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A B S T R A C T   

The distribution of agricultural and livestock products has been limited owing to the recent rapid population 
growth and the COVID-19 pandemic; this has led to an increase in the demand for food security. The livestock 
industry is interested in increasing the growth performance of livestock that has resulted in the need for a 
mechanical ventilation system that can create a comfortable indoor environment. In this study, the applicability 
of demand-controlled ventilation (DCV) to energy-efficient mechanical ventilation control in a pigsty was 
analyzed. To this end, an indoor temperature and CO2 concentration prediction model was developed, and the 
indoor environment and energy consumption behavior based on the application of DCV control were analyzed. 
As a result, when DCV control was applied, the energy consumption was smaller than that of the existing control 
method; however, when it was controlled in an hourly time step, the increase in indoor temperature was large, 
and several sections exceeded the maximum temperature. In addition, when it was controlled in 15-min time 
steps, the increase in indoor temperature and energy consumption decreased; however, it was not energy effi-
cient on days with high-outdoor temperature and pig heat.   

1. Introduction 

The global population is forecasted to reach 8 billion by 2023 and 10 
billion by 2056 because of the high birth rates in developing countries 
and the extended average life span owing to medical advancements 
(United Nations, 2019). Given this expected population increase, it is 
expected that the food demand in 2050 will increase by approximately 
59–98% compared with that in 2016 (Elferink and Schierhorn, 2016). In 
addition, restrictions on the export of agricultural and livestock products 
and distribution networks in some countries due to the coronavirus 2019 
(COVID-19) pandemic has led to an increase in the demand for food 
security (de Paulo Farias and dos Santos Gomes, 2020). Consequently, 
people in related industries have become highly interested in increasing 

the productivity of agricultural and livestock products (Baldos and 
Hertel, 2014). 

Most fundamental measures used to enhance livestock productivity 
have included the improvement of the growth performance of livestock. 
It is critical to maintain a comfortable thermal environment to achieve 
high growth performance because livestock are sensitive to the indoor 
thermal environment (Quiniou et al., 2000; Collin et al., 2001; Aarnink 
and Verstegen, 2007; Hessel et al., 2010; Hu et al., 2017). Moreover, 
many pollutants are generated in the pigsty because of livestock manure 
(Banhazi et al., 2011), and this can have a significant effect on the 
productivity of the pigsty (Banhazi and Cargill, 1998; Lee et al., 2005). 
In conjunction with these factors, there has been a steady increase in the 
demand for animal welfare (Velarde et al., 2015; Cecchin et al., 2018; 
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O’Malley et al., 2019). Thus, there is a trend of increasing interest in the 
application and operation of ventilation systems to ensure a comfortable 
environment in the pigsty. 

Ventilation systems applied to a pigsty can be largely classified as 
natural and mechanical. Natural ventilation systems can maintain an 
indoor environment by introducing fresh and cool air from the outer 
environment without using any energy. However, its effect varies based 
on weather conditions and building design elements. A mechanical 
ventilation system can attain a more comfortable indoor environment 
using a uniform volume of outside air. Hence, many studies have 
recently reported the application of mechanical ventilation systems to 
pigsties; these studies have focused on airflow distribution analysis 
using computational fluid dynamics (CFD). For example, Du et al. 
(2019) assessed the simulation accuracy based on the boundary settings 
for the inlet and outlet in the CFD model for a henhouse to which a 
tunnel ventilation system was applied; further, they analyzed the ho-
mogeneity of the indoor air movement according to the air inlet 
configuration and the existence or absence of a side-wall window using a 
model. Rong et al. (2015) conducted CFD modeling for a pigsty building 
into which natural and mechanical ventilation systems were applied 
together (hybrid ventilation); they analyzed the indoor ventilation 
performance based on the outside air wind direction, wind speed, and 
the existence or absence of surrounding topographic modeling. The 
wind direction and wind velocity were found to have a significant effect 
on the air-change rate; when the wind velocity was high, the existence or 
absence of surrounding topography modeling had a significant effect on 
the air-change rate. 

Further, Topisirovic and Radivojevic (2005) experimentally 
analyzed the airflow speed, dust concentration, and energy consumption 
of the mechanical ventilation system in the pigsty based on its instal-
lation position, i.e., either on the floor, roof, or both. The results sug-
gested that the ventilation performance was the best when fans were 
installed on both the floor and the roof. However, in summer nights 
during which the maximum ventilation rate was not necessary, the 
ventilation performance could be attained economically using only the 
floor mechanical ventilation system. Ecim-Djuric and Topisirovic (2010) 
suggested a natural ventilation system optimization method via the 
analysis of the indoor airflow speed based on wind velocity and incident 
angle at the opening in a pigsty through CFD analysis. The energy 
consumption was reduced by approximately 60% by appropriately 
replacing the mechanical ventilation system when an optimized natural 
ventilation system was applied. 

In addition to the analysis of air flow distribution using CFD, the 
thermal behavior and energy consumption in the pigsty were analyzed 
based on the applied mechanical ventilation system. Teitel et al. (2008) 
experimentally analyzed the indoor thermal environment and energy 
consumption based on the on/off system and the variable frequency 
drive (VFD) system of the ventilation fan in a pigsty. The energy con-
sumption required to maintain the same indoor thermal environment 
using the VFD system was approximately 25% smaller than that required 
with the on/off system. Xie et al. (2019) developed a model to predict 
the indoor temperature through the energy balance equation (EBE) and 
an adaptive neurofuzzy inferring system (ANFIS) with the weather 
condition and indoor environment data in a pigsty as input variables. As 
a result, The EBE model exhibited a higher prediction performance than 
that of the ANFIS model, and derived the minimum air-change rate 
based on the EBE model, which shows the possibility of reducing the 
energy consumption of the ventilation fan. Constantino et al. (2020) 
monitored data, such as indoor temperature and gas concentration in an 
actual chicken farm and developed an energy consumption prediction 
model based on the increase in the air-change rate for gas concentration 
control. 

