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Background. Bile acids help maintain the physiological balance of the gut microbiome and the integrity of the intestinal epithelial
barrier. Similarly, intestinal bacteria play a major role in bile acid metabolism as they are involved in crucial biotransformation
steps in the enterohepatic circulation pathway. Understanding the relationship between bile acid signalling and the gut
microbiome in Crohn’s disease can help target new and innovative treatment strategies. Aims. This review summarises the
relationship between bile acids and the microbiome in Crohn’s disease and discusses potential novel therapeutic options. Methods.
We performed a literature review on bile acid signalling, its effect on the gut microbiome, and therapeutic applications in Crohn’s
disease. Results. Current research suggests that there is a strong interplay between the dysregulated microbiota, bile acid
metabolism, and the mucosal immune system that can result in a changed immunological function, triggering the inflammatory
response in Crohn’s disease. Recent studies have demonstrated an association with altering the enterohepatic circulation and
activating the farnesoid X receptor signalling pathway with the use of probiotics and faecal microbial transplantation, respectively.
Bile acid sequestrants have been shown to have anti-inflammatory, cytoprotective, and anti-apoptotic properties with the potential
to alter the intestinal microbial composition, suggesting a possible role in inducing and maintaining Crohn’s disease. Conclusions.
Active Crohn’s disease has been correlated with changes in bacterial concentrations, which may be associated with changes in bile
acid modification. Further research should focus on targeting these areas for future therapeutic options.

1. Introduction

Bile acids (BA) are the main components of human bile and
have an integral role in maintaining health, specifically
through the absorption of nutrients and vitamins [1]. BA
also have immunomodulatory actions and appear to be a
major regulator of the gut microbiota [2]. They also have
extensive roles in glucose homeostasis, lipid and lipoprotein
metabolism, energy expenditure, intestinal motility and
bacterial growth, inflammation, liver regeneration, and
hepatocarcinogenesis (Figure 1) [3]. BA deficiency can cause
cholestasis, diarrhoea, lipid malabsorption [4] and, in the
intestine, is associated with mucosal injury and bacterial
overgrowth [1]. An altered BA pool is associated with several
disease states, including but not limiting to recurrent

Clostridioides difficile infections (rCDI) [5], inflammatory
bowel disease (IBD) [6], metabolic syndromes (such as
diabetes) [7], liver inflammation (such as nonalcoholic fatty
liver disease and primary sclerosing cholangitis) [8, 9], and
cancers (such as colorectal cancer) (Figure 1) [10]. This
review paper will focus on the impact of BA and the
microbiome, and explore potential novel targets for the
treatment of Crohn’s disease (CD), a subcomponent of IBD.

2. Review Criteria

A literature search was conducted on PubMed with relevant
papers on BA signalling used without publication date re-
strictions. For general knowledge and well-established lit-
erature on BA physiology, review articles from high-impact
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FiGure 1: The multifunctional roles of bile acids and the symptoms and diseases they can contribute to when the BA pool is deficient or

altered. Image modified from Perino et al. [11].

journals were cited. Regarding experimental and clinical
studies, both animal and human trials were included and
stated accordingly in the text. Peer-reviewed publications in
English only were taken into consideration. This review is
not designed as a systematic review.

3. Bile Acids

BA are derived from cholesterol to form primary BA, namely,
cholic acid (CA) and chenodeoxycholic acid (CDCA) [12].
Primary BA are then conjugated with glycine or taurine
amino acids, which increase their solubility, and stored in the
gallbladder prior to excretion from the biliary ducts [6, 13].
Conjugation has several benefits, including minimising
passive absorption [14], modulating host inflammatory re-
sponses, and regulating the gut microbiota [12]. The relatively
high concentration of conjugated BA in the small intestinal
lumen may play an important factor in the paucity of mi-
crobes in this area as they can inhibit the growth of bacteria in
the small intestine mediating an antimicrobial effect [15].
BAs are released from the gallbladder into the small in-
testine postprandially in response to the hormone, chole-
cystokinin (CCK) [16]. Once in the small intestine, BAs
emulsify dietary fat and enhance lipid, sterol, and vitamin
absorption [16]. Most of the BA remain in the gut lumen until
they reach the TI. Approximately 95% of BA will be actively
reabsorbed in the ileum via the apical sodium-dependent bile
acid transporter (ASBT). In the cytoplasm of the enterocyte,

