
RESEARCH ARTICLE

Interval forecasts of weekly incident and

cumulative COVID-19 mortality in the United

States: A comparison of combining methods

Kathryn S. TaylorID
1*, James W. Taylor2

1 Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom,

2 Saïd Business School, University of Oxford, Oxford, United Kingdom

* kathryn.taylor@phc.ox.ac.uk

Abstract

Background

A combined forecast from multiple models is typically more accurate than an individual fore-

cast, but there are few examples of studies of combining in infectious disease forecasting.

We investigated the accuracy of different ways of combining interval forecasts of weekly

incident and cumulative coronavirus disease-2019 (COVID-19) mortality.

Methods

We considered weekly interval forecasts, for 1- to 4-week prediction horizons, with out-of-

sample periods of approximately 18 months ending on 8 January 2022, for multiple locations

in the United States, using data from the COVID-19 Forecast Hub. Our comparison involved

simple and more complex combining methods, including methods that involve trimming out-

liers or performance-based weights. Prediction accuracy was evaluated using interval

scores, weighted interval scores, skill scores, ranks, and reliability diagrams.

Results

The weighted inverse score and median combining methods performed best for forecasts of

incident deaths. Overall, the leading inverse score method was 12% better than the mean

benchmark method in forecasting the 95% interval and, considering all interval forecasts,

the median was 7% better than the mean. Overall, the median was the most accurate

method for forecasts of cumulative deaths. Compared to the mean, the median’s accuracy

was 65% better in forecasting the 95% interval, and 43% better considering all interval fore-

casts. For all combining methods except the median, combining forecasts from only com-

partmental models produced better forecasts than combining forecasts from all models.

Conclusions

Combining forecasts can improve the contribution of probabilistic forecasting to health policy

decision making during epidemics. The relative performance of combining methods

depends on the extent of outliers and the type of models in the combination. The median
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combination has the advantage of being robust to outlying forecasts. Our results support the

Hub’s use of the median and we recommend further investigation into the use of weighted

methods.

Introduction

The coronavirus disease-2019 (COVID-19) pandemic has overwhelmed health services and

caused excess death rates, prompting governments to impose extreme restrictions in attempts

to control the spread of the virus [1–3]. These interventions have resulted in multiple eco-

nomic, health and societal problems [4, 5]. This has generated intense debate among experts

about the best way forward [6]. Governments and their advisors have relied upon forecasts

from models of the numbers of COVID-19 cases, hospitalisations and deaths to help decide

what actions to take [7]. Using models to lead health policy has been controversial, but it is rec-

ognised that modelling is potentially valuable when used appropriately [1, 8–10]. Numerous

models have been developed to forecast different COVID-19 data, e.g. [11–13].

Models should provide probabilistic forecasts, as point forecasts are inherently uncertain

[9, 14]. A 95% interval forecast is a common and useful form of probabilistic forecast [15, 16].

Models may be constructed for prediction or scenario analysis. Prediction models forecast the

most likely outcome in the current circumstances. Multiple models may reflect different

approaches to answering the same question [11], and conflicting forecasts may arise. Rather

than asking which is the best model [17], a forecast combination can be used, such as the

mean, which is often used and hard to beat [18, 19]. Forecast combining harnesses the ‘wisdom

of the crowd’ [20] by producing a collective forecast from multiple models that is typically

more accurate than forecasts from individual models. Combining pragmatically synthesises

information underlying different prediction methods, diversifying the risk inherent in relying

on an individual model, and it can offset statistical bias, potentially cancelling out overestima-

tion and underestimation [21]. These advantages are well-established in many applications

outside health care [22–25]. This has encouraged the more recent applications of combining in

infectious disease prediction [14, 26–29], including online platforms that present visualisations

of combined probabilistic forecasts of COVID-19 data from the U.S, reported by the Centers

for Disease Control and Prevention (CDC), and from Europe, reported by the European Cen-

tre for Disease and Control (EDCD). Other examples or combined probabilistic forecasts are

in vaccine trial planning [30] and diagnosing disease [31]. These examples have mainly

focused on simple mean and median ‘ensembles’ and, in the case of prediction of COVID-19

data, published studies have primarily involved short periods of data, which rules out the con-

sideration of more sophisticated methods, such as those weighted by historical accuracy.

By comparing the accuracy of different combining methods over longer forecast evaluation

periods compared to other studies, our broad aims were to: (a) investigate whether combining

methods, involving weights determined by prior forecast accuracy or different ways of exclud-

ing outliers, are more accurate than simple methods of combining, and (b) establish the rela-

tive accuracy of the mean and median combining methods. Previously, we reported several

new weighted methods, in a comparison of combining methods applied to probabilistic pre-

dictions of weekly cumulative COVID-19 mortality in U.S. locations over the 40-week period

up to 23 January 2021 [32]. We found that weighted methods were the most accurate overall

and the mean generally outperformed the median except in the first ten weeks. In this paper,

we test further by comparing the combining methods on a dataset of interval forecasts of

PLOS ONE Combining forecasts of incident and cumulative COVID-19 mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0266096 March 29, 2022 2 / 25

generate the results is publically available on

Zenodo at https://doi.org/10.5281/zenodo.

6300524.

Funding: This research was partly supported by

the National Institute for Health Research Applied

Research Collaboration Oxford and Thames Valley

at Oxford Health NHS Foundation Trust. The views

expressed in this publication are those of the

author(s) and not necessarily those of the NIHR or

the Department of Health and Social Care. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0266096
https://doi.org/10.5281/zenodo.6300524
https://doi.org/10.5281/zenodo.6300524


cumulative mortality and a dataset of incident mortality, both over a period of more than 80

weeks. We also include individual models in the comparison, and explore the impacts of

reporting patterns of death counts and outlying forecasts on forecast accuracy.

Materials and methods

Data sources

Forecasts of weekly incident and cumulative COVID-19 mortalities were downloaded from

the COVID-19 Forecast Hub (https://covid19forecasthub.org/), which is an ongoing collabo-

ration with the U.S. CDC, and involves forecasts submitted by teams from academia, industry

and government-affiliated groups [26]. Teams are invited to submit forecasts for 1- to 4-week

horizons, in the form of a point forecast and estimates of quantiles corresponding to the fol-

lowing 23 probability points along the probability distribution: 1%, 2.5%, 5%, 10%, 15%, 20%,

25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97.5% and

99%. From these, we produced interval forecasts, including the 95% interval, which is bounded

by the 2.5% and 97.5% quantiles. The numbers of actual cumulative COVID-19 deaths each

week were also provided by the Hub. Their reference data source is the Center for Systems Sci-

ence and Engineering (CSSE) at John Hopkins University.

Dataset

The Hub carries out screening tests for inclusion in their ‘ensemble’ forecast combinations.

Screening excludes forecasts with an incomplete set of quantiles or prediction horizons, and

improbable forecasts. The definition of improbable forecasts relate to cumulative deaths, and

currently includes decreasing quantiles over the forecast horizons, decreasing cumulative

deaths over time (except including an adjustment due to reporting revisions, which is permit-

ted up to a maximum of 10% in the 1-week ahead forecasts), and forecasts of cumulative

deaths for a particular location exceeding the size of its population. Before the week of 28 July

2020, the Hub also excluded outlying forecasts, which were identified by a visual check against

the actual number of deaths. We only included forecasts that passed the Hub’s screening tests.