Mechanical ventilation system requires an effective ventilation per-
formance and energy efficiency. A ventilation control strategy that 
considers the indoor air quality and thermal environment integrally is 
required because the role of outside air introduced through ventilation 

not only improves indoor air quality but also induces cooling effects. 
Occasionally, outer (environment) air is introduced to ensure indoor air 
quality can lead to an excessive cooling effect and increased energy 
consumption. Therefore, fan control schemes need to satisfy both the 
indoor air quality and thermal environment requirements, and simul-
taneously serve as an energy-efficient operation method. However, 
studies on the energy-efficient operation of mechanical ventilation sys-
tems that consider indoor air quality and thermal environment in a 
pigsty in an integrated manner are lacking. Accordingly, this study 
analyzed the applicability of a demand-controlled ventilation (DCV) 
system based on CO2 and indoor temperature control for livestock 
buildings. For this purpose, a model that can predict indoor tempera-
ture, CO2 concentration, and fan electric energy according to the oper-
ation of a ventilation fan was developed, and the performance of 
maintaining the indoor environment and energy reduction potential 
using DCV control compared with the conventional control method were 
analyzed. 

Fig. 1 shows a flowchart of all the processes involved in this study. 
First, data of the target livestock building, such as piglet conditions, 
information on ventilation fan operation, and indoor and outdoor 
environment information, are monitored. Subsequently, an energy 
model that can simulate thermal dynamic characteristics according to 
the operation of the ventilation fan is developed based on the collected 
data. Finally, based on a simulation analysis using the developed model, 
the DCV control method and conventional control method are compared 
and analyzed. 

2. Materials and methods 

2.1. Building description 

2.1.1. Outline of the target pigsty 
The target pigsty was a piglet house for raising piglets among pigsties 

located in Suncheon, South Korea. As shown in Fig. 2(a), the piglet 
house comprises two piglet rooms and one sick pig room. The floor is 
slatted and is designed to allow piglet manures to be treated in the 
basement (Fig. 2(b)). In each piglet room, up to 900 piglets were raised 
at intervals of approximately 50 days. Further, each room has four 
ceiling fans and six exhaust fans on the southern wall. In addition to 
these ventilation facilities, the indoor environment was controlled 
through radiant panels for heating and cooling pads. One of the two 
piglet rooms was used in this study. 

Fig. 3 shows the exterior and interior views of the piglet house. The 
data on the indoor environment, weather conditions, piglet conditions, 
and facility system control state monitored at 5 min intervals for the 
target piglet room (Table 1). Temperature and humidity sensors were 
installed all over the piglet room for indoor thermal environment con-
trol. CO2 and ammonia concentrations were monitored in the corridor 
and in the piglet room to assess indoor air quality. Further, outdoor air- 
condition data, such as outdoor temperature and humidity, wind di-
rection, wind velocity, solar radiation, and precipitation, were collected 
through the weather station installed at the inlet of the piglet house. In 
addition to indoor and outdoor environment information, the conditions 
of the pigs were monitored in real time by collecting the average weight 
and feed intake data. The operating ratio of the ventilation fan, on/off 
state of the boiler, and cooling pad were used to control the facility 
system. This study conducted model development and DCV control 
simulation analysis using data collected from July 1 to July 28, 2020. 
Among the factors which affect the indoor air quality, ammonia was not 
considered in this study owing to the occurrence of many outliers and 
missing values for ammonia during the corresponding period. The 
specifications and installation locations of the sensors used in this study 
are shown in Table 2 and Fig. 4, respectively. 

2.1.2. Ventilation system 
In the target piglet house, the ventilation system is always in 
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operation because of pollutants generated inside the piglet house. The 
indoor environment is maintained using only the ventilation fan during 
the cooling and intermediary periods (excluding the heating period) 
because the cooling pad is operated for only one or two days in the year 
during the severe hot season. This study used data collected only during 
the intermediary and cooling periods to focus on the operation of the 
mechanical ventilation system. Fig. 5 shows the ceiling fan and side-wall 
exhaust fan installed in the piglet room; the specifications of the venti-
lation fans are summarized in Table 3. Data related to the exhaust fan 
were not collected because only the ceiling fan was operated during the 
study period. 

2.2. Development of air temperature and CO₂ prediction model 

2.2.1. Baseline modeling 
For the energy modeling of the pigsty, EnergyPlus 9.0, a physics- 

based model, was used. EnergyPlus 9.0 is a building energy simulation 
(BES) program developed by the United Stated Department of Energy 
(DOE). This model has been used for modeling, and it combines the 
advantages of the existing Building Loads Analysis and System (BLAST) 

and DOE-2. EnergyPlus has high reliability because it can calculate the 
load through the heat balance method and perform the dynamic analysis 
of conduction, radiation, and convective heat transfer in buildings. 

Table 4 presents an overview of the baseline model. For the building 
envelope, materials listed on the design drawings were used; values 
provided by the Passive House Institute in Korea were applied as the 
thermal performance of the materials. The lights load was calculated 
based on an illumination of 350 lx to consider the heat inside the pigsty 
(Gadd, 2011). The pig heat was set such that heat changes would be 
reflected based on pig weights according to the equation derived in an 
existing study (Brown-Brandl et al., 2013). 