BA will bind to the ileal bile acid binding protein (IBABP),
which will allow them to be excreted into the portal
circulation by the organic anion transporter polypeptide
(OATPA/B). This receptor is found on the basolateral
membrane of enterocytes. The BA will travel back into the
liver through the sodium taurocholate cotransporting poly-
peptide (NTCP) transporter [16, 17]. Once in the liver, free
BA is reconjugated with taurine or glycine before secretion
into the biliary tract and intestinal lumen [12]. This metabolic
loop constitutes the enterohepatic cycle of BA [6] and occurs
8-10 times per day [16]. This recycling is necessary as he-
patocytes have limited capability to produce BAs [18].

Ileal BA transport is highly efficient, but a small pro-
portion (1-2%) of BA will escape the enterohepatic circu-
lation and enter the large intestine [19]. As they transit
through the colon, the microbiota will perform several
enzymatic reactions, namely, deconjugation, dihydrox-
ylation, and epimerisation, to form secondary BA: deoxy-
cholic acid (DCA) from CA and ursodeoxycholic acid
(UDCA) and lithocholic acid (LCA) from CDCA [6, 20].
Deconjugation allows BA to undergo further modifications
by the intestinal microbiota and is thus crucial in bile
biotransformation [21]. This metabolism of BA by the
microbiota makes them more lipophilic, enabling the sec-
ondary BA to be reabsorbed passively in the large intestine
and transported back to the liver via the systemic circulation
[6]. See Figures 2 and 3 for a breakdown of the enterohepatic
circulation and BA signalling pathway.
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FIGURE 3: Bile acid signalling within the enterocyte. Bile acids are formed from the breakdown of cholesterol via the CYP7A1 enzyme. Bile
acids are then transported from the liver through the bile salt export pump (BSEP). They will then travel via the biliary tree to the gallbladder
for storage. After a meal, bile acids are then ejected into the small intestine where they are actively absorbed into the brush border of the
terminal ileal epithelial cell through the apical bile acid transporter (ASBT). In the cytoplasm of the enterocyte, bile acids bind to the ileal bile
acid binding protein (IBABP) and then are excreted via the basolateral heterodimeric protein OST alpha and beta. Bile acids enter the portal
venous circulation and return to the liver via the Na+-taurocholate polypeptide (NTCP). In the enterocyte and hepatocyte, bile acids will
bind to FXR-activating FGF19 and SHP. These proteins will then travel to the liver to create a negative feedback pathway and inhibit further
bile acid synthesis (image created by https://www.biorender.com).
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3.1. Farnesoid X Receptor (FXR). The farnesoid X receptor
(FXR) is a nuclear hormone receptor found in enterocytes
that binds to BA and is a key regulator in BA metabolism
[12,20]. FXR is known to be part of a superfamily of nuclear
receptors [22]. Nuclear receptors are ligand-activated
transcription factors that regulate development, reproduc-
tion, and metabolism through the response to lipophilic
ligands such as hormones, vitamins, and dietary lipids [22].
FXR is mainly expressed in the ileum and liver, but can also
be found in the kidneys and adrenal glands [23]. FXR can be
activated by either free or conjugated BAs but has a stronger
binding afhinity towards CDCA and less so with LCA, DCA,
and CA, whilst UDCA and hydrophilic BAs are unable to
activate FXR [18]. After binding with BAs, FXR attaches to
the retinoid X receptor (RXR) to form a heterodimer, which
can then regulate gene transcription involved in BA syn-
thesis, transport, and metabolism in the liver and intestine
[22, 24]. FXR can also activate the angiogenin (Angl) gene
and the nitric oxide synthase (iNos) genes that are involved
in enteric protection and inhibition of bacterial overgrowth
[21]. FXR activity alleviates inflammation and preserves the
intestinal epithelial barrier by regulating the extent of the
inflammatory response, maintaining the integrity and
function of the intestinal barrier, preventing bacterial
translocation into the intestinal tract, and regulating the
growth of the microbiota [18].

