1 dy,

(9)

where Tr denotes the trace operator. As detailed in the suppl. material, the identity of Eq. (9) 

relies on a change of variable and on the property of the white noise, n2, which satisfies null 

correlation in space and dimension E n2(x)n2 x′ ⊤ = IdℝN if x = x′ and 0 otherwise.

Approximation & H1 regularization.—We now want to connect the approximate inverse 

consistency loss of Eq. (5) with H1 norm type regularization. Our assumption implies that 

Φθ
AB ∘ Φθ

BA, Φθ
BA ∘ Φθ

AB are close to identity, therefore one has Jac Φθ
BA −1 ≈ Jac Φθ

AB . 

Assuming this approximation holds, we use it in Eq. (9), together with the fact that, 

Φθε
AB ≈ Φθ

AB + O(ε) to get at order ε2 (see suppl. material for details) to approximate ℒinv , 

i.e.,

ℒinv ≈ Φθ
AB ∘ Φθ

BA − Id 2
2 + Φθ

BA ∘ Φθ
AB − Id 2

2

+ ε2 dΦθ
AB Jac Φθ

AB
2
2

+ ε2 dΦθ
BA Jac Φθ

BA
2
2 (10)

We see that approximate inverse consistency leads to an L2 penalty of the gradient, weighted 

by the Jacobian of the map. This is a type of Sobolev (H1 more precisely) regularization 

sometimes used in image registration. In particular, the H1 term is likely to control the 

compression and expansion magnitude of the maps, at least on average, on the domain. 

Hence, approximate inverse consistency leads to an implicit H1 regularization, formulated 
directly on the map.

Inverse consistency with no noise and the implicit regularization of inverse consistency.

Turning the noise level to zero also leads to regular displacement fields in our experiments 

when predicting maps with a neural network. In this case, we observe that inverse 

consistency is only approximately achieved. Therefore, one can postulate that the error made 

in computing the inverse entails the H1 regularization as previously shown. The possible 

caveat of this hypothesis is that the inverse consistency error might not be independent of 

the displacement fields, which was assumed in proving the emerging H1 regularization. Last, 

even when the network should have the capacity to exactly satisfy inverse consistency for 

all data, we conjecture that the implicit bias due to the optimization will favor more regular 

outputs.

A fully rigorous theoretical understanding of the regularization effect due to the data 
population and its link with inverse consistency is important, but beyond our scope here.
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3. Approximately diffeomorphic registration

We base our registration approach on training a neural network Fθ
AB which, given input 

images IA and IB, outputs a grid of displacement vectors, Dθ
AB, in the space of image IB, 

assuming normalized image coordinates covering [0, 1]N. We obtain continuous maps by 

interpolation, i.e.,

Φθ
AB = Dθ

AB + Id, Dθ
AB = interp Fθ

AB (11)

where IA ∘ Φθ
AB ≈ IB. Under the assumption of linear interpolation (bilinear in 2D and 

trilinear in 3D), Φθ
AB is continuous and differentiable except on a measure zero set. Building 

on the considerations of Sec. 2 we seek to minimize

ℒ(θ) = Ep IA, IB ℒsim 
AB + λℒinv 

AB , (12)

where λ ≥ 0 and p(IA, IB) denotes the distribution over all possible image pairs. The 

similarity and invertibility losses depend on the neural network parameters, θ, and are

ℒsim
AB = ℒsim IA ∘ Φθ

AB, IB + ℒsim IB ∘ Φθ
BA, IA

ℒinv 
AB = ℒinv  Φθ

AB, Φθ
BA + ℒinv  Φθ

BA, Φθ
AB (13)

with

ℒsim(I, J) = I − J 2
2, ℒinv(ϕ, ψ) = ϕ ∘ ψ − Id 2

2 . (14)

For simplicity, we use the squared L2 norm as similarity measure. Other measures, e.g., 

normalized cross correlation (NCC) or mutual information (MI), can also be used. When 

ℒinv 
AB  goes to zero, Φθ

AB will be approx. invertible and continuous due to Eq. (11). 

Hence, we obtain approximate C0 diffeomorphisms without differential equation integration, 

hyperparameter tuning, or transform restrictions. Our loss in Eq. (12) is symmetric in the 

image pairs due to the symmetric similarity and invertibility losses in Eq. (13).

Displacement-based inverse consistency loss.

