Skip to main content
. 2022 Mar 22;2022:8119685. doi: 10.1155/2022/8119685

Table 1.

Machine learning techniques applied for keratoconus classification in the literature.

Authors Classification Network Accuracy Sensitivity Specificity
Accardo et al. Normal and keratoconus BPN 98 93.3 98.6
Souza et al. Normal and keratoconus SVM 100 75
MLP 100 75
RBFNN 98 75
Toutounchian et al. Normal, mild keratoconus, and keratoconus MLP 77.6
SVM 72
DT 84
RBFNN 71.2
Arbelaez et al. Normal, abnormal, subclinical, and keratoconus SVM 95.275 87.6 96.9
Hidalgo et al. Astigmatism, forme fruste keratoconus, keratoconus, normal, and postrefractive surgery SVM 88.8 77.22 97.02
Lavric et al. Keratoconus, forme fruste keratoconus, and normal QSVM 93
Santos et al. Normal and keratoconus CorneaNet 99.56
Kamiya et al. Normal and keratoconus 4 gradings ResNet-18 99.1 100 98.4
Shi et al. Normal, keratoconus, and subclinical NN 93
Kuo et al. Normal and keratoconus VGG16 93.1 91.7 94.4
InceptionV3 93.1 91.7 94.4
ResNet152 95.8 94.4 97.2
Lavric et al. 5 classes as normal, forme fruste, keratoconus II, keratoconus III, and keratoconus IV SVM AUC 0.88
3 classes as normal, forme fruste, and keratoconus SVM AUC 0.96
Normal and keratoconus SVM AUC 0.99
Cao et al. Normal and keratoconus SVM 88.8