3.2. Fibroblast Growth Factor 19 (FGF19). The most FXR-
responsive protein in the human ileum is the fibroblast
growth factor 19 (FGF19) and, in rodents, the fibroblast
growth factor 15 (FGF15) [20]. FXR stimulates the pro-
duction and secretion of FGF19, which then binds to the
surface FGF receptor 4 associated with the b-klotho (KLB)
protein [25]. This ligand-receptor complex activates a mi-
togen-activated protein cascade that then inhibits the ac-
tivity of CYP7A1, the enzyme that initiates BA synthesis
from cholesterol [26]. Thus, the activation of FGF19 results
in reduced new BA synthesis [27]. This feedback mechanism
ensures the regulation of BA synthesis such that if sufficient
amounts of BA are being absorbed in the ileum, the hepatic
synthesis of new BAs is inhibited [20]. The importance of the
FGF19 regulatory pathway for hepatic BA synthesis has been
confirmed by low plasma levels in patients with chronic
diarrhoea, suggesting a deficiency in this feedback mecha-
nism as the major cause of excessive BA synthesis-induced
diarrhoea [28].

3.3. Takeda G-Coupled Receptor 5 (TGR5). Alongside FXR,
TGRS5 is considered to be a vital natural BA receptor [29]. It
is located in smooth muscle cells, immune cells, and epi-
thelial cells of the intestine and gallbladder [30]. TGR5 has
greater expression in the distal ileum and colon [31] and has
been shown to inhibit cytokine generation including the
production of TNF-alpha [32]. This receptor mediates the
effects of BAs on motility and is activated most potently by
LCA, followed by DCA, CDCA, and CA [30]. Whilst it is
known that TGR5 is essential for maintaining intestinal
barrier integrity, there is now emerging evidence that
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increased TGR5 expression and specific TGR5 mutations
have been identified in inflammatory diseases, such as CD
[31].

3.4. Bile Acid Regulation in CD. CD is a complex chronic
inflammatory gastrointestinal disorder with variable age of
onset, disease location, and behaviour [33]. In CD, the whole
gastrointestinal tract can be affected [34], although in 50% of
patients, the most frequent sites of active disease are in the
terminal ileum (TI) and colon [35]. Approximately 30% of
patients have only small bowel involvement and the
remaining 20% of patients have isolated colonic involvement
[17]. As the TT is the major site for BA reabsorption and the
most common site for CD inflammation, subsequent TI
resection results in increased colonic (secondary) BA con-
centrations as well as increased colonic FXR expression [36].
Activation of FXR reduces ASBT expression, thereby im-
peding BA reabsorption [37]. The resultant secondary BA in
the colon will then stimulate electrolyte and water secretion,
which increases motility and shortens the colonic transit
time, producing diarrhoea and other gastrointestinal
symptoms such as bloating, urgency, and faecal inconti-
nence [38]. Elevated levels of sulphated secondary BA, such
as LCA and DCA, can exert detrimental effects on the ar-
chitecture and function of the colonic epithelium through
multiple mechanisms including oxidative DNA damage,
inflammation, activation of NF-kB, and enhanced cell
proliferation [39]. Thus, whilst ileocaecal resection removes
the area of local disease, the remaining colon undergoes
resultant immunomodulation.