EnergyPlus is a simulation tool used for the evaluation of the thermal 
behavior of buildings. CFD analysis or the CONTAM tool is used to 
simulate the behaviors of pollutants. In this study, EnergyPlus was used 
to analyze changes in the indoor environment and energy consumption 
based on the application of ventilation system control, while it simul-
taneously predicted the indoor temperature and CO2 concentration. 
EnergyPlus shows the CO2 concentration behavior based on the air ex-
change rate of the room considering the CO2 concentration in outdoor 
air and CO2 generation rate per pig heat through the “ZoneAirConta-
minantBalance” model. As mentioned above, the CO2 concentration in 
outdoor air was assumed to be the same as the value measured in the 
corridor. In the case of the CO2 generation rate per pig heat, the total 
CO2 generation rate from the breathing and manures of pigs in the pigsty 

Fig. 1. Flowchart of the study.  

Fig. 2. Schematic of the target building. (a) First-floor plan and (b) longitu-
dinal section. 

Fig. 3. Exterior and interior views of the pigsty.  

Table 1 
Measured data (5 min intervals).  

Term July 1–July 28, 2020 (2–5 weeks of growth) 

Data Indoor environment Air temperature 
Relative humidity 
CO₂ and NH3 concentration 

Weather Air temperature 
Relative humidity 
Wind direction and speed 
Radiation 
Rainfall 

Occupancy Water and feed intake 
Average weight 

Operation Fan operating ratio 
Boiler on/off 
Cooling pad on/off 

Energy Consumption Fan electric energy 
Boiler electric energy  
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with a slatted floor was set based on existing research (Pedersen et al., 
2008). 

The “ZoneVentilation:DesignFlowRate” class that can install multi-
ple fans in one zone was utilized to implement 10 fans installed in the 
piglet room on EnergyPlus. This class calculates the fan flow rate and 
power consumption based on three inputs of the fan: design flow rate, 
fan pressure rise, and fan total efficiency. For the fan modeling of the 
piglet house, the design flow rate and fan pressure rise were applied 
based on performance items summarized in Table 3. The total efficiency 

of the fan was set to 0.7 after the manufacturer was consulted. The 
number of revolutions of the fan was adjusted by changing the voltage to 
the VFD method. It was assumed that the fan operating ratio (number of 
revolutions) exhibited a linear relationship with the fan flow rate based 
on the performance experiment data of the manufacturer because no 
experiment was conducted on the indoor air flow according to the fan 
operation in this study. Thus, when applying the fan schedule in the 

Table 2 
Sensor specifications.   

Model Manufacturer Scope Accuracy 

Fan operating ratio SL-300 SUNG-IL 0–100% . 
Fan electric energy mEMD Green ENS 0–4,294,967 kW/kVar ±0.5% 
Air temperature PR-20 OMEGA − 73–260 ◦C Class A per IEC60751 
CO2 concentration SH-VT260 SOHATECH 0–10000 parts per million (ppm) ±2%  

Fig. 4. Installation of sensors and fans.  

Fig. 5. Ventilation system of pigsty. (a) Ceiling fan and (b) exhaust fan.  

Table 3 
Specification of ventilation fan.  

Category Model Power 
(W) 

Air flow 
(CMH) 

Designed flow 
rate (m3/s) 

Fan 
pressure 
(Pa) 

Ceiling 
fan 

SLF- 
500D4-6(4 
EA) 

418 8500  2.36 177 

Exhaust 
fan 

SLF- 
500A4-6(6 
EA) 

535 8500  2.36 227  

Table 4 
Baseline model overview.  

U-Value [W/m2⋅K] Roof 0.114 
Ceiling 0.431  
Wall 0.311 
Floor 2.462 

Internal loads Pig Heat 
production 

4.71 W/kg 

CO₂ 
production 

5.139E-08 
m3/s⋅W 

Equipment 15 W/ m2 

Lights 9.46 W/m2 

Heating, ventilation, and air- 
conditioning (HVAC) 

Ventilation fan 
Radiant panel 
Cooling pad  
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energy model, the fan flow rate was set according to the fan operating 
ratio. The energy model predicts the indoor air temperature, CO2 con-
centration, and fan electric energy every hour by reflecting the char-
acteristics, such as weather conditions and fan schedules. 

2.2.2. Sensitivity analysis 
The sensitivity of the input variables was analyzed for each result of 

the indoor temperature and CO2 concentration before the calibration of 
the prediction performance of the developed baseline model. Sensitivity 
analysis—used to sequence input variables affecting model results—is a 
statistical analysis method often used in studies on the prediction per-
formance of building energy models (Heiselberg et al., 2009; Kong et al., 
2015; Pang et al., 2020). Sensitivity analysis methods applied in the 
building energy field are largely classified into local, global, and 
screening approaches. The local approach calculates the sensitivity of 
each variable when a single variable is changed and the rest are fixed; 
thus, it does not consider relationships between variables. The global 
approach randomly samples the input variable baselines and then 
changes input variables by applying a statistical distribution. Thus, it 
considers the effects of input variables over the entire range unlike the 
local approach (Tian, 2013). Finally, the screening approach, which is 
also referred as the one-parameter-at-a-time method, calculates the 
sensitivity of one input variable in one performance; however, it pre-
vents the sensitivity from converging to local conditions by changing the 
baseline model and repeating this several times (King and Perera, 2013). 
The screening approach has higher accuracy than that of the global 
approach in terms of the number of repetitions, and it is suitable for 
screening input variables with high impact. One of the most extensively 
used screening approaches is the Morris method. 

