Table 3.
Application of AI in cervical cell segmentation.
| Reference | Year | Number of subjects | Methods | Datasets | Results |
|---|---|---|---|---|---|
| Wang et al. (44) | 2014 | 362 cervical cell images (3722 cells) |
Mean-Shift clustering algorithm | Private | Sensitivity: 94.25% Specificity: 93.45% |
| Song et al. (50) | 2019 | 8 cervical cell images 22 cervical images |
CNN | ISBI2015 Private |
DSC: 0.84 DSC: 0.83 |
| Zhao et al. (45) | 2016 | 917 single-cell images | Superpixel-based Markov random field |
Herlev The real-word Datasets |
Herlev ZSI of nuclei: 0.93 ZSI of cytoplasm: 0.82 |
| Gautam et al. (46) | 2018 | 917 single-cell images | Patch-based CNN | Herlev | DSC: 0.90 Precision: 89% |
CNN, convolutional neural network; DSC, dice similarity coefficient; ZSI, zijdenbos similarity index.