Crohn’s disease can further affect the BA enterohepatic
circulation by downregulating the main ileal BA uptake
transporter, ASBT. Ileal biopsies have revealed significantly
lower ASBT expression and BA enterocyte-apical efflux
transporter (BCRP) in patients with CD-associated ileitis
compared with controls. This can lead to BA malabsorption
and subsequent changes to the BA profiles seen in serum and
faecal samples of CD patients. Interestingly, this was found in
active as well as in remission states of CD, demonstrating that
these alterations are irreversible resulting in persistent diar-
rhoea [40]. This same study found a significantly reduced
mRNA expression of FGF19, ASBT, and FXR in treatment-
naive adolescents with Crohn’s ileitis. Nolan et al. demon-
strated the reduced expression of FGF19 levels in patients
with active CD compared with inactive CD and even in
patients who had not undergone ileal resection [41, 42]. They
found that serum FGF19 levels were inversely correlated with
stool frequency and consistency and C-reactive protein in
surgery-naive patients with the ileal disease [41, 43].

4. The Role of the Microbiome in CD

Whilst the aetiology of CD is not completely understood, it is
thought to be a combination of the environment, the im-
mune system, genetics, and the microbiome [44]. The
current theory in CD pathophysiology is thought to involve
the inappropriate and ongoing activation of the mucosal
immune system driven by the presence of intestinal
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microbiota [6]. The human gut harbours a complex mi-
crobial ecosystem, and deviation away from gut microbial
balance may have an impact on host metabolism and re-
sultant CD [45]. Current research suggests that the luminal
bacterial community participates in the initiation and per-
petuation of chronic intestinal inflammation with inflam-
mation present in parts of the gut containing the highest
bacterial concentrations [46].

The healthy adult gut microbiota is dominated by two
phyla, Firmicutes and Bacteroidetes [6], which comprise 90%
of all bacterial species in the gut [47]. Seksik et al. dem-
onstrated that approximately 30% of the dominant bacteria
in the typical CD microbiome belonged to new phylogenetic
groups not typically dominant in healthy individuals [48].
Compared with healthy controls, Frank et al. reported that in
mucosal biopsies of CD patients, there was a decrease in the
abundance of 16S rRNA sequences of Firmicutes and Bac-
teroidetes with an increase in Proteobacteria and Actino-
bacteria [49, 50]. Studies have further demonstrated an
increase in adherent-invasive Escherichia coli (AIEC) [51]
and a positive correlation between CD and an abundance in
Enterobacteriaceae [48, 52], Pasteurellaceae (haemophilus
sp), Veillonellaceae, Neisseriaceae, and Fusobacteriaceae [53].
There is also a reduction of several genera including Fae-
calibacterium, Roseburia, Blautia, Ruminococcus, Cop-
rococcus, and several taxa within the families of
Ruminococcaceae and Lachnospiraceae [53]. Further studies
demonstrated a reduction in faecal Lactobacilli and Bifi-
dobacteria in CD patients [54]. Specific species like Dialister
invisus and Clostridioides were also found to be in lower
quantity compared with healthy controls [55].

4.1. Adherent-Invasive Escherichia coli (AIEC). Several
studies have shown AIEC to be increasingly prevalent in CD
patients compared with control patients [50, 56-58]. AIEC is
enriched in the ileal mucosa and has the ability to adhere to
and invade enterocytes and replicate within macrophages
without causing host cell death [59]. Whilst the majority of
studies have observed an increase in AIEC only in the ileum,
Martinez-Medina et al. demonstrated increased levels in both
the ileum and colon, which may be a result of host and/or
environmental factors [60]. However, AIEC is rarely found in
colon tissues of CD patients and has not been identified in UC
patients, suggesting that AIEC has a critical role in the oc-
currence of ileal Crohn’s [58, 61, 62].

In postoperative CD patients, Neut et al. demonstrated the
presence of E coli was greater at three months than at one year
in patients with endoscopic recurrence, implying that this
organism may play a role in initiating new lesions [63]. In-
terestingly, antibodies to the E coli membrane C and the
CD-associated bacterial sequence 12 have been shown to be
associated with small bowel involvement, disease severity,
rapid disease progression, and the increased need for surgical
intervention [64].