The sensitivity analysis of the Morris method determines the impact 
of input variables based on the elementary effect (EE) (Morris, 1991). 
The EE is a variable that indicates the degree of change in the model 
results when a specific variable is changed. The importance of input 
variables is assessed by the sensitivity index (μ*), absolute value 
average, and standard deviation (σ) of the EE. A larger EE indicates a 
more important variable. A combination of input variables that serve as 
the baseline must be sampled first to calculate the EE value of each 
variable. To this end, the minimum and maximum values of each input 
variable must be established, and the combination of input variables 
must be sampled randomly within the established range. After the 
combination of the baseline input variables is selected, the EE is derived 
by discretizing and dividing each input variable, and then changing it in 
a step-wise manner as. 

EEi =
y(x1, • • •, xi− 1, xi + Δ, xi+1, xk) − y(x1, • • •, xk)

Δ
(1)  

where (x1, • • •, xi− 1, xi +Δ, xi+1, xk) − y(x1, • • •, xk) denotes a set of 
input variables, y denotes the simulation result according to the input 
variables, and Δ denotes the change in the input variables. The finding 
of an existing study indicate that the best performance is obtained under 
conditions of 10 samplings (r = 10) and four changing stages of input 
variables (p = 4) (Franczyk, 2019). 

Eight variables that can affect the results of indoor temperature and 
CO2 concentration were selected to perform a sensitivity analysis; these 
are summarized in Table 5. It is crucial to select an appropriate value of 
the range of input variables because it influences the sensitivity analysis 
result (the larger the range is, the higher is the EE value). The fan flow 
rate is selected based on the rated air volume, and the design drawing is 
referenced for the U-value. Other variables are set based on the values 
estimated in existing studies (Pedersen et al., 2008; Gadd, 2011; Brown- 
Brandl et al., 2013). 

Fig. 6 shows the sensitivity analysis results of each input variable 
that is part for the results of indoor temperature and CO2 concentration. 
Both results were the most sensitive to the infiltration rate, followed by 
pig heat, activity level, and fan flow rate. The equipment load was 

influenced only the indoor temperature, whereas the CO₂ generation rate 
was influenced only the CO2 concentration. In this study, the prediction 
performance of the model was calibrated by adjusting the sensitive input 
variables, whereas the initial settings were maintained for the light load 
and U-value, which did not significantly affect the two results. Fig. 7 
shows the input variables used in the calibration and the method used 
for setting each input variable. 

2.2.3. Change of pig weights 
Among the input variables, pig heat increases with pig weights 

(Brown-Brandl et al., 2013), and hence, a pigsty shows an internal heat 
production behavior different from that of general buildings. Further, it 
is important to reflect the changes in pig weights according to the day of 
growth for the prediction model developed in this study because the 
total amount of CO2 generated increases with heat production. Thus, 
this study analyzed whether the change in pig weights reflected in the 
development of the prediction model had an impact on the prediction 
performance. 

Pig weights were monitored in a pigsty using a weighing scale, as 
shown in Fig. 8. One weighing scale was installed in the piglet house, 
and the weights of pigs which passed through the internal passage were 
detected. Fig. 9 shows the daily average weights of pigs measured using 
the weight scale from May 1 to June 16 (1–7 weeks of growth). Given 
that the weight data were collected from many unspecified pigs, the pig 
weight may decrease even when the number of days of growth increases, 
as indicated in Fig. 9. This study considered the pig heat by reflecting the 
average weight per week of growth in the model based on the regression 
equation derived from past data, assuming that pig weights increase 
linearly as a function of time (growth days). Subsequently, the predic-
tion performance was compared between the case of fixing the average 
weight during the analysis period and in the model. 

2.2.4. Optimization 
Input variables other than pig heat were set using the optimization 

technique. The input variable optimization method is one of the most 
commonly used energy model calibration methods. This method can 
find a combination of input variables that yield the smallest error rate 
using the difference between real and predicted values as the objective 
function (Coakley and Raftery, 2014). Before optimization, the predic-
tion performance behavior of the model was analyzed through para-
metric work for each combination of input variables. Fig. 10 shows the 
indoor temperature and CO2 concentration mean bias error (MBE) of the 
model based on the combination of input variables (see Eq. (2)). A trade- 
off between the two MBE values occurred because of input variables that 
affected both the indoor temperature and CO2 concentration. Input 
variables in the third quadrant are sequenced in the descending direc-
tion of the absolute values of the two MBEs. However, those in the 
second quadrant are not sequenced because the absolute MBE value of 
the CO2 concentration increased as the MBE absolute value of the indoor 
temperature decreased. 

In this study, weights were not applied to the prediction performance 
for the indoor temperature and CO2 concentration. Hence, as shown in 
Fig. 10, points where the MBE coordinates of the indoor temperature 

Table 5 
Input variables for sensitivity analysis.  