A general map Φθ
AB may map points in [0, 1]N to points outside [0, 1]N. Extrapolating maps 

across the boundary is cumbersome. Hence, we only interpolate displacement fields as in 

Eq. (11). We rewrite the inverse consistency loss as

ℒinv Φθ
AB, Φθ

BA = Dθ
AB + Id ∘ Dθ

BA + Id − Id 2
2

= Dθ
AB ∘ Φθ

BA + Dθ
BA

2
2 (15)

and use it for implementation, as it is easier to evaluate.
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Random evaluation of inverse consistency loss.

ℒinv 
AB  can be evaluated by approximating the L2 norm, assuming constant values over the 

grid cells. In many cases, this is sufficient. However, as Fig. 3 illustrates, swapped locations 

may occur in uniform regions where a registration network only sees uniform background. 

This swap, composed with itself, is the identity as long as it is only evaluated at the center 

of pixels/voxels. Hence, the map appears invertible to the loss. However, outside the centers 

of pixels/voxels, the map is not inverse consistent when combined with linear interpolation. 

To avoid such pathological cases, we approximate the L2 norm by random sampling. This 

forces interpolation and therefore results in non-zero loss values for swaps. Fig. 4 shows 

why off-grid sampling combined with inverse consistency is a stronger condition than only 

considering deformations at grid points. In practice, we evaluate the loss

ℒinv  Φθ
AB, Φθ

BA

= Dθ
AB ∘ Φθ

BA + Dθ
BA

2
2

= Ex U(0, 1)N Dθ
AB ∘ Φθ

BA + Dθ
BA 2(x)

≈ 1/Np∑i Dθ
AB ∘ Dθ

BA + Id + Dθ
BA xi + ϵi

2

= 1/Np∑i Dθ
AB ∘ Dθ

BA ∘ xi + ϵi + xi + ϵi

+Dθ
BA ∘ xi + ϵi

2

(16)

where Np is the number of pixels/voxels, U(0, 1)N denotes the uniform distribution over 

[0, 1]N, xi denotes the grid center coordinates and ϵi is a random sample drawn from 

a multivariate Gaussian with standard deviation set to the size of a pixel/voxel in the 

respective spatial directions.

4. Experiments

Our experiments address several aspects: First, we compare our approach to directly 
optimizing the maps ΦAB and ΦBA on a 2D toy dataset of 128 × 128 images. Second, on a 

2D toy dataset of 28 × 28 images, we assess the impact of architectural and hyperparameter 

choices. Finally, we assess registration performance on real 3D magnetic resonance images 

(MRI) of the knee.

4.1. Datasets

MNIST.—We use the standard MNIST dataset with images of size 28 × 28, restricted to the 

number “5” to make sure we have semantically matching images. For training/testing, we 

rely on the standard partitioning of the dataset.

Triangles & Circles.—We created 2D triangles and circles (128 × 128) with radii and 

centers varying uniformly in [.2, .4] and [.4, .7], respectively. Pixels are set to 1 inside a 

shape and smoothly decay to −1 on the outside. We train using 6,000 images and test on 

6,000 separate images3.

3Code to generate images and replicate these experiments is available at https://github.com/uncbiag/ICON
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OAI knee dataset.—These are 3D MR images from the Osteoarthritis Initiative (OAI). 

Images are downsampled to size 192 × 192 × 80, normalized such that the 1th percentile 

is set to 0, the 99th percentile is to 1, and all values are clamped to be in [0, 1]. As a 

preprocessing step, images of left knees are mirrored along the left-right axis. The dataset 

contains 2,532 training images and 301 test pairs.

4.2. Architectures

We experiment with four neural network architectures. All networks output displacement 

fields, Dθ
AB. We briefly outline the differences below, but refer to the suppl. material for 

details. The first network is an MLP with 2 hidden layers and ReLU activations. The output 

layer is reshaped into size 2 × W × H. Second, we use a convolutional encoderdecoder 

network (Enc-Dec) with 5 layers each, reminiscent of a U-Net without skip connections. 

Our third network uses 6 convolutional layers without up- or down-sampling. The input to 

each layer is the concatenation of the outputs of all previous layers (ConvOnly). Finally, we 

use a U-Net with skip and residual connections. The latter is similar to Enc-Dec, but uses 

LeakyReLU activations and batch normalization. In all architectures, the final layer weights 

are initialized to 0, so that optimization starts at a network outputting a zero displacement 

field.