4.2. Fusobacteria. Fusobacteria are strongly proteolytic
Gram-negative anaerobes [63]. Fusobacterium is a well-
known pro-inflammatory bacterium that has been isolated

in many patients with CD [65-67]. When investigating
microbial changes in postoperative CD patients, Neut et al.
demonstrated the presence of Fusobacteria strains to be
associated with early recurrence [63]. Furthermore, Fuso-
bacteria has recently shown to promote the progression of
colorectal cancer, a long-term complication of IBD [66].
Whilst the specific mechanism by which F nucleatum
promotes CD development is unclear, Cao et al. have re-
cently proposed its involvement in activating the endo-
plasmic reticulum stress pathway during CD development to
promote intestinal mucosal barrier destruction [68].

4.3. Faecalibacterium prausnitzii. Faecalibacterium praus-
nitzii is one of the most abundant human gut bacteria and is
a well-known anti-inflammatory organism that is consid-
ered to be both a sensor and marker of health [53, 69]. This
bacterial species, along with other closely related Clostridial
species, are key sources of the short-chain fatty acid butyrate,
which is the preferred energy source for colonic epithelial
cells and exerts anti-inflammatory and pro-intestinal barrier
properties in experimental mouse models [70, 71]. These
bacteria secrete a microbial anti-inflammatory molecule that
inhibits NF-kB activity and reduces interferon-y and IL-17
expression [72]. A relative reduction of F prausnitzii is seen
in CD [49, 73], and a diminished abundance of these bacteria
at the time of ileal resection has been associated with a higher
rate of endoscopic recurrence six months postoperatively
[74].

4.4. Helicobacter pylori. This organism is well known for
being the causative agent in gastric and duodenal ulceration,
and despite many studies, an association between these
bacteria and CD has yet to be strongly identified [75]. Studies
have instead suggested a protective effect of H pylori with
CD. Sonnenberg and Genta demonstrated an inverse as-
sociation of H pylori with CD patients (odds ratio (OR): 0.48,
95% confidence interval (CI): 0.27-0.79) with a positive
association between H pylori-negative gastritis and CD (OR:
11.06, 95%CI: 7.98-15.02) [76]. This was affirmed by Bartels
et al.’s large cohort study who found a lower prevalence of
CD in H pylori-positive than in H pylori-negative patients
(OR 0.36 [0.17-0.75]) [77]. This protective mechanism of H
pylori against CD is unknown, although it has been sug-
gested that this organism induces the development of
FoxP3" regulatory T cells and impairs dendritic cell matu-
ration, which could contribute to reduced inflammation
[78].

5. The Role of the Microbiome in Postoperative
CD Patients

Several studies dating back since the 1980s have indicated that
intestinal lesions predominate in the distal bowel where the
intestinal microbiome is in greater abundance, with bacteria
in the faecal stream being reported as the culprit for the
recurrence of intestinal lesions after surgery [79-82]. Animal
studies have demonstrated that the ileocaecal valve prevents
microbial reflux into the ileum; thus, resecting this region can



result in colonisation of the neo-TI by anaerobic bacteria [63].
A diverting ileostomy prevents this reflux of bacteria, as the
faecal stream does not cross between the ileum and the colon.
However, once the ileostomy is removed and intestinal
continuity is restored by anastomosing the small bowel to the
remaining colon, the anaerobic bacteria are once again able to
colonise in the neo-TI [63, 82]. In 1991, Rutgeerts et al.
demonstrated this important finding with his groundbreaking
study that showed that 71% of postoperative patients who had
one-step surgery and 100% of patients who were re-anasto-
mosed had a relapse at the anastomosis site within 6 months
of restoring the intestinal stream [82]. Their findings strongly
support the view that CD recurrence in the neo-TI is de-
pendent on faecal stream.

Since these findings, there have been multiple studies
exploring the effect of ileocolonic resection on mucosa-as-
sociated microbiota. In 2015, De Cruz et al. explored changes
in the microbiota of 12 patients with CD undergoing surgical
intervention. They found reduced biodiversity at the time of
surgery that increased 6 months postoperatively, although
the microbiota was still different to healthy individuals. This
study further demonstrated that patients who developed
recurrence had a predominance of Enterococcus, whereas
Firmicutes was the predominant bacteria in remission states
[83]. These findings corroborated with the study conducted
by Rajca et al. who also documented a lower abundance of
Firmicutes, particularly F prausnitzii, in patients who re-
lapsed [84]. Of greater interest, this study found that reduced
F prausnitzii numbers predicted risk of relapse indepen-
dently of raised inflammatory markers, suggesting that
monitoring patient’s microbiota might provide a new di-
agnostic tool in assessing postoperative relapse and recur-
rence risk in CD patients.