Label Minimum Maximum 

Activity level 0.6 1.2 
CO₂ generation rate (m3/s⋅W) 0.00000005 0.000000055 
Pig heat (W) 34 74 
Fan flow rate (m3/s) 1.89 2.36 
Lights load (W/m2) 8 12 
Equipment load (W/m2) 10 20 
U-value (W/m2⋅K) Concrete 1.4  1.8 

Insulation 0.2  0.4 
Infiltration rate (ACH, Air changes per hour) 0 10  
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and CO2 concentration are the closest to the origin are considered as the 
optimal solution. To this end, the optimization was performed with the 
objective function set to MBE2

Temperature + MBE2
Co2. The constraints for 

each input variable are the same as those applied to the sensitivity 
analysis, as summarized in Table 5. GenOpt—an optimization simula-
tion tool—was used, and the GPSPSOCCHJ algorithm—a hybrid global 
positioning system algorithm reset based on particle swarm 
optimization-was applied. The optimization was performed based on 
data collected from July 1 to July 7 (second week of growth). The 

weather data and fan operating ratio data on the corresponding dates 
were input to EnergyPlus; a separate output was generated and applied 
to the objective function to calculate the differences between the actual 
temperature and CO2 concentration. Table 6 lists the input variables 
derived from the optimization results. The activity level was set such 
that 2 h unit schedules could be input to reflect the differences in the 
activity of pigs over time. Based on the optimization input variables 
derived from the second week of growth data, a prediction model 
simulating the indoor temperature and CO2 concentration behavior 
from July 8 to July 28 (3–5 weeks of growth) was developed by 
reflecting the weekly pig weights. 

Fig. 6. Results of sensitivity analysis. (a) Air temperature and (b) CO2 concentration.  

Fig. 7. Input variables used for calibration.  

Fig. 8. Weighing scale.  

Fig. 9. Pig weight variation as a function of the day of growth (May 
1–June 16). 

Fig. 10. MBE behavior of the model.  
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2.2.5. Performance metrics 
To evaluate the performance of the developed model for predicting 

indoor temperature and CO2 concentration, MBE, coefficient of variance 
of the root mean square error (CVRMSE), and mean absolute percentage 
error (MAPE) indicators were used, as shown in Equations (2) to (4). 
MBE and CV (RMSE) are the most commonly used error indicators for 
assessing the performance of BES models (Chong et al., 2021). American 
Society of Heating, Refrigerating and Air-Conditioning Engineers 
(ASHRAE) Guideline 14 (2014) presents the error limits standards for 
the two statistical indicators. MAPE values less than 10% represent an 
extremely precise forecast, while MAPE values from11% to 20% indicate 
a decent forecast (Ahmadi et al., 2021). Table 7 shows the selected 
standards for each error indicator, based on which the prediction per-
formance of the developed model was evaluated. 

MBE =

∑n
i=1(Mi − Si)
∑n

i=1Mi
× 100 (2)  

CVRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(Mi − Si)

2

n

√

M
× 100 (3)  

MAPE =

∑n
i=1|

Mi − Si
Mi

|

n
× 100 (4)  

2.3. Development of part-load factor (PLF) model for fan electric energy 

EnergyPlus represents the relationship between the fan operating 
ratio and power consumption using the simple polynomial-based curve- 
fit model without considering the fan pressure rise model for the fan 
performance curve as. 

fflow = m/mdesign (5)  

fpl = c1 + c2⋅fflow + c3⋅f 2
flow + c4⋅f 3

flow + c5⋅f 4
flow (6)  

Qtot = fpl⋅Qdesign (7) 

In view of this, a quaternary polynomial equation was developed in 
the present study to predict the PLF according to the fan operating ratio 
using past data for the fan operating ratio and power consumption data 
collected from the piglet house. 

Fig. 11 shows instantaneous power data based on the fan operating 
ratio collected from May 25 to June 30, 2020. The average value of the 
four ceiling fans was used as the fan operating ratio. The PLF model for 
operating ratios with values between 0% and 45% was developed 
because the maximum fan operating ratio did not exceed 45% during the 
data collection period. For operating ratio values from 0 to 5%, the 
average instantaneous power was 0.54 kW; the power did not vary 
considerably as a function of the operating ratio. For operating ratio 
values from 35 to 37.125%, the instantaneous power sharply decreased 
and then increased as a function of the operating ratio. Owing to this 
irregular behavior, the instantaneous power for operating ratio values in 
the 35–40% range was difficult to represent, as indicated in Fig. 11, for a 
quartic polynomial model developed using the data set. This section 
accounts for a considerable part (approximately 16%) of the data 
collection period. Therefore, there is a need for a model that can reflect 
the characteristics of this section. We developed two PLF models by 
separating the data around the fan operating ratio of 37.125% as shown 
in Fig. 11 based on the changing trend characteristics of instantaneous 
power. Table 8 summarizes the curve fitting results of the developed PLF 
model. For curve fitting, the least absolute residual method was used 
among robust regressions. 

To validate the electric energy prediction performance of the fan 
according to the PLF model application, MBE and the CV (RMSE) were 
used. Table 9 lists the recommended error values per data interval and 
the error indicators of the predicted values of energy consumption ac-
cording to the application of the PLF model from July 1 to 28. A high 
prediction performance that satisfied the recommended error values of 
monthly data to which strict criteria were applied was obtained with 
MBE = 3.41% and CV (RMSE) = 12.25% by applying the PLF model. 

2.4. DCV system 

The target pigsty controls the indoor environment such that the fan 
operating ratio is changed by the indoor temperature, as indicated in 
Fig. 12. Fan control sections are divided into three catego-
ries—maximum, variable, and minimum operating ratios—using the 
four control variables of maximum/minimum temperatures and 
maximum/minimum operating ratios. In the maximum operating ratio 
section, the indoor temperature is higher than the maximum tempera-
ture, and the input maximum operating ratio is applied to lower the 
indoor temperature. When the indoor temperature is between the min-
imum and maximum temperatures, the operating ratio increases linearly 
according to the indoor temperature between the maximum and mini-
mum operating ratios. In the minimum operating ratio section, the in-
door temperature is lower than the minimum temperature, and the 
minimum operating ratio is applied to maintain the indoor air quality. 