Our dataset included forecasts projected from forecast origins at midnight on Saturdays

between 9 May 2020 to 8 January 2022 for forecasts of cumulative COVID-19 deaths (88

weeks of data), and between 6 June 2020 and 8 January 2022 for forecasts of incident deaths

(84 weeks of data). Forecasts of incident deaths were not screened by the Hub in the weeks

ending 9 May 2020 to 30 May 2020. We included forecasts of cumulative deaths in this period

as we wished to use all the available data, and also given the fact that the set of incident and

cumulative forecasts were different in terms of the included models and locations. In terms of

the actual weekly COVID-19 mortality, for each location and week, we used the values made

available on 15 January 2022. We studied forecasts of COVID-19 mortality for the U.S. as a

whole and 51 U.S. jurisdictions, including the 50 states and the District of Columbia. For sim-

plicity, we refer to these as 51 states.

Our analysis included forecasts from 60 forecasting models and the Hub’s ensemble model.

In the early weeks of our dataset, the majority were susceptible-exposed-infected-removed

(SEIR) compartmental models, but as the weeks passed, other model types became more com-

mon (Fig 1). These involved methods such as neural networks, agent-based modelling, time

series analysis, and the use of curve fitting techniques. S1 Table provides a list of all the

models.

Fig 2 shows the extent of missing data for forecasts of incident deaths. The timeline of fore-

casts from each model (represented by a row) illustrates the extent of missing data across the

52 locations, including the frequent ‘entry and exit’ of forecasting teams. The corresponding
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figure for forecasts of cumulative deaths is given in S1 Fig. Higher levels of forecasts were

excluded for cumulative deaths than for incident deaths, and this was mainly attributed to the

screening tests, as opposed to exclusion due to not being assessed by the Hub. The extent of

missing data was such that imputation was impractical.

Several combining methods required parameter estimation, which we performed for each

location and forecast origin. We defined the in-sample estimation period as being initially the

first 10 weeks, and then expanding week by week. This resulted in out-of-sample forecasts pro-

duced from 78 weekly forecast origins for the cumulative deaths series, and 74 weekly forecast

origins for incident deaths.

Evaluating the interval forecasts

We evaluated out-of-sample prediction accuracy and calibration, with reference to the

reported death counts on 15 January 2022, thus producing a retrospective evaluation. Calibra-

tion was assessed by the percentage of actual deaths that fell below each bound of the interval

forecasts. As each bound is a quantile, this amounted to assessing the calibration of the 23

quantiles for which the teams submitted forecasts. We present this using reliability diagrams.

To evaluate prediction accuracy of an interval forecast, we used the interval score (IS) given by

Fig 1. Number and types of models at each forecast origin for each mortality dataset.

https://doi.org/10.1371/journal.pone.0266096.g001

Fig 2. Data availability for forecasts of incident COVID-19 deaths.

https://doi.org/10.1371/journal.pone.0266096.g002
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the following expression [33, 34]:

ISa ¼ ut � ltð Þ þ
2

a
I yt � ltf g lt � ytð Þ þ

2

a
I yt � utf g yt � utð Þ

where lt is the interval’s lower bound, ut is its upper bound, yt is the observation in period t, I is

the indicator function (1 if the condition is true and 0 otherwise), and α is the ideal probability

of the observation falling outside the interval. We report the IS for the 95% interval forecasts

(for which α = 5%). Lower values of the IS reflect greater interval forecast accuracy. The unit of

the IS is deaths. As each forecasting team provides forecasts for 23 different quantiles, the fol-

lowing K = 11 symmetric interval forecasts can be considered: 98%, 95%, 90%, 80%, 70%, 60%,

50%, 40%, 30%, 20% and 10%. To summarise prediction accuracy for all these intervals, we

used the weighted IS (WIS) [16]:

WIS ¼
1

K þ 1=2
� w0 � 2� jyt � mj þ

XK

k¼1

ðwk � ISak
Þ

 !

where w0 ¼
1

2
; wi ¼

ai
2

and m is the forecast of the median. The IS and the WIS are useful for

comparing methods, and although their units are deaths, these scores are not interpretable.

Averaging each of these two scores across weeks provided the mean IS (MIS) and the mean

WIS (MWIS).

We also averaged the scores across forecast horizons. We did this for conciseness, and

because we had a relatively short analysis period, which is a particular problem when evaluat-

ing forecasts of extreme quantiles. To show the consistency across horizons, we present a set of

results by horizon for interval forecasts for both the incident and cumulative deaths data. For

this analysis, because we were looking at individual horizons, we were able to use the Diebold-

Mariano statistical test [35], adapted to test across multiple series. This test statistic was origi-

nally designed to apply to the difference between the mean of an accuracy measure for two

methods for a single time series. To compare the difference averaged across multiple time

series, we calculated the variance of the sampling distribution by first summing each variance

of the sampling distribution from the Diebold-Mariano test applied to each series, and then

dividing by the square of the number of series. To summarise results averaged across the four

horizons, we were unable to use the adapted Diebold-Mariano test, so we applied the statistical

test proposed by Koning et al. [36]. This test compares the rank of each method, averaged

across multiple series, with the corresponding average rank of the most accurate method. Sta-

tistical testing was based on a 5% significance level.

We present results of the forecast accuracy evaluation in terms of the 95% interval MIS,

MWIS, ranks and skill scores, which are calculated as the percentage by which a given method

is superior to the mean combination. The mean is a common choice of benchmark in combin-

ing studies. We report results for the series of total U.S. deaths, as well as results averaged

across all 52 locations. In addition, to avoid scores for some locations dominating, we also

present results averaged for three categories, each including 17 states: high, medium and low

mortality states. This categorisation was based on the number of cumulative COVID-19 deaths

on 15 January 2022. All results are for the out-of-sample period, and to provide some insight

into the potential change in ranking of methods over time, we present MWIS results separately

for the first and second halves of the out-of-sample period.

We evaluated the effects of changes in reporting patterns on forecast accuracy. Changes in

reporting patterns may involve reporting delays of death counts and changes in the definitions

of COVID-19 deaths, both of which may lead to backdating of death counts and steep

increases or decreases. Backdating of death counts would produce a problematic assessment in
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our retrospective evaluation of forecast accuracy, and sudden changes in death counts might

cause some forecasting models to misestimate, particularly time series models. To obtain some

insight, we compared reports of cumulative death counts for each location in files that were

downloaded at multiple time points between 20 June 2020 and 15 January 2022. Locations for

which there were notable effects of reporting patterns were excluded in sensitivity analysis. We

also examined the effect of outlying forecasts on forecast accuracy by comparing the perfor-

mance of the mean and median, and visually comparing plots of the MWIS of the mean and

median forecasts by location.

Data preparation and descriptive analysis was carried out using Stata version 16 and the

forecasts were combined using version 19 of the GAUSS programming language.

