Skip to main content
. Author manuscript; available in PMC: 2022 Mar 29.
Published in final edited form as: Proc IEEE Int Conf Comput Vis. 2021 Oct;2021:3376–3385. doi: 10.1109/iccv48922.2021.00338

Table 1:

Network performance across architectures and regularization strength λ. MLP / U-Net perform best. All methods work.

MNIST
Network → MLP Enc-Dec U-Net ConvOnly
λ ↓ Dice Folds Dice Folds Dice Folds Dice Folds
64 0.92 26.61 0.80 0.15 0.93 3.87 0.93 30.20
128 0.92 9.95 0.77 0.08 0.92 1.45 0.90 16.27
256 0.91 2.48 0.72 0.01 0.90 0.41 0.88 7.17
512 0.90 0.72 0.66 0.03 0.89 0.09 0.85 3.12
1,024 0.88 0.34 0.62 0.06 0.86 0.02 0.81 0.54
2,048 0.87 0.16 0.63 0.00 0.73 0.09 0.76 0.07
Triangles & Circles
Network → MLP Enc-Dec U-Net ConvOnly
λ ↓ Dice Folds Dice Folds Dice Folds Dice Folds
64 0.98 1.24 0.94 3.50 0.98 2.74 0.97 12.57
128 0.98 0.73 0.90 2.71 0.98 1.59 0.96 10.15
256 0.98 0.27 0.88 1.11 0.97 1.14 0.96 8.49
512 0.97 0.10 0.87 0.65 0.96 0.70 0.94 6.61
1,024 0.96 0.03 0.86 0.22 0.95 0.25 0.92 3.91
2,048 0.95 0.03 0.85 0.15 0.94 0.09 0.89 2.18