4.3. Regularization by approx. inverse consistency

Sec. 2.3 formalized that approximate inverse consistency results in regularizing effects. 

Specifically, when Φθ
AB is approximately the inverse of Φθ

BA, the inverse consistency loss 

ℒinv 
AB  can be approximated based on Eq. (10), highlighting its implicit H1 regularization. 

We investigate this behavior by three experiments: Pair-wise image registration (1) with 

artificially added noise (noise) and (2) without (no noise) artificially added noise, and (3) 

population-based registration via a U-Net. Fig. 5 shows some sample results, supporting 

our theoretical exposition of Sec. 2.3: Pair-wise image registration without noise results in 

highly irregular transformations even though the inverse consistency loss is used. Adding a 

small amount of Gaussian noise with standard deviation of 1/8th of a pixel (similar to the 

inverse consistency loss magnitudes we observe for a deep network) to the displacement 

fields before computing the inverse consistency loss, results in significantly more regular 

maps. Lastly, using a U-Net yields highly regular maps. Notably, all three approaches result 

in approximately inverse consistent maps. The behavior for pair-wise image registration 

elucidates why inverse consistency has not appeared in the classical (pair-wise) registration 

literature as a replacement for more complex spatial regularization. The proposed technique 

only results in regularity when inverse consistency errors are present.

In summary, our theory is supported by our experimental results: approximate inverse 
consistency regularizes maps.

4.4. Regularization for different networks

Sec. 4.3 illustrated that approximate inverse consistency yields regularization effects which 

translate to regularity for network predictions, as networks will, in general, not achieve 

perfect inverse consistency. A natural next question to ask is “how much the results depend 
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on a particular architecture”? To this end, we assess four different network types, focusing 

on MNIST and the triangles & circles data. We report two measures on held-out images: 

the Dice score of pixels with intensity greater than 0.5, and the mean number of folds, i.e., 

pixels where the volume form dV of Φ is negative.

One hypothesis as to how network design could drive smoothness would be that smoothness 

is induced by convolutional layers (which can implement a smoothing kernel). If this were 

the case, we would expect the MLP to produce irregular maps with a high number of 

folds. Vice versa, since the MLP has no spatial prior, obtaining smooth transforms would 

indicate that smoothness is promoted by the loss itself. The latter is supported by Fig. 6, 

showing regular maps even for the MLP when λ is sufficiently large. Note that λ = 0 in 

Fig. 6 corresponds to an unregularized MSE solution, as discussed in Sec. 2.1; maps are, as 

expected, highly irregular and regularization via inverse consistency is clearly needed.

A second hypothesis is that regularity results from a bottleneck structure within a network, 

e.g., a U-Net. In fact, Bhalodia et al. [3] show that autoencoders tend to yield smooth maps. 

To assess this hypothesis, we focus on the Enc-Dec and ConvOnly type networks; the 

former has a bottleneck structure, while the latter does not. Fig. 6 shows some support for 

the hypothesis that a bottleneck promotes smooth maps: for a specific λ, Enc-Dec appears 

to have more strongly regularized outputs compared to U-Net, with ConvOnly being the 

most irregular. Yet, higher values of λ (e.g., 1,024 or 2,048) for ConvOnly yield equally 

smooth maps. Overall, a bottleneck structure does have a regularizing effect, but regularity 

can also be achieved by appropriately weighing the inverse consistency loss (see Tab. 1).

In summary, our experiments indicate that the regularizing effect of inverse consistency is a 
robust property of the loss, and should generalize well across architectures.

4.5. Performance for 3D image registration

For experiments on real data, we focus on the 3D OAI dataset. To demonstrate the versatility 

of the advocated inverse consistency loss in promoting map regularity, we refrain from 

affine pre-registration (as typically done in earlier works) and simply compose the maps 

of multiple U-Nets instead. In particular, we compose up to four U-Nets as follows: A 

composition of two U-Nets is initially trained on low-resolution image pairs. Weights are 

then frozen and this network is composed with a third U-Net, trained on high-resolution 

image pairs. This network is then optionally frozen and composed with a fourth U-Net, 

again trained on high-resolution image pairs. During the training of this multi-step approach, 

the weighting of the inverse consistency loss is gradually increased. We train using ADAM 

[23] with a batch size of 128 in the low-res. stage, and a batch size of 16 in the high-res. 

stage. MSE is used as image similarity measure.