Wright et al. also demonstrated reduced diversity in
postoperative CD patients compared with control samples
from ileal specimens. In addition, they found the microbial
composition differed significantly between postoperative
CD patients when examining mucosal and faecal samples
[85]. In this study, they predicted that combining the mi-
crobial analysis of the ileal mucosa (which includes the
presence of Proteus and abundance of Faecalibacterium) and
smoking status at 6 and 18 months postoperatively can
accurately report endoscopic recurrence.

Numerous studies have proposed that disease recurrence
and remission are associated with distinct gut microbiota
profiles at the time of surgery and postoperative follow-up.
Mondot et al. demonstrated that patients who were in re-
mission 6 months postoperatively had more complex and
greater organisation with bacterial clusters, whilst those who
relapsed had much looser microbiota structure with the
major bacterial phylum being Proteobacteria [86]. More
specifically, patients in remission were associated with
bacteria in the genera Bacteroides plebius, Dorea, Rumino-
coccus bromii, Faecalibacterium prausnitzii, and Dialister,
and relapse was associated with Gemmiger formicilis, En-
terococcus durans, and Ruminococcous lactaris [86]. These
findings substantiated earlier studies demonstrating a re-
duction of Firmicutes [74, 83, 84], and an increase in AIEC in
patients with recurrent disease [50].
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When comparing faecal samples, studies revealed that
CD patients before surgery that had microbial communities
of Atopium, Corynebacterium, Gemella, and Rothia in their
faeces developed postoperative recurrence [87]. Strombeck
et al. detected high counts of Actinobacteria and low counts
of Alistipes in the faecal microbiota in patients who relapsed
at their 1-year follow-up. In fact, Alistipes was discovered to
negatively correlate with the Rutgeerts score [88]. Fur-
thermore, Fusobacterium increased and Bifidobacterium
decreased at 1, 3, and 6 months postoperatively in patients
with endoscopic recurrence compared with patients in re-
mission [89]. Hamilton et al. also reported findings of
Enterobacteriaceae being associated with increased risk of
disease recurrence, whilst Lachnospiraceae was associated
with maintenance of remission [90].

6. The Bile Acids-Microbiome Axis and Its
Effect on CD

There are greater than 400 bacterial species present in the gut
microbiome that influence mucosal immune development,
structure, function, and mucosal integrity. Even the most
subtle changes in the microbiome can have profound im-
plications for mucosal barrier function and immune re-
sponse [91]. Initial evidence of the role of bacteria in CD
pathogenesis was historically provided by the successful role
of antibiotics in CD treatment [92] with additional evidence
provided by the success of faecal diversion in preventing
disease relapse [82]. There is now established evidence that
the gut microbiota plays a key role in initiating and
maintaining the mucosal inflammatory response in CD [93].
There also seems to be a direct connection between dys-
regulation of the gut microbiome and BA dysmetabolism
[6]. Dysregulation of the gut microbiota may alter the ca-
pacity for BA modification, specifically by defective con-
jugation, transformation, and desulphation [94]. The
amount of bile released into the intestine can alter gut
colonisation, such that low levels of BA favour proliferation
of Gram-negative bacteria, whilst high levels of BA favour
the proliferation of Gram-positive bacteria and reduction of
the Gram-negative Bacteroides [21]. Tian et al. recently
demonstrated that Gram-positive bacteria are more sensitive
to BA than Gram-negative bacteria [95].

