Skip to main content
. 2022 Mar 11;12:851367. doi: 10.3389/fonc.2022.851367

Table 5.

Application of AI in cytology to detect CIN.

Reference Year N Methods Databases Results
Yu et al. (32) 2018 1839  Risk score algorithm Cytological image HPV testing CIN2+ AUC 0.710CIN3+ AUC 0.740
Bao et al. (60) 2020 703103 DL Cytological image CIN1+ Sensitivity 88.9%Specificity 95.8%CIN2+ Sensitivity 90.10%Specificity 94.80%CIN3+Sensitivity 90.90%Specificity 94.40%
Bao et al. (61) 2020 2145 ResNet Cytological image CIN2+ AUC 0.762CIN3+ AUC 0.755
Wang et al. (62) 2020 143 DL whole slide images (WSIs) precision 93.00%recall 90.00%, F-measure 88.00%
Holmström O et al. (59) 2021 740 DL Cytological image HSIL+ AUC 0.970Sensitivity 85.7%Specificity 98.5%
Zhu et al. (63) 2021 980 AIATBS Cytological imageBiopsy diagnosis results Sensitivity 94.74%

DL, deep learning; CNN, convolutional neural network; AIATBS, artificial intelligence-assisted TBS; CIN, cervical intraepithelial neoplasia; AUC, area under the curve; HSIL, high squamous intraepithelial lesion.