Forecast combining methods

All the interval combining methods are applied to each interval bound separately, and for each

mortality series, forecast origin and prediction horizon. The comparison included several

interval combining methods that do not rely on the availability of records of past accuracy for
individual models. These methods include the well-established mean and median combina-

tions [37–39], and the more novel symmetric, exterior, interior and envelope trimming meth-

ods, which exclude a particular percentage of forecasts, and then average the remaining

forecasts of each bound [40]. Fig 3 provides a visual representation of these methods, which we

describe in more detail below.

We also implemented two inverse score methods that do rely on the availability of a record

of historical accuracy for each individual model. For any combining method that involved a

parameter, such as a trimming parameter, we optimised its value for each location by minimis-

ing the MIS calculated over the in-sample period. The following is a list of the combining

methods that we included in our study:

a. Mean combination. We calculated the average of the forecasts of each bound. This combin-

ing method is also known as the simple average.

b. Median combination. We calculated the median of the forecasts of each bound. This

method is robust to outliers.

Fig 3. Illustration of interval forecast combining methods that do not rely on past historical accuracy. Each pair of

shapes represents an interval forecast produced by an individual model.

https://doi.org/10.1371/journal.pone.0266096.g003
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c. Ensemble. This is the COVID-19 Hub ensemble forecast, which was originally the mean

combination of the eligible forecasts until the week commencing 28 July 2020, when the

ensemble forecast became the median combination and then, in the week commencing 27

September 2021, the Hub switched to using a weighted ensemble method. The use of eligi-

bility screening implies that the ensemble is constructed with the benefit of a degree of trim-

ming which initially involved some subjectivity and was then formalised more objectively.

The results for the median and the Hub ensemble will be similar as the latter method was

the median combination for around 90% of our out-of-sample period.

d. Symmetric trimming. This method deals with outliers. For each bound, it involves trimming

the N lowest-valued and N highest-valued forecasts, where N is the largest integer less than

or equal to the product of β/2 and the total number of forecasts, where β is a trimming

parameter. The median combination is an extreme form of symmetric trimming.

e. Exterior trimming. This method targets overly wide intervals. It involves removing the N
lowest-valued lower bound forecasts and the N highest-valued upper bound forecasts,

where N is the largest integer less than or equal to the product of the trimming parameter β
and the number of forecasts. When this resulted in a lower bound being above the upper

bound, we replaced the two bounds by their average.

f. Interior trimming. This method targets overly narrow intervals. It involves removing the N
highest-valued lower bound forecasts and the N lowest-valued upper bound forecasts,

where N is defined as for exterior trimming.

g. Envelope method. The interval is constructed using the lowest-valued lower bound forecast

and highest-valued upper bound forecast. This method is an extreme form of interior

trimming.

h. Inverse interval score method. This is a method that has the model forecasts weighted by

historical accuracy, with the weight for each model inversely proportional to the historical

MIS for that team [32], which is calculated in the in-sample period. With the shortest in-

sample period being 10 weeks, we considered only forecasting teams for which we had fore-

casts for at least five past forecast origins. Larger numbers led to the elimination of many

forecasters for the early weeks in our out-of-sample period. The following expression gives

the weight on forecasting model i at forecast origin t:

wit ¼
1=MISi;t

PJ
j¼1

1=MISj;t

where MISi,t is the historical MIS computed at forecast origin t from model i, and J is the

number of forecasting models included in the combination.

i. Inverse interval score with tuning. This method has weights inversely proportional to the

MIS and a tuning parameter, λ> 0, to control the influence of the score on the combining

weights [32]. The following expression gives the weight on forecasting model i at forecast

origin t:

wit ¼
ð1=MISi;tÞ

l

PJ
j¼1
ð1=MISj;tÞ

l

If λ is close to zero, the combination reduces to the mean combination, whereas a large

value for λ leads to the selection of the model with best historical accuracy. The parameter λ
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was optimised using the same expanding in-sample periods, as for the trimming combining

methods. Due to the extent of missing forecasts, we pragmatically computed MISi,t using all

available past forecasts, rather than limit the computation to periods for which forecasts

from all models were available. For the models for which forecasts were not available for at

least 5 past periods, we set MISi,t to be equal to the mean of MISi,t for all other models. An

alternative approach, which we employed in our earlier study [32], is to omit from the com-

bination any model for which there is only a very short or non-existent history of accuracy

available. The disadvantage of this is that it omits potentially useful forecast information,

and this was shown by empirical results.

Comparison with individual models

A comparison of the results of the combining methods with those of individual models is com-

plicated by none of the individual models providing forecasts that passed the Hub’s screening

for all past periods and locations. We addressed this in two ways. Firstly, we included a previ-
ous best method, which at each forecast origin and location, selected the interval forecast of the

individual model with lowest in-sample MIS. The aim of this is, essentially, to obtain the inter-

val forecasts of the best of the individual models. Secondly, in our results, we also summarise a

comparison of the mean and median combinations with individual models for which we had

forecasts for at least half the locations and at least half the out-of-sample period. Our inclusion

criteria here is rather arbitrary, but the resulting analysis does help us compare the combining

methods with the models of the more active individual teams. In this comparison, we excluded

the COVID Hub baseline model, as it is only designed to be a comparator point for the models

submitted to the Hub and not a true forecast.

Results

Forecasting incident deaths

Main results for incident deaths. Table 1 presents the MIS for 95% interval forecasts and

MWIS for the 74-week out-of-sample period for incident mortality. Table 2 presents the corre-

sponding mean skill scores, and Table 3 provides the mean ranks and results of the statistical

test proposed by Koning et al. [36]. The weighted inverse scores, the ensemble and median

Table 1. For incident mortality, 95% interval MIS and MWIS.

95% interval MIS MWIS

Method All U.S. High Med Low All U.S. High Med Low

Mean 779.6 9250.7 1249.1 472.4 119.0 55.5 897.3 80.1 28.5 8.5

Median 723.0 9623.7 1050.3 488.4 106.7 51.6 914.4 68.1 27.6 a 8.1 a

Ensemble 727.2 10303.7 1031.5 481.3 105.3 51.5 924.8 67.5 a 27.6 a 8.1 a

Sym trim 764.0 9464.8 1187.3 481.9 111.0 55.1 912.7 78.8 27.9 8.2

Exterior trim 824.1 10435.8 1301.6 490.2 115.0 67.2 924.7 114.0 28.8 8.4

Interior trim 767.0 9292.5 1228.6 456.3 114.7 57.6 907.9 86.2 28.2 8.5

Envelope 3838.1 55853.1 6752.0 1046.7 655.8 234.0 3289.7 408.8 84.8 28.7

Inv score 690.0 8964.2 1030.0 451.8 a 101.4 a 53.3 843.4 77.1 28.0 8.2

Inv score tuning 656.7 a 8631.1 a 923.7a 470.2 107.1 50.0 a 833.2 a 66.8 28.9 8.4

Previous best 872.9 11428.8 1231.0 621.8 145.0 62.0 1061.2 81.2 35.6 10.5

Lower values are better.
a best method in each column.

https://doi.org/10.1371/journal.pone.0266096.t001
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combination were the best performing methods. Overall, (for all 52 locations), Table 2 shows

that the performance of the inverse score method was almost 12% better than the mean in fore-

casting the 95% interval and, considering all interval forecasts, the ensemble and median were

around 7% better than the mean. Of the trimming methods, symmetric trimming performed

best overall, and was quite competitive compared to the leading methods. The ‘previous best’

was not competitive against most of the combining methods. The worst results were produced

by the envelope method. Tables 1 to 3 report results averaged across the four forecast horizons

(1 to 4 weeks ahead). We found similar relative performances of the methods when looking at

each forecast horizon separately (S2 Table).

