Skip to main content
. 2022 Mar 11;12:851367. doi: 10.3389/fonc.2022.851367

Table 7.

Application of AI in MRI to diagnosis cervical cancer.

Reference Year Aim of study Number of cases Methods Results
Lin et al. (82) 2020 Cervical Cancer MRI Image segmentation and location 169 patients (training set 144; validation set 25) DL Radiomics A dice coefficient: 0.82; Sensitivity: 0.89, PPV:0.92
Wang et al. (83) 2020 Segmentation: Prediction of parametrial invasion 137 patients (training set 91; validation set 46) Radiomics Training set AUC T2WI: 0.797 T2WI and DWI0.780 (95% CI)Validation set T2WI 0.946 (95% CI) T2WI and DWI 0.921 (95% CI)
Peng et al. (84) 2019 Enhancing Cervical Cancer MRI Image Segmentation Not mention Wireless network; DL AUC 0.980
Yu et al. (85) 2019 Assisting diagnosis of lymph node metastasis 153 patients (training set 102; validation set 51) Radiomics Training set AUC: 0.870Validation set AUC 0.864
Wu et al. (86) 2019 Assisting diagnosis of lymph node metastasis 189 patients (training set 126; validation set 63) Radiomics Training set AUC 0.895 Sensitivity 94.3%Validation set AUC 0.847 Sensitivity 100%
Wang et al. (87) 2019 Assisting diagnosis of lymph node metastasis 96 patients (training set 96; validation set 96) RadiomicsSVM Training set C-index 0.893(P=4.311*10-5)Validation set C-index 0.922(P=3.412*10-2)
Xiao et al. (88) 2020 Assisting diagnosis of lymph node metastasis 233 patients (training set 155; validation set 78) Radiomics Training set C-index 0.856 (95% CI)Validation set C-index 0.883 (95% CI)
Wu et al. (89) 2020 Assisting diagnosis of lymph node metastasis 479 patients (training set 338; validation set 141) DL AUC 0.933 (95% CI)