In a real pigsty, the minimum operating ratio is set to 10%, and the 
operation of the ceiling fan is controlled. It is crucial to secure a suffi-
cient operating ratio to maintain indoor air quality because numerous 
pollutants are generated from the breathing and manures of pigs in a 
pigsty. However, even if the indoor temperature is sufficiently low, the 
thermal comfort can be disrupted because of the excessive cooling 
caused by the application of the minimum operating ratio. Therefore, in 
the minimum operating ratio section, the comfort of the indoor thermal 
environment and energy reduction is achieved by applying DCV control 
considering indoor air quality. The DCV is a ventilation control method 
that adjusts the operating ratio in response to indoor air quality factors, 
such as occupancy schedule or CO2 concentration. Many studies on DCV 
have been conducted for general buildings because DCV has drawn 
attention as an energy-efficient ventilation control method that allows 
the reduction of unnecessary ventilation load while maintaining indoor 
air quality (Ng et al., 2011; Lu et al., 2011; Belmonte et al., 2019). In this 
study, the DCV control method that applies on/off ventilation fans using 
the indoor CO2 concentration as the criterion in a section where the 
minimum operating ratio is applied by using the developed indoor 
temperature and CO2 concentration prediction model. To this end, the 

Table 6 
Optimization results.  

Infiltration rate 6 ACH 
Fan flow rate 2.03 m3/s 
Equipment load 11.5 W 
CO₂ generation rate 0.0000000514 m3/s⋅W 
Activity level 

Table 7 
Acceptable error rate.  

Label Acceptable error (%)  

MBE ± 10  
CV (RMSE) 30  
MAPE 20   
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indoor environment and fan energy consumption are compared between 
the existing control method and DCV method. 

Fig. 13 shows the DCV control algorithm applied in this study. The 
maximum and variable operating ratio sections are the same as the 
existing control method. However, in the minimum operating ratio 
section, the on/off control is applied based on the CO2 concentration. 

The control variables are set based on the measured data because the 
target pigsty randomly controls the ventilation system based on the 
experience of the manager without monitoring the fan control variable 
setting conditions. The minimum and maximum temperatures were set 
to 28 ◦C and 31 ◦C, respectively, based on the indoor temperature dis-
tribution (28.41–30.58 ◦C) after excluding outliers during the corre-
sponding period (July 8 to July 28, 3–5 weeks of growth). The maximum 
and minimum operating ratios were set to 45% and 10%, respectively, as 
shown in Fig. 12. The control reference CO2 concentration was applied 
by assuming that the allowable concentration in the piglet house was 
2000 parts per million (ppm), according to the reported literature 
(Murphy, 2012). 

3. Results and discussion 

3.1. Model evaluation 

MBE, CV (RMSE), and MAPE error indicators were used to evaluate 
the prediction performance of the developed model. In addition, the 
prediction performance was compared with a model that does not 
consider weight changes (fixed value for the optimization period, second 
week of growth) to assess the impact of the changes in pig weights on the 
prediction performance in the development of the pigsty indoor envi-
ronment prediction model. The prediction performance of the model 
was analyzed by comparing the hourly data for the period from July 8 to 
July 28 (504 h). 

Fig. 14 shows the measured values of the indoor temperature and 
predicted values of the model. The average indoor temperature of the 
measured values was 29.4 ◦C, and was maintained in the range of 

Fig. 11. Fan electric energy by operating ratio (four ceiling fans). (a) Single quartic and (b) multiquadric polynomials.  

Table 8 
Curve fitting results.   

Part-load factor (PLF 1) PLF 2 

c1  − 0.009936  0.05089 
c2  − 0.02946  − 0.02155 
c3  − 0.02249  − 0.2311 
c4  − 0.01384  0.2399 
c5  0.3194  0.6408 
SSE  0.05212  0.6627 
R2  0.9679  0.7618 
RMSE  0.01539  0.1271  

Table 9 
CV (RMSE) and MBE of PLF model (July 1 to 28).  

Label Acceptable error (%)  PLF model error (%) 

MBE (Hourly) ±10   
CV(RMSE) (Hourly) 30   
MBE (Daily) .   3.41 
CV (RMSE) (Daily) .   12.25 
MBE (Monthly) ±5   
CV (RMSE) (Monthly) 15    

Fig. 12. Ventilation system control.  
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28–31 ◦C. When the prediction value behavior of the model depended on 
whether the applied weight changes were applied was examined, the 
model reflecting weight changes shows values close to the actual values. 
The values of the model with fixed weights are found to be lower by 
approximately 0.73 ◦C on average. This is attributed to the low indoor 
heat production caused by the (fixed) relatively low weight (second 
week) corresponding to the optimization period. Table 10 shows that the 
weight gain model exhibits a higher prediction performance for this 
error rate. Both models satisfied the acceptable standards and yielded 
similar prediction performance to recent studies on calibrating the in-
door temperature prediction performance of building energy system 
models (Donovan et al., 2019; Baba et al., 2022). 

As indicated in Fig. 15, the CO2 concentration prediction perfor-
mance during this period was also compared. Similar to that for indoor 
temperature, the CO2 concentration behavior of the weight gain model 
was also found to be closer to the actual values; it was highly similar if 
the 121–216 h section (wherein the actual CO2 concentration was 
relatively high) was excluded. This is attributed to the decrease in the 
CO2 concentration because of the low-heat production similar to that in 
the case of the fixed weight model that corresponds to the optimization 

period where a relatively low weight was applied. Further, the error rate 
showed a significant difference between the two models. The fixed 
weight model showed MBE and MAPE values of − 20.85 and 21.43%, 
respectively, which exceeded the acceptable error rates. In contrast, all 
error indicators of the weight gain model satisfied the acceptable error 
rates and were similar to those of recent studies on developing indoor 
CO2 concentration prediction models (Pantazaras et al., 2016; Taheri 
et al., 2021). This suggests that it may be difficult to achieve adequate 
prediction performance if the change in pig weights is not considered 
when developing the CO2 concentration prediction model. This implies 
it can be difficult to achieve the prediction performance unless the 
change in pig weights is considered when the CO2 concentration pre-
diction model is developed. 