Changes over time in performance for incident deaths. In Table 4, the MWIS skill

scores are shown separately for the first and second halves of the 74-week out-of-sample

period. Recalling that the skill scores assess performance relative to the mean combining

method, the table shows that this combining method was notably more competitive for the

Table 2. For incident mortality, skill scores for 95% interval MIS and MWIS.

95% interval MIS MWIS

Method All U.S. High Med Low All U.S. High Med Low

Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 8.3 -4.0 14.5 -2.1 12.2 6.6 -1.9 10.5 3.2 6.4

Ensemble 9.6 -11.4 16.4 -0.5 13.1 7.0 a -3.1 11.4 a 3.5 a 6.5 a

Sym trim 7.0 -2.3 12.1 0.7 8.4 3.8 -1.7 3.9 2.4 5.6

Exterior trim -3.2 -12.8 -4.1 -4.8 -0.2 -1.9 -3.1 -6.5 -1.3 1.9

Interior trim 4.7 -0.5 4.5 4.6 5.2 0.0 -1.2 -1.4 1.2 0.2

Envelope -222.6 -503.8 -239.4 -161.2 -265.0 -252.4 -266.6 -302.2 -212.3 -247.7

Inv score 11.7 a 3.1 16.8 6.0 a 12.5 a 3.8 6.0 5.6 2.6 3.2

Inv score tuning 8.9 6.7 a 19.2 a 0.0 6.5 3.0 7.1 a 9.7 -1.4 0.0

Previous best -20.1 -23.5 -8.4 -34.3 -18.9 -19.7 -18.3 -8.4 -24.5 -27.1

Shows percentage change from the mean. Higher values are better.
a best method in each column.

https://doi.org/10.1371/journal.pone.0266096.t002

Table 3. For incident mortality, average ranks of the 95% interval MIS and MWIS.

95% interval MIS MWIS

Method All U.S. High Med Low All U.S. High Med Low

Mean 4.7 b 3.0 5.0 4.4 4.7 5.1 b 3.0 5.4 4.8 5.2

Median 5.1 b 6.0 5.1 5.7 4.5 3.7 6.0 4.4 3.4 3.2

Ensemble 4.5 b 7.0 4.4 5.0 3.9 3.2 8.0 2.9 3.4 3.1 a

Sym trim 4.7 b 5.0 4.8 4.6 4.8 4.4 5.0 4.7 4.4 4.1

Exterior trim 6.8 b 8.0 7.2 b 6.5 b 6.7 b 6.5 b 7.0 7.1 b 6.6 b 5.8

Interior trim 4.1 4.0 4.9 3.4 3.9 5.4 b 4.0 6.1 b 4.5 5.7

Envelope 10.0 b 10.0 10.0 b 9.9 b 10.0 b 10.0 b 10.0 10.0 b 10.0 10.0

Inv score 2.6 a 2.0 2.5 a 2.5 a 2.9 a 2.9 a 2.0 2.5 a 3.1 a 3.3

Inv score tuning 4.5 b 1.0 a 3.7 4.7 5.4 5.2 1.0 a 4.2 6.1 5.6

Previous best 8.0 b 9.0 7.5 b 8.3 b 8.1 b 8.5 b 9.0 7.9 b 8.7 b 8.9 b

Lower values are better.
a best method in each column
b significantly worse than the best method, at the 5% significance level.

https://doi.org/10.1371/journal.pone.0266096.t003
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second half of the out-of-sample period than for the first half. Comparing the other methods,

we see that the same methods that performed particularly well for the first half of the data also

were the best methods for the second half. An exception that was the inverse score tuning

method that performed worse for the second half, which is perhaps surprising, as one might

expect the tuning parameter to be better estimated for the second half, as more data was avail-

able for estimation. Inverse score without tuning would appear to be a more robust method

for this dataset. The consistently good performance of the median emphasises the importance

of robustness.

Performance by model type for incident deaths. To evaluate performance by model

type, for each category of mortality series (all, U.S, high, medium and low mortality), in

Table 5, we tabulate MWIS skills scores for the combining methods applied separately to each

of the following three sets of individual models: all models, compartmental models only, and

non-compartmental models only. For each category of mortality series, to enable a comparison

of the combining methods applied to the different sets of individual models, we computed the

Table 4. For incident mortality, skill scores for MWIS calculated separately for the first and second halves of the 74-week out-of-sample period.

1st Half 2nd Half

Method All U.S. High Med Low All U.S. High Med Low

Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 8.3 2.6 14.9 5.6 a 4.5 2.2 -9.0 -1.3 1.0 7.4 a

Ensemble 8.6 a 3.3 15.0 5.6 a 5.1 a 2.9 a -13.0 1.3 1.2 6.8

Sym trim 4.1 1.3 5.4 4.1 3.1 2.8 -6.6 0.3 1.1 7.3

Exterior trim -4.2 -4.2 -8.4 -2.7 -1.8 2.4 -1.3 1.2 0.9 5.2

Interior trim 0.9 -0.5 -1.2 2.5 1.4 -1.1 -2.2 -0.7 -0.9 -1.7

Envelope -245.3 -238.4 -338.1 -212.5 -201.0 -233.1 -311.9 -200.2 -215.2 -285.9

Inv score 4.1 7.8 6.7 3.7 1.7 2.7 3.1 a 2.4 a 1.5 a 4.1

Inv score tuning 5.7 20.2 a 15.5 a 0.2 -0.5 -2.9 -13.2 -5.3 -2.9 -0.1

Previous best -13.4 -3.1 1.9 -21.5 -23.2 -30.1 -41.8 -36.0 -28.5 -25.4

Shows percentage change from the mean. Higher values are better.
a best method in each column.

https://doi.org/10.1371/journal.pone.0266096.t004

Table 5. For incident mortality, skill scores for MWIS for combining methods applied to forecasts of all models, compartmental models only, and non-compart-

mental models only.