We compare our approach, InverseConsistentNet (ICON), against the methods of [36], in 

terms of (1) cartilage Dice scores between registered image pairs [1] (based on manual 

segmentations) and (2) the number of folds. The segmentations are not used during training 

and allow quantifying if the network yields semantically meaningful registrations. Tab. 

2 lists the corresponding results, Fig. 1 shows several example registrations. Unlike the 

other methods in Tab. 2, except where explicitly noted, ICON does not require affine 
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pre-registration. Since affine maps are inverse consistent, they are not penalized by our 

method. Notably, despite its simplicity, ICON yields performance (in terms of Dice score & 

folds) comparable to more complex, explicitly regularized methods. We emphasize that our 

objective is not to outperform existing techniques, but to present evidence that regular maps 

can be learned without carefully tuned regularizers.

In summary, using the proposed inverse consistency loss yields (1) competitive Dice scores, 
(2) acceptable folds, and (3) fast performance.

5. Limitations, future work, & open questions

Several questions remain and there is no shortage of theoretical/practical directions, some of 

which are listed next.

Network architecture & optimization.

Instead of specifying a spatial regularizer, we now specify a network architecture. While our 

results suggest regularizing effects for a variety of architectures, we are still lacking a clear 

understanding of how network architecture and numerical optimization influence solution 

regularity.

Diffemorphisms at test time.

We simply encourage inverse consistency via a quadratic penalty. Advanced numerical 

approaches (e.g., augmented Lagrangian methods [30]) could more strictly enforce inverse 

consistency during training. Our current approach is only approximately diffeomorphic at 

test time. To guarantee diffeomorphisms, one could explore combining inverse consistency 

with fluid deformation models [14]. These have been used for deep registration networks 

[42, 41, 36, 37, 9] combined with explicit spatial regularization. We would simply 

predict a velocity field and obtain the map via integration. By using our loss, sufficiently 

smooth velocity fields would likely emerge. Alternatively, one could use diffeomorphic 

transformation parameterizations by enforcing positive Jacobian determinants [38].

Multi-step.

Our results show that using a multi-step estimation approach is beneficial; successive 

networks can refine deformation estimates and thereby improve registration performance. 

What the limits of such a multi-step approach are (i.e., when performance starts to saturate) 

and how it interacts with deformation estimates at different resolution levels would be 

interesting to explore further.

Similarity measures.

For simplicity, we only explored MSE. NCC, local NCC, and mutual information would be 

natural choices for multi-modal registration. In fact, there are many opportunities to improve 

registrations e.g. using more discriminative similarity measures based on network-based 

features, multi-scale information, or side-information during training, e.g., segmentations or 

point correspondences.
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Theoretical investigations.

It would be interesting to establish how regularization by inverse consistency relates 

to network capacity, expressiveness, and generalization. Further, establishing a rigorous 

theoretical understanding of the regularization effect due to the data population and its link 

with inverse consistency would be important.

General inverse consistency.

Our work focused on spatial correspondences for registration, but the benefits of inverse 

consistency regularization are likely much broader. For instance, its applicability to general 

mapping problems (e.g., between feature vectors) should be explored.

6. Conclusion

We presented a deliberately simple deep registration model which generates approximately 

diffeomorphic maps by regularizing via an inverse consistency loss. We theoretically 

analyzed why inverse consistency leads to spatial smoothness and empirically showed the 

effectiveness of our approach, yielding competitive 3D registration performance.

Our results suggest that simple deep registration networks might be as effective as more 

complex approaches which require substantial hyperparameter tuning and involve choosing 

complex transformation models. As a wide range of inverse consistency loss penalties lead 

to good results, only the desired similarity measure needs to be chosen and extensive 

hyperparameter tuning can be avoided. This opens up the possibility to easily train 

extremely fast custom registration networks on given data. Due to its simplicity, ease of 

use, and computational speed, we expect our approach to have significant practical impact. 

We also expect that inverse consistency regularization will be useful for other tasks, which 

should be explored in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Example inverse consistent network (ICON) registration results for OAI knee images (see 

§4), obtained from a U-Net trained for inverse consistency (without any explicit loss to 

promote map regularity). All four panels show (left to right) the (1) moving image, (2) fixed 

image, (3) warped moving image and the (4) corresponding transformation grid (colored). 