3.2. Application of DCV control 

In this study, the applicability of DCV control in a pigsty was 
examined based on the developed model (weight gain). To this end, 
indoor environment and energy consumption were compared with those 
of an existing control method. The simulation period was set identical to 

Fig. 13. Demand-controlled ventilation control algorithm.  

Fig. 14. Air temperature prediction performance comparison.  

H. Shin et al.                                                                                                                                                                                                                                     



Computers and Electronics in Agriculture 196 (2022) 106907

10

the performance verification period for the prediction model. The con-
trol was applied based on hourly indoor temperature and CO2 concen-
tration values. 

Fig. 16 shows the indoor temperature and outside air temperature 
behavior according to the control method. The DCV control method has 
a larger temperature change and a higher frequency of sections that 
exceed the maximum temperature of 31 ◦C compared with the con-
ventional control method. This is because many sections with a 0% fan 
operating ratio occur during the application of the DCV control method, 
as shown in Fig. 18; the indoor temperature increased considerably 
during the time step when the fan was not operating. In contrast, the 
indoor temperature decreased during the time step when the maximum 
operating ratio was applied. In the conventional control method, the 
increase in the indoor temperature was relatively small because the 
minimum operating ratio was applied. 

In the 97–192 h section, wherein the outside air temperature was 
relatively low, the conventional control method did not have many 
sections where the maximum temperature was exceeded. In the 
408–504 h section wherein the outside air temperature was relatively 
high, both control methods yielded very high frequencies that exceeded 
the maximum temperature of 47.13%. This indicates that the control 
variable conditions applied to this simulation cannot satisfy the indoor 
temperature owing to the high outside air temperature and heat pro-
duction by increasing pig weights. 

Further, the CO2 concentration showed large changes in the DCV 

control method; however, the CO2 concentration did not exceed the 
allowable value of 2000 ppm for both control methods, as indicated in 
Fig. 17. Because there was no section wherein the CO2 concentration 
exceeded 2000 ppm, the fan control state was always off in the section 
where the temperature was below the set temperature (28 ◦C) during 
DCV control. For 3–5 week old piglets considered in this study, the CO2 
concentration was not high because of the relatively small weights. It is 
expected that in the growing pig and sow houses where pig weights are 
as high as 120 kg, the indoor CO2 concentration behavior under DCV 
control is different from that observed in this study. 

The differences in the indoor environment behavior based on the 
control method are attributed to the different fan operating ratios. These 
differences depended on application of the minimum operating ratio, as 
shown in Fig. 18. For the conventional control method, a minimum 
operating ratio of approximately 40.2% was applied to the corre-
sponding period because there were many sections wherein the indoor 
temperature was lower than 28 ◦C; in the case of DCV control, approx-
imately 41.89% of the entire period showed an off-state. The frequency 
of the maximum operating ratio of the entire period differed between 
the two control methods, and it was approximately 19.74% and 36.24% 
for the conventional and DCV control methods, respectively. This is 
because in the case of the DCV control the temperature increased 
significantly during the time step when the fan control state was off, and 
many cases occurred where the maximum operating ratio was applied 
above the maximum temperature. In contrast, the conventional control 

Table 10 
Performance of the energy models (air temperature and CO2 concentration).   

Weight gain (%) Fixed weight (%) Acceptable error (%) 

Air temperature MBE (Hourly)  − 2.48  − 4.37 ± 10 
CV(RMSE) (Hourly)  3.87  6.02 30 
MAPE (Hourly)  3.03  4.87 20 

CO₂ concentration MBE (Hourly)  − 9.52  − 20.85 ± 10 
CV(RMSE) (Hourly)  20.24  26.54 30 
MAPE (Hourly)  14.15  21.43 20  

Fig. 15. CO2 concentration prediction performance comparison.  

Fig. 16. Air temperature set by the ventilation system.  
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method applied the minimum operating ratio, which resulted in a 
smaller increase in the indoor temperature compared with that in the 
DCV control method. 

This difference in the fan operating ratio caused a difference in the 
energy consumption, as indicated in Fig. 19. The conventional control 
method consumed a fan power of 357.52 kWh during the corresponding 
period, whereas the DCV control method consumed approximately 
18.2% lower power (292.44 kW) during the same period. This difference 
can be attributed to the high frequency of the indoor temperature sec-
tions which required the minimum operating ratio during the period, 
and the significant effect of the on/off control of the DCV control method 
on energy reduction. Although the DCV control method showed smaller 
energy consumption, high-temperature sections occurred frequently 
during the time step at which the fan was switched off; this needs to be 
improved for the practical utilization of the DCV control method. 

3.3. Consideration of DCV control interval 

The DCV control method applied in this study frequently generated 
sections that greatly exceeded the maximum temperature because of the 
high-indoor temperature in the off time steps. This problem can be 
solved by applying a method to suppress the increase in indoor tem-
perature through more frequent control changes can be applied. Thus, 
this study compared the 1 h time step control results with DCV control 
results when 15 min time steps were applied. 