All U.S. High Med Low

Method All Comp Non-comp All Comp Non-comp All Comp Non-comp All Comp Non-comp All Comp Non-comp

Mean 0.0 5.1 -8.0 0.0 -15.7 -3.2 0.0 10.4 -12.2 0.0 1.6 -6.3 0.0 4.1 -6.1

Median 6.6 4.2 3.7 -1.9 -13.7 -2.3 10.5 7.7 7.0 3.2 1.6 0.2 6.4 4.1 4.1

Sym trim 3.8 4.7 1.6 -1.7 -16.0 -2.2 3.9 8.9 1.9 2.4 2.2 -0.8 5.6 3.9 3.7

Exterior trim -1.9 3.5 -6.4 -3.1 -17.7 -3.4 -6.5 8.7 -11.0 -1.3 0.3 -6.6 1.9 2.4 -1.8

Interior trim 0.0 5.6 -6.8 -1.2 -15.2 -4.1 -1.4 10.4 -11.0 1.2 2.6 -4.3 0.2 4.7 -5.5

Envelope -252.4 -89.6 -240.0 -266.6 -144.8 -234.6 -302.2 -83.9 -288.4 -212.3 -101.3 -193.8 -247.7 -81.5 -244.7

Inv score 3.8 7.2 a -2.8 6.0 -3.7 2.8 5.6 12.6 a -4.1 2.6 3.9 a -3.3 3.2 5.4 -1.2

Inv score tun 3.0 5.1 -2.7 7.1 a 7.1 a 2.8 9.7 11.5 0.5 -1.4 1.1 -4.9 0.0 2.3 -4.3

Previous best -19.7 -13.0 -21.4 -18.3 -9.5 -7.1 -8.4 -9.1 -7.8 -24.5 -20.8 -29.1 -27.1 -9.7 -29.6

Shows percentage change from the mean. Higher values are better.
a best method in each of the five mortality categories.

https://doi.org/10.1371/journal.pone.0266096.t005
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skill scores using the same benchmark, which we set as the mean combination of all models.
Note that we have omitted the ensemble from Table 5 because the forecasts from this method

were determined by the Hub, and so we were not in control of which individual methods that

method combines. The first point to note from Table 5 is that combining only non-compart-

mental models led to poorer results for almost all combining methods and categories of mor-

tality series. A second point to note is that, for the all, high, medium and low categories of

series, combining only compartmental models was preferable to combining all models, unless

the combining method was the median. For the median, combining all available models was

preferable. It is interesting to note that the two inverse score methods, when applied only to

the compartmental models, become competitive with the median.

Performance of individual models for incident deaths. Table 6 reports the performance

of the 27 individual models for which we had forecasts of incident deaths for at least half the

out-of-sample period and at least half of the 52 locations. The table summarises skill scores

based on scores calculated for the individual model and the benchmark method using only

those weeks for which forecasts were available for the individual model. Table 6 reports results

for the skill score calculated using mean combining as the benchmark, as in our previous

tables, but also the results for skill score calculate using median combining as the benchmark

method. The skill scores of these individual models were highly variable, and generally nega-

tive, implying that they were not competitive against the mean or median in any category. The

only notable exception was the performance of an individual model that was almost 17% better

than the mean for the 95% interval forecasts in the high mortality locations.

Calibration results for incident deaths. As we stated earlier, with each bound of the

interval forecasts being a quantile, we assess calibration for each of the 23 quantiles for which

the teams submitted forecasts. We do this in Fig 4, which presents reliability diagrams for each

category of mortality series for the mean, median and inverse score with tuning combining

methods. Reasonable calibration can be seen in the plot relating to all 52 locations, and there is

good calibration at the extreme quantiles in each plot, except the one for low mortality loca-

tions. Most methods had calibration that was too low for the U.S and high mortality locations,

Table 6. For incident mortality, summary statistics of skill scores for individual models.

95% interval MIS MWIS

Method All U.S. High Med Low All U.S. High Med Low

Mean combining as skill score benchmark
Count 27 26 27 27 27 27 26 27 27 27

Mean -117.5 -251.5 -107.7 -121.2 -116.2 -96.1 -160.8 -88.3 -97.8 -105.1

Median -78.1 -176.9 -56.3 -77.2 -84.1 -89.5 -122.7 -76.3 -90.0 -76.9

Minimum -486.6 -937.6 -439.3 -426.8 -542.1 -263.4 -651.2 -353.5 -253.1 -506.2

Maximum -0.8 -2.2 16.8 -12.3 0.6 -38.9 -13.6 -31.9 -43.7 -36.3

Number > 0 0 0 2 0 1 0 0 0 0 0

Median combining as skill score benchmark
Count 27 26 27 27 27 27 26 27 27 27

Mean -140.6 -240.6 -149.2 -120.6 -146.0 -112.1 -157.9 -114.3 -106.5 -119.3

Median -94.2 -162.3 -102.0 -75.4 -104.0 -104.2 -123.2 -99.5 -100.9 -89.0

Minimum -618.2 -944.4 -597.2 -452.7 -700.5 -291.5 -651.5 -420.9 -272.5 -538.5

Maximum -11.6 3.0 0.3 -12.2 -13.5 -49.0 -11.8 -50.4 -48.5 -39.7

Number> 0 0 1 1 0 0 0 0 0 0 0

Higher values of the skill score are better.

https://doi.org/10.1371/journal.pone.0266096.t006
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and most methods displayed calibration that was too high for the low mortality locations, par-

ticularly for the lower quantiles. For the medium mortality locations, the mean and inverse

score with tuning performed better than the median, for which calibration was slightly too

low. For all methods, S3–S7 Tables provide the calibration for the five categories of the loca-

tions: all 52 locations, U.S, high mortality, medium mortality and low mortality, respectively.

Forecasting cumulative deaths

In this section, for the cumulative deaths data, we report analogous results tables and figure to

those that we have presented for the incident deaths data.

Main results for cumulative deaths. Table 7 presents the MIS for 95% interval forecasts

and MWIS for the 78-week out-of-sample period for cumulative mortality. The corresponding

Fig 4. For incident mortality, reliability diagrams showing calibration of the 23 quantiles for the mean, median

and inverse score with tuning methods. The 23 quantiles include all bounds on the interval forecasts and the median.

https://doi.org/10.1371/journal.pone.0266096.g004
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skill scores are in Table 8. The median and ensemble approaches were the best performing

methods in terms of both metrics. Overall, their performance for the 95% interval was about

65% better than the mean, and considering all interval forecasts, the ensemble and median

were 43% better than the mean. The very poor performance of the mean suggests the presence

of outlying forecasts. These would also undermine the weighted inverse score methods, as they

involve weighted averages. The inverse score with tuning method was the best method for the

U.S. series. Interior trimming performed better than the inverse scoring methods for the 95%

interval, which suggests that there were large numbers of 95% intervals that were too narrow.

Both metrics showed symmetric trimming performing almost as well as the median. Table 9

reports mean ranks. Using the statistical test proposed by Koning et al. [36], we identified that,

in terms of the mean rank, most methods were statistically significantly worse than the

median-based approaches. We found similar relative performances of the methods when look-

ing at each forecast horizon separately (S8 Table).

Table 7. For cumulative mortality, 95% interval MIS and MWIS for the 78-week out-of-sample period.

95% interval MIS MWIS

Method All U.S. High Med Low All U.S. High Med Low

Mean 5540 87322 8822 2173 814 234 4156 346 92 33

Median 2784 a 30188 5514 921 a 306 a 143 a 2332 228 54 a 18 a

Ensemble 2821 33147 5445 a 930 306 a 143 a 2355 226 a 54 a 18 a

Sym trim 3044 34038 5882 1066 360 151 2415 242 57 19

Exterior trim 5388 83865 8632 2127 788 207 3442 319 82 29

Interior trim 3203 30333 6293 1221 501 226 2933 419 73 27

Envelope 7915 154350 10814 2931 1385 1027 21143 1373 402 122

Inv score 3429 29134 6560 1598 617 170 2496 277 70 27

Inv score tuning 3626 24624 a 6818 2237 589 161 2270 a 259 73 25

Previous best 4786 33090 8593 3632 467 180 2580 281 94 24

Lower values are better.
a best method in each column.

https://doi.org/10.1371/journal.pone.0266096.t007

Table 8. For cumulative mortality, skill scores for 95% interval MIS and MWIS for the 78-week out-of-sample period.