Transformations are, as desired, smooth.
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Figure 2: 
Source and target functions for a 1D registration example. Panels (c) and (d) show two 

possible solutions for mean square error (MSE) and OMT, respectively. In both cases, 

solutions may not be unique. However, for OMT, matching solutions will be one-to-one, 

i.e., invertible. OMT imposes a stronger constraint than MSE on the obtainable maps, but 

irregular maps are still permissible.
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Figure 3: 
The left output is generated by a network trained with inverse consistency, evaluated on a 

grid instead of randomly. As a result, the loss cannot detect that maps generated by this 

network flip the pair of pixels in the upper right corner, as that error is not represented in the 

composed map. The right output is obtained from a network trained with random evaluation 

off of lattice points.
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Figure 4: 
In this example, grid points (solid black discs) map to each other inverse consistently. The 

forward map (a) is inverted by the backward map (b). However, folding of the space occurs 

as the middle two points swap positions. Off-grid points map under linear interpolation 

according to (c/d). We see that the interpolated displacements for the small solid red disc ( ) 

do not result in an invertible map. Hence, this mismatch would be penalized by the inverse 

consistency loss, but only when evaluated off-grid.
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Figure 5: 

Comparison between U-Net results and direct optimization (no neural network; over Φθ
AB

and Φθ
BA) w/ and w/o added noise, using the inverse consistency loss with λ = 2,048. 

Direct optimization w/o noise leads to irregular maps, while adding noise or using the U-Net 
improves map regularity (best viewed zoomed).
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Figure 6: 
Comparison of networks as a function of λ. U-Net and MLP show the best performance 

due to their ability to capture long and short range dependencies. Enc-Dec and ConvOnly, 

which capture only long range and only short range dependencies, resp., also learn regular 

maps, but for a narrower range of λ. In all cases, maps become smooth for sufficiently large 

λ. Best viewed zoomed.
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Table 1:

Network performance across architectures and regularization strength λ. MLP / U-Net perform best. All 

methods work.

MNIST

Network → MLP Enc-Dec U-Net ConvOnly

λ ↓ Dice Folds Dice Folds Dice Folds Dice Folds

64 0.92 26.61 0.80 0.15 0.93 3.87 0.93 30.20

128 0.92 9.95 0.77 0.08 0.92 1.45 0.90 16.27

256 0.91 2.48 0.72 0.01 0.90 0.41 0.88 7.17

512 0.90 0.72 0.66 0.03 0.89 0.09 0.85 3.12

1,024 0.88 0.34 0.62 0.06 0.86 0.02 0.81 0.54

2,048 0.87 0.16 0.63 0.00 0.73 0.09 0.76 0.07

Triangles & Circles

Network → MLP Enc-Dec U-Net ConvOnly

λ ↓ Dice Folds Dice Folds Dice Folds Dice Folds

64 0.98 1.24 0.94 3.50 0.98 2.74 0.97 12.57

128 0.98 0.73 0.90 2.71 0.98 1.59 0.96 10.15

256 0.98 0.27 0.88 1.11 0.97 1.14 0.96 8.49

512 0.97 0.10 0.87 0.65 0.96 0.70 0.94 6.61

1,024 0.96 0.03 0.86 0.22 0.95 0.25 0.92 3.91

2,048 0.95 0.03 0.85 0.15 0.94 0.09 0.89 2.18

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2022 March 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Greer et al. Page 23

Table 2:

Comparison of ICON against the methods in [36], on cross-subject registration for OAI knee images.

Method ℒsim Dice Folds Time [s]

Demons MSE 63.47 19.0 114

SyN CC 65.71 0 1330

NiftyReg NMI 59.65 0 143

NiftyReg LNCC 67.92 203 270

vSVF-opt LNCC 67.35 0 79

Voxelmorph (w/o affine) MSE 46.06 83 0.12

Voxelmorph MSE 66.08 39.0 0.31

AVSM (7-Step Affine, 3-Step Deformable) LNCC 68.40 14.3 0.83

ICON (2 step ½ res., 2 step full res., w/o affine) MSE 68.29 118.4 1.06

ICON (2 step ½ res., 1 step full res., w/o affine) MSE 66.16 169.4 0.57

ICON (2 step ½ res., w/o affine) MSE 59.36 49.35 0.09
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