Fig. 20 shows the indoor temperature distributions with respect to 
the time step. The 15-min time step showed a narrower temperature 
distribution than the 1 h time step. The average temperatures were 
almost the same at 29.25 ◦C and 29 ◦C. The proportion of sections which 
exceeded the maximum temperature of 31 ◦C was 35.5% for the 1 h time 

Fig. 17. CO2 concentration set by the ventilation system.  

Fig. 18. Fan operating ratio set by the ventilation system.  

Fig. 19. Utilization of fan electric energy.  Fig. 20. Air temperature distribution at different time steps.  
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step, whereas the 15-min time step showed a proportion of 18.8%, 
which is approximately half of the 1 h time step. This occurs because the 
variation in the indoor temperature decreased with more frequent 
controls. 

Fig. 21 shows the total energy consumption in terms of the time step 
at which the DCV control was applied. The 15 min time step control 
yields a smaller energy consumption of 7.65% compared with that of the 
1-h time step control. This is attributed to the time step of the 15 min 
control wherein an excessive temperature rise is suppressed, which re-
sults in a smaller frequency of temperatures exceeding the maximum 
temperature, and a decrease in the frequency associated with the 
maximum operating ratio, which decreases the high energy consump-
tion. However, as illustrated in Fig. 22, when compared with the daily 
energy consumption, the 15 min time step control method did not al-
ways yield low-energy consumptions. Until July 26, the 15 min time step 
control yielded low-energy consumptions compared with the 1 h time 
step control with the exception of July 11. However, after July 26, the 1 
h time step control yielded smaller energy consumption. 

Indoor and outdoor temperatures on July 13 and July 27, when the 
difference in energy consumption was the largest, were compared to 
analyze the different energy consumption behaviors at different time 
steps as a function of the date. On July 13, the 15 min time step control 
showed a 32.17% lower energy consumption compared with that of the 
1 h time step. As shown in Fig. 23(a), the maximum operating ratio was 
not applied during the 15 min time step control because the time step 
exceeding the maximum temperature did not occur. On July 27, sections 
exceeding the maximum temperature occurred frequently, even during 
the 15 min time step control, as illustrated in Fig. 23(b). The sections to 
which the maximum operating ratio was applied occurred more 
frequently than the 1 h time step control. This was attributed to the 
increase in the indoor temperature which was not being sufficiently 
suppressed even by the 15 min time-step control because of the very 
high outer air temperatures and increase in the internal heat production 
which resulting from weight gain. This phenomenon worsened when a 
1-h time step control was applied. On July 27, the daily maximum 
temperature rose to 37 ◦C in the 1 h time-step control case. 

The differences in the daily energy consumption and indoor envi-
ronment behavior caused by the application of DCV control originated 
from the increase in indoor temperature owing to the outer air-condition 
and internal heat production. If sections exist wherein the maximum 
temperature is exceeded frequently during the 15-min time step control 
(as on July 27), the existing fan control policy (maximum/minimum 
operating ratios and temperatures) needs to be changed to one that can 
suppress the increase in indoor temperature. For example, the increase 
in the indoor temperature could be suppressed if the overall operating 
ratio, including the variable operating ratio, is increased by increasing 

the maximum/minimum operating ratios. Thus, for the application of 
effective DCV control to a pigsty, not only must the time step be 
considered, but the fan control policy must be established based on 
considerations of the outside air condition and changes in pig weights. 

4. Conclusions 

This study analyzed the applicability of a DCV system in a livestock 
building that considered both the indoor air quality and indoor tem-
perature. For this purpose, an energy model based on actual measure-
ments was developed, and the DCV control method and conventional 
control method were compared and analyzed based on a simulation 
analysis. The main results of this study are summarized as follows.  

1) When the indoor temperature and CO2 concentration prediction 
model for a pigsty was developed, changes in pig weight influenced 
the prediction performance of the model. The prediction perfor-
mance of the CO2 concentration prediction model exceeded the 
allowable error rate when the change in pig weights was not 
considered.  

2) Upon the application of 1 h time step DCV control, the fan electric 
energy consumption was 18.2% lower than that of the conventional 
control. However, the change in the indoor temperature was larger 
than that of the conventional control method. Further, the frequency 
of sections exceeding the maximum temperature was high. In addi-
tion, the CO2 concentration also showed a larger change when the 
DCV control was applied, but it did not exceed the allowable 
concentration.  

3) Compared with the 1-h time step DCV control, the 15-min time step 
DCV control showed a smaller change in the indoor temperature than 
that of the 1-h time step control, and the frequency of sections 
exceeding the maximum temperature was also low. The energy 
consumption during the 15 min time step control was approximately 
7.65% lower than that of the 1 h time step control. Although 15 min 
time step control exhibited higher energy consumption when the 
outdoor air temperature and pig heat were relatively high, it was 
judged to be a more suitable control interval than the 1 h time step 
based on considerations of the performance of maintaining the in-
door environment. 

These results confirmed that the DCV control method in a pigsty has 
high energy reduction potential, and that an appropriate control interval 
must be applied to maintain the indoor environment. 

In this study, unlike previous studies that focused on the ventilation 
performance in a pigsty, energy-efficient control strategies were 
explored with a focus on the consumed power owing to the ventilation 
fan. To this end, the BES tool EnergyPlus was used. The research con-
tents, ranging from the model development stage to simulation case 
analysis, are expected to be helpful to the use of the tool in the livestock 
industry. The analyzed results for the modeling method proposed in this 
study that reflect the characteristic elements of pigsty buildings, such as 
changes in pig weights and application of DCV control will be highly 
useful in the pigsty ventilation field. Further, for DCV control in an 
advanced pigsty, more detailed research on the control interval, control 
policy, outside air condition, and weight changes will be necessary. 
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