95% interval MIS MWIS

Method All U.S. High Med Low All U.S. High Med Low

Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 65.2a 65.4 60.7 a 63.6 a 70.5 a 43.2 a 43.9 39.7 41.7 a 47.9 a

Ensemble 64.9 62.0 60.5 63.4 70.2 43.1 43.3 40.0 a 41.6 47.4

Sym trim 60.4 61.0 55.1 59.0 66.1 39.9 41.9 36.6 38.0 44.6

Exterior trim 4.7 4.0 4.3 2.8 7.0 11.2 17.2 10.6 10.1 12.5

Interior trim 46.3 65.3 45.6 47.0 45.0 17.2 29.4 15.6 19.6 15.4

Envelope -46.2 -76.8 -36.5 -47.7 -53.2 -318.1 -408.8 -314.9 -349.5 -287.3

Inv score 32.4 66.6 37.0 28.3 28.7 23.3 39.9 26.3 22.9 19.5

Inv score tuning 22.5 71.8 a 27.3 2.0 30.6 23.5 45.4 a 26.8 19.5 22.5

Previous best 25.2 62.1 18.4 -18.1 54.7 17.5 37.9 16.1 4.5 28.8

Shows percentage change from the mean. Higher values are better.
a best method in each column.

https://doi.org/10.1371/journal.pone.0266096.t008

PLOS ONE Combining forecasts of incident and cumulative COVID-19 mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0266096 March 29, 2022 13 / 25

https://doi.org/10.1371/journal.pone.0266096.t007
https://doi.org/10.1371/journal.pone.0266096.t008
https://doi.org/10.1371/journal.pone.0266096


Changes over time in performance for cumulative deaths. The skill scores for the

MWIS for the first and second halves of the 74-week out-of-sample period are shown in

Table 10. For the first half of the out-of-sample period, the improvements over the mean were

considerably smaller than for the second half. The sizeable skill scores for the second half for

the ensemble, median and symmetric trimming strongly suggests the presence of outliers. We

consider this issue further in a later section where we investigate the impact of reporting pat-

terns and outliers on forecast accuracy. We also note in Table 10 that the inverse score meth-

ods were more competitive against the ensemble and median in the first half of the out-of-

sample period.

Performance by model type for cumulative deaths. The MWIS results of the comparison

by model type for cumulative forecasts are reported in Table 11. For all combining methods

except the median, combining only compartmental models performed better than combining

all models for all categories of the mortality series, except the category that is just the total U.S.

Table 9. For cumulative mortality, average ranks of the 95% interval MIS and MWIS.

95% interval MIS MWIS

Method All U.S. High Med Low All U.S. High Med Low

Mean 7.8 b 9.0 8.1 b 7.3 b 8.1 b 8.4 b 9.0 8.4 b 8.5 b 8.4 b

Median 2.4 a 3.0 2.8 a 2.0 a 2.5 a 1.9 2.0 2.1 1.6 1.9 a

Ensemble 2.6 6.0 2.8 b 2.1 2.7 1.8 a 3.0 1.8 a 1.4 a 2.1

Sym trim 3.8 7.0 3.7 3.8 3.8 3.2 b 4.0 3.1 3.1 3.2

Exterior trim 7.7 b 8.0 7.5 b 7.5 b 8.0 b 7.1 b 8.0 7.4 b 6.8 b 6.9 b

Interior trim 4.0 4.0 4.5 3.2 4.4 6.0 b 7.0 6.3 b 5.6 b 6.2 b

Envelope 8.9 b 10.0 9.1 b 9.1 b 8.5 b 10.0 b 10.0 10.0 b 10.0 b 10.0 b

Inv score 5.4 b 2.0 5.2 5.2 6.1 b 5.1 b 5.0 5.0 b 4.6 b 5.8 b

Inv score tuning 6.2 b 1.0 a 5.5 7.2 b 6.1 b 5.1 b 1.0 a 4.5 b 5.7 b 5.4 b

Previous best 6.0 b 5.0 5.7 7.6 b 4.8 6.4 b 6.0 6.5 b 7.6 b 5.2 b

Lower values are better.
a indicates best method in each column
b significantly worse than the best method, at the 5% significance level.

https://doi.org/10.1371/journal.pone.0266096.t009

Table 10. For cumulative mortality, skill scores for MWIS calculated separately for the first and second halves of the 78-week out-of-sample period.

1st Half 2nd Half

Method All U.S. High Med Low All U.S. High Med Low

Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 8.9 6.9 8.5 8.2 10.2 65.7 a 68.3 a 62.7 64.8 a 69.2 a

Ensemble 9.1 a 7.0 8.7 8.3 a 10.4 a 65.6 67.4 63.5 a 64.6 68.2

Sym trim 8.4 4.3 8.1 6.9 10.5 60.4 66.9 58.1 60.1 62.6

Exterior trim -0.1 -0.4 0.1 -1.2 0.8 18.4 29.1 18.4 18.1 18.2

Interior trim 0.7 5.3 -4.4 3.0 3.0 28.8 45.5 31.9 30.8 22.1

Envelope -240.0 -195.0 -246.1 -246.9 -230.2 -367.6 -555.0 -357.8 -419.8 -321.2

Inv score 7.6 10.8 9.3 5.9 7.2 33.9 59.2 37.5 35.6 26.2

Inv score tuning 8.4 17.0 a 11.2 a 5.1 8.4 35.0 64.0 38.5 32.4 31.4

Previous best -9.5 1.0 -6.5 -17.2 -5.8 38.8 62.2 34.2 28.2 50.1

Shows percentage change from the mean. Higher values are better.
a best method in each column.

https://doi.org/10.1371/journal.pone.0266096.t010
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deaths. As with forecasts of incident deaths, the inverse score methods were competitive with

the median when combining forecasts only from compartmental models.

Performance of individual models for cumulative deaths. For forecasts of cumulative

mortality, 25 models provided forecasts for at least half the locations for at least half the weeks

in the out-of-sample period. As can be seen in Table 12, the performance of these individual

models was highly variable. The upper half of the table shows that, particularly for the 95%

interval, a good number of the individual models were able to outperform the mean. However,

the lower half of the table shows that the individual methods were not competitive with the

median, except for the case of the 95% interval for the total U.S. mortality series.

Calibration results for cumulative deaths. Fig 5 presents reliability diagrams for each

category of the mortality series to summarise the calibration for each of the 23 quantiles for

forecasts of the mean, median and inverse score with tuning combining methods. The figure

Table 11. For cumulative mortality, skill scores for MWIS for combining methods applied to forecasts of all models, compartmental models only, and non-com-

partmental models only.

