Skip to main content
. 2022 Mar 11;12:851367. doi: 10.3389/fonc.2022.851367

Table 6.

Application of AI in colposcopy.

Reference Year Aim of the study Number of subjects Methods Images Results
Kim E et al. (68) 2013 Detection of CIN2+ 2000images SVM Cervicography Sensitivity 75.00%Specificity 75.00%
Song et al. (69) 2015 Detection of CIN2+ 7669patients MCNN Cervicography Accuracy 80.00%Sensitivity 83.21%Specificity 94.79%
Hu et al. (70) 2019 Detection of CIN2+ 9406patients Faster-CNN Cervicography AUC 0.91
Chao et al. (71) 2020 Detection lesions need to biopsy and classification 791 patients CNN Optical colposcopy image Sensitivity 85.20%Specificity 88.20%AUC 0.947
Asiedu et al. (72) 2019 Classification of cervical lesions 134 patients SVM Digital colposcopy images Accuracy 80.00%Sensitivity 81.30%Specificity 78.60%
Yuan et al. (26) 2020 Classification of cervical lesions 22330images CNN Digital colposcopy images Sensitivity 85.38%Specificity 82.62%
Miyagi et al. (73) 2019 Classification of cervical lesions 253patients CNN Traditional colposcopy images Accuracy 83.30%Sensitivity 95.60%
Miyagi et al. (23) 2019 Classification of cervical lesions 310images CNN Traditional colposcopy images Accuracy 82.30%Sensitivity 80.00%Specificity 88.20%
Xue et al. (74) 2020 Classification of cervical lesions 19435patients CAIADS Digital colposcopy images LSIL Sensitivity 90.50%Specificity 51.80%HSIL Sensitivity 71.90%Specificity 93.90%
Yue et al. (75) 2020 Classification of cervical lesions 4753images CNN,  cervigram images Accuracy 96.13%Sensitivity 95.09%Specificity 98.22%AUC 0.94
Venkatesan et al. (76) 2021 Classification of cervical lesions 5679images CNN colposcopy photographs Accuracy 83.30%Sensitivity 95.60%
Peng et al. (77) 2021 Classification of cervical lesions 300images VGG16 colposcopy images Accuracy 86.30%Sensitivity 84.10%Specificity 89.80%

CAIADS, Colposcopic Artificial Intelligence Auxiliary Diagnostic System.