Skip to main content
. 2022 Mar 14;13:814093. doi: 10.3389/fgene.2022.814093

TABLE 4.

Random Forest predictions on different embeddings.

With tissue No tissue
Category Precision Recall F1 Category Precision Recall F1
DistMult/Cos-sim/@all 0.5339 0.1609 0.247278 DistMult_notissue/Cos-sim/@all 0.3747 0.0326 0.059981
DistMult/Euclidean/@all 0.6758 0.2413 0.355622 DistMult_notissue/Euclidean/@all 0.4152 0.0917 0.150222
RDF2Vec/Cos-sim/@all 0.4765 0.2057 0.287353 RDF2Vec_notissue/Cos-sim/@all 0.5711 0.1636 0.25434
RDF2Vec/Euclidean/@all 0.412 0.242 0.304905 RDF2Vec_notissue/Euclidean/@all 0.4074 0.1246 0.190835
TransD/Cos-sim/@all 0.7356 0.3827 0.503468 TransD_notissue/Euclidean/@all 0.6038 0.3066 0.40669
TransD/Euclidean/@all 0.5312 0.3462 0.419196 TransD_notissue/Cos-sim/@all 0.6794 0.1027 0.178428
TransE/Cos-sim/@all 0.6988 0.6854 0.692035 TransE_notissue/Cos-sim/@all 0.6894 0.6049 0.644392
TransE/Euclidean/@all 0.6604 0.5085 0.57458 TransE_notissue/Euclidean/@all 0.5958 0.3098 0.407639
TransH/Cos-sim/@all 0.6922 0.5884 0.636093 TransH_notissue/Euclidean/@all 0.54 0.3021 0.387446
TransH/Euclidean/@all 0.6187 0.5818 0.599683 TransH_notissue/Cos-sim/@all 0.6601 0.6263 0.642756

Bold numbers show the highest performance.