All U.S. High Med Low

Method All Comp Non-comp All Comp Non-comp All Comp Non-comp All Comp Non-comp All Comp Non-comp

Mean 0.0 39.7 -27.3 0.0 33.1 -27.1 0.0 36.8 -29.0 0.0 37.3 -27.8 0.0 45.1 -25.2

Median 43.2 40.7 41.1 43.9 33.2 45.0 39.7 37.3 36.7 41.7 39.1 39.3 47.9 45.7 46.5

Sym trim 39.9 40.8 38.9 41.9 32.6 43.0 36.6 37.4 33.9 38.0 38.9 37.3 44.6 46.0 44.8

Exterior trim 11.2 38.7 -4.8 17.2 31.3 -0.2 10.6 35.9 -7.7 10.1 36.0 -5.6 12.5 44.4 -1.5

Interior trim 17.2 40.1 9.7 29.4 35.1 16.5 15.6 36.5 4.8 19.6 38.0 12.2 15.4 45.6 11.5

Envelope -318.1 -27.3 -337.3 -408.8 -14.5 -423.1 -314.9 -29.0 -324.0 -349.5 -43.8 -354.5 -287.3 -12.0 -329.5

Inv score 23.3 40.9 14.0 39.9 38.1 35.9 26.3 37.4 16.0 22.9 39.1 12.1 19.5 46.1 12.2

Inv score tun 23.5 40.1 15.7 45.4 44.2 39.2 26.8 37.1 22.0 19.5 37.9 8.2 22.5 44.6 14.8

Previous best 17.5 29.0 7.8 37.9 37.1 40.2 16.1 24.4 16.1 4.5 25.1 -1.1 28.8 36.5 5.3

Shows percentage change from the mean. Higher values are better.

https://doi.org/10.1371/journal.pone.0266096.t011

Table 12. For cumulative mortality, summary statistics of skill scores for individual models, using mean and median combining as benchmark.

95% interval MIS MWIS

Method All U.S. High Med Low All U.S. High Med Low

Mean combining as skill score benchmark
Count 25 24 25 25 25 25 24 25 25 25

Mean -17.9 -9.4 -14.7 -19.2 -24.2 -43.0 -21.1 -34.6 -46.2 -56.4

Median 2.7 19.6 15.4 8.0 -14.2 -36.3 -4.7 -23.1 -39.3 -37.0

Minimum -255.2 -307.7 -224.5 -261.1 -245.6 -131.2 -166.8 -113.2 -129.0 -390.8

Maximum 61.2 74.6 57.7 55.4 69.5 18.6 41.7 16.8 14.7 31.0

Number > 0 13 17 15 14 10 4 11 3 4 6

Median combining as skill score benchmark
Count 25 24 25 25 25 25 24 25 25 25

Mean -165.1 -136.4 -155.4 -168.0 -181.7 -126.8 -108.8 -112.3 -132.7 -145.3

Median -142.6 -130.4 -108.6 -137.9 -148.1 -107.4 -87.3 -93.9 -115.6 -102.2

Minimum -573.6 -480.9 -481.6 -511.7 -991.6 -310.6 -371.8 -228.2 -287.2 -616.1

Maximum -14.6 20.3 -6.0 -26.2 -6.3 -43.0 -7.4 -41.7 -45.8 -41.6

Number> 0 0 2 0 0 0 0 0 0 0 0

Higher values of the skill score are better.

https://doi.org/10.1371/journal.pone.0266096.t012
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shows that the mean produced quantile forecasts that tended to be too low for the U.S. series,

and too high for the other four categories. The inverse score with tuning method was very well

calibrated, except for the U.S. series, and the median method also performed reasonably well,

although it tended to produce quantile forecasts that were generally a little low. For all meth-

ods, S9–S13 Tables show the calibration for all methods for the five categories of the locations:

all 52 locations, U.S, high mortality, medium mortality and low mortality, respectively.

Impact of reporting patterns and outliers on forecast accuracy

We observed changes in reporting patterns of historical death counts in 15 locations. Fig 6

shows examples of six locations where updates to death counts were particularly notable. We

found evidence of backdating in Delaware, Ohio, Rhode Island and Indiana. Backdating of

Fig 5. For cumulative mortality, reliability diagrams showing calibration of the 23 quantiles for the mean, median

and inverse score with tuning methods. The 23 quantiles include all bounds on the interval forecasts and the median.

https://doi.org/10.1371/journal.pone.0266096.g005
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historical death counts is shown as dashed lines. We noted a sharp drop in death counts in

West Virginia in May 2021, suggesting a redefinition of COVID-19 deaths. There were sharp

increases in death counts in Oklahoma in early April 2021 and in Delaware in late July 2021.

We also observed sharp increases in death counts of two other locations (Missouri and

Nebraska).

For each of the 51 states, Figs 7 and 8 present the MWIS for the mean, median and inverse

score with tuning method for incident and cumulative mortalities, respectively. The locations

are ordered by the cumulative number of deaths on 15 January 2022. In both figures, all three

methods performed noticeably poorly for Ohio, Oklahoma, Nebraska and West Virginia, for

which we found notable changes in reporting patterns, as well as in Virginia and Oregon,

where we did not observe such changes. We cannot rule out there having been changes in

reporting patterns for these and other locations, as we did not have a complete set of files of

reported death counts for each week.

As a sensitivity analysis, we excluded the eight named locations for which there were notice-

able changes in reporting patterns. The resulting MWIS skill scores are given in S14 Table and

S15 Table for incident and cumulative deaths respectively. Compared to the MWIS skill scores

presented in Tables 2 and 8 (where no locations were excluded), there were improvements for

all methods, slight changes in rankings, but no changes in the overall conclusions.

The differences between the performance of the mean and median forecasts described in

previous sections and highlighted Fig 8 suggested a problem with outliers, particularly for

cumulative deaths. Fig 9 provides some insight into an outlying set of 23 quantile forecasts.

Fig 6. Numbers of reported cumulative deaths in six states where there were noticeable changes in reporting

patterns. Based on reported death counts at multiple data points between 20 June 2020 and 15 January 2022.

https://doi.org/10.1371/journal.pone.0266096.g006

PLOS ONE Combining forecasts of incident and cumulative COVID-19 mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0266096 March 29, 2022 17 / 25

https://doi.org/10.1371/journal.pone.0266096.g006
https://doi.org/10.1371/journal.pone.0266096


Each line shows the probability distributions function mapped out by the 23 quantile forecasts

of an individual model. For each of the two locations, the presence of an outlying set of quan-

tile forecasts is evident by there being a line that differs notably from the other lines.

Discussion

The weighted inverse scores, ensemble and median performed best for forecasts of incident

deaths. They produced moderate improvements in performance over the common benchmark

mean combination. With the forecasts of cumulative deaths, improvements over the mean

Fig 7. For incident mortality, MWIS for high, medium and low mortality states for three selected combining

methods.

https://doi.org/10.1371/journal.pone.0266096.g007
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were much higher, and for the median and ensemble, they were substantial. For all combining

methods except the median, combining forecasts from only compartmental models produced

better forecasts than forecasts from combinations of all models. Furthermore, considering

combinations of compartmental models only, inverse score combining was more competitive

against the median for both mortalities. We found that the individual models were not com-

petitive with the better combining methods. The presence of outlying forecasts had an adverse

impact on the performance of the mean and the inverse score methods, which involved

weighted averaging. The adverse effects of reporting patterns on performance were minor.

We presented the inverse score methods in an earlier study of forecasts of cumulative

COVID-19 deaths [32]. The current paper considers both incident and cumulative forecasts,

using a far longer period of data than the earlier study, and involves a different set of forecast-

ing models, as we now only include forecasts that passed the screening tests of the COVID-19

Hub. In our earlier study, the inverse score methods were the most accurate overall and the

mean generally outperformed the median. The mean was also competitive against the inverse

score method for many locations. The results of the current study for forecasts of cumulative

deaths were not consistent with those of the earlier study, although much better results were

achieved for the mean by combining only compartmental models, and when combining

Fig 8. For cumulative mortality, MWIS for high, medium and low mortality states for three selected combining

methods.

https://doi.org/10.1371/journal.pone.0266096.g008
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forecasts of incident deaths from all models, the relative performance of the inverse mean

methods was considerably better. In the current study of cumulative deaths, the leading meth-

ods were generally the ensemble, the median and symmetric mean (for which the median is an

extreme case). These methods are robust to outliers. The results of our two studies illustrate

that, particularly for forecasts of cumulative deaths, the relative performance of combining

methods depends on the extent of outlying forecasts, and that outlying forecasts were clearly

more prevalent in the dataset for the current study.

Another relevant previous study is that by Bracher et al. [29], who compared forecasts pro-

duced by the mean combination, median combination and a weighted combination for

COVID-19 deaths in Germany and Poland. They found that combined methods did not per-

form better than individual models. However, this study was limited by an evaluation period

Fig 9. Two examples of an outlying set of quantile forecasts of cumulative deaths for one week-ahead from

forecast origin for the week ending on 18 July 2020.

https://doi.org/10.1371/journal.pone.0266096.g009
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of only ten weeks. It is also worth noting that the study used just thirteen individual models in

the combinations. In our previous work [32], we found accuracy improved notably as the

number of individual models rose, plateauing at around twenty models.

Previous studies have found that data driven models can perform better than compartmen-

tal models in forecasting COVID-19 data [9, 41, 42]. For forecasts of both mortalities, in many

cases we found that there was no benefit in including non-compartmental models in a combi-

nation with compartmental models for a number of combining methods, including the mean

combination. Non-compartmental models include simple time series models, which would be

particularly prone to underperform when there are sudden steep increases in cumulative death

counts, and so the steep increases that we highlighted might partially explain our results. Fur-

thermore, these cited studies were carried out during the early weeks of our study, and we

would expect the compartmental models to have increased in sophistication over time and the

model parameters and assumptions to have improved.

A major strength of our study is our source of data, which presented an opportunity to

study the ‘wisdom of the crowd’, and provided the necessary conditions for the crowd being

‘wise’ [20] and without distortion, such as by social pressure [43] or restrictions against fore-

casting teams applying their own judgement [26]. These conditions include independent con-

tributors, diversity of opinions, and a trustworthy central convener to collate the information

provided [20]. Further strengths relating to the reliability of our findings arise from the high

number of individual models. Our reported findings are limited to U.S. data and a particular

set of models, and it is possible that different results may arise from other models, or for data

from other locations, or other types of data, such as number of people infected. These are

potential avenues for future research. Our ability to detect statistical differences was limited by

the small sample sizes, with only 17 locations in each category, missing data, and a relatively

short out-of-sample period.

It is suggested that relying on modelling alone leads to “missteps and blind spots”, and that

the best approach to support public policy decision making would involve a triangulation of

insights from modelling with other information, such as analyses of previous outbreaks and

discussions with frontline staff [44]. It is essential that modelling offers the most accurate fore-

casts. Probabilistic forecasts reflect the inherent uncertainties in prediction. Although individ-

ual models can sometimes be more accurate than combined methods, relying on forecasts

from combined methods provides a more risk-averse strategy, as the best individual model

will not be clear until records of historical accuracy are available, and the best performing

model will typically change over time. At the start of an epidemic, when it is not clear which

model has the best performance, the statistical expectation is that the average method will

score far better than a model chosen randomly, or chosen on the basis of no prior history. This

was the case at the start of the COVID-19 pandemic.

The existence of outlying forecasts presents challenges to forecast combining. These can

arise due to model-based factors or factors involving the actual number of deaths. The former

include computational model errors, which can happen occasionally, and model assumptions

being incorrect, which will typically apply in the early stages of a pandemic. The latter factors

include data updates and changes in definitions. Some models can be adapted to allow for data

anomalies. The removal of outlying forecasts may be added to the pre-combining screening

process, but screening criteria for outliers may be arbitrary and it will be subjective. A more

objective way to tackle outlying forecasts is to use the median combination, and that was the

approach taken by the COVID-19 Hub in July 2021, having previously relied on a mean

ensemble. Our earlier study suggested that factoring historical accuracy into forecast combina-

tions may achieve greater accuracy than the median combination [32]. Both our studies have

involved the use of performance-weighted mean methods, and our current study has shown
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that they are not sufficiently robust to outliers. We recommend further research into weighted

methods and the effect of model type on the relative performance of combined methods.

Supporting information

S1 Fig. Data availability for forecasts of cumulative COVID-19 deaths. � Based on informa-

tion recorded on the COVID19 Hub with citations as recorded on 25/2/22; a Only provided

forecasts of numbers of cumulative COVID-19 deaths; b Only provided forecasts of numbers

of incident COVID-19 deaths.

(TIF)

S1 Table. Individual forecasting models.

(PDF)

S2 Table. For incident mortality, 95% interval MIS and MWIS for each prediction horizon.

Lower values are better. a best method for each horizon in each column; b score is significantly

lower than the mean combination; c score is significantly lower than the median combination.

(PDF)

S3 Table. For incident mortality, calibration for all locations.

(PDF)

S4 Table. For incident mortality, calibration for U.S.

(PDF)

S5 Table. For incident mortality, calibration for high mortality locations.

(PDF)

S6 Table. For incident mortality, calibration for medium mortality locations.

(PDF)

S7 Table. For incident mortality, calibration for low mortality locations.

(PDF)

S8 Table. For cumulative mortality, 95% interval MIS and MWIS for each prediction hori-

zon. Lower values are better. a best method for each horizon in each column; b score is signifi-

cantly lower than the mean combination; c score is significantly lower than the median

combination.

(PDF)

S9 Table. For cumulative mortality, calibration for all locations.

(PDF)

S10 Table. For cumulative mortality, calibration for U.S.

(PDF)

S11 Table. For cumulative mortality, calibration for high mortality locations.

(PDF)

S12 Table. For cumulative mortality, calibration for medium mortality locations.

(PDF)

S13 Table. For cumulative mortality, calibration for low mortality locations.

(PDF)

S14 Table. Sensitivity analysis for incident mortality, skill scores of the 95% interval MIS

and MWIS after excluding locations for which there were noticeable changes in reporting
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patterns. Shows percentages. Higher values are better. a best method in each column.

(PDF)

S15 Table. Sensitivity analysis for cumulative mortality, skill scores of the 95% interval

MIS and MWIS after excluding locations for which there were noticeable changes in

reporting patterns. Shows percentages. Higher values are better. a best method in each col-

umn.

(PDF)
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