Duboc et al. demonstrated that secondary BA have anti-
inflammatory properties through the inhibition of inter-
leukin-6 (IL-6) IL-6, IL-1b, and TNF-a and the down-
regulation of IL-8 production [6]. This anti-inflammatory
ability, however, is lost after 3-OH-sulphation. Duboc et al.
further illustrated that in active CD, secondary non-
sulphated BA was found in reduced quantity, whilst
sulphated forms of LCA were found in increased quantity
[6]. Interestingly, LCA has recently been found to show
reduced toxicity to bacteria in the caecal microbiome in
both in vivo and in vitro models [95]. Thus, there is a strong
interplay between the dysregulated microbiota, BA meta-
bolism, and the mucosal immune system that can resultin a
changed immunological function that triggers the in-
flammatory response in IBD.
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7. Targeted Therapy in CD

Over the past two decades, the medical compendium in the
treatment for CD has expanded exponentially from corti-
costeroids, which remain the cornerstone of induction
therapy, through immunomodulators, nutritional therapy,
biological agents, and novel small molecule therapies. Un-
fortunately, surgery continues to play a pivotal role in
achieving disease control for patients with aggressive disease
and recurrence risk postoperatively remains high. With the
advent of research exploring the impact of BA and the
microbiome on CD development, there is now a demand for
developing new therapies targeting these areas.

7.1. Probiotics. In the last decade, probiotics have become a
focus of interest for treating IBD. Probiotics are live mi-
croorganisms containing a mixture of Bifidobacteria, Lac-
tobacilli, and some nonpathogenic bacteria such as
Escherichia and Enterococci [93]. Their mechanism of action
is not well understood but hypothesised to improve the
intestinal microbial balance, inhibit microbial pathogen
growth, maintain the integrity of the intestinal epithelial
barrier by decreasing epithelial permeability, and modulate
local and systemic immune responses [93, 96]. Probiotic
treatment can downregulate proinflammatory cytokine se-
cretion such as TNF-alpha, IFN-gamma, and directly in-
terfering with NF-kB activation [97]. Probiotics can also
secrete active metabolites such as butyrate to exert numerous
anti-inflammatory and cytoprotective actions, with the
thought that the use of these metabolites overcomes the risk
of infection associated with the ingestion of large bacteria
[98]. Recently, Degirolamo et al. demonstrated in mice how
probiotics can modify the gut microbiome to enhance the
faecal excretion of BA by reducing its ileal reabsorption and
repressing the enterohepatic FXR-FGF15 axis [45]. Further
research is needed to determine whether colonisation of the
gut microbial community with probiotics can influence the
BA enterohepatic circulation by modifying the BA pool and
size.

7.2. Antibiotics. The use of antibiotics in CD is controversial
as the beneficial use is counteracted by their high rate of side
effects and tolerability [99]. Multiple randomised controlled
trials in patients with active, uncomplicated CD have not
demonstrated efficacy with antibiotics [100], with its use
currently only recommended in patients with disease
complicated by infection or perianal fistulising disease [33].
There are multiple studies that implicate antibiotic use as a
risk factor in the pathogenesis of CD by altering the mi-
crobial composition [99, 101, 102]. How this might impact
on bile acid metabolism is unclear with limited information
in the literature, and largely based on animal studies [103].

7.3. Faecal Microbial Transplant (FMT). FMT is the infusion
of faeces from a healthy donor into the gastrointestinal tract
of the recipient [104]. It is currently being used in the
treatment for refractory and recurrent Clostridioides difficile

infection (rCDI) [105] with greater than 90% cure rates
[106]. There has been some recent exciting work looking into
reduced bile salt hydrolase (BSH) functionality as a cause of
rCDI [107]. BSH is an enzyme produced by most major
bacterial divisions of the gut microbiota and is involved in
the role of deconjugation. Mullish et al. complemented this
work by demonstrating that one of the key mechanisms
underlying the efficacy of FMT in rCDI is through the
restoration of gut microbial BSH functionality [108]. These
authors also demonstrated that successful FMT for rCDI is
associated with activating the FXR signalling pathway [109].
These studies have demonstrated potential novel therapies
for targeting and prevention CDI.

Evidence for its use in CD, however, is limited and weak
with only a small number of controlled trials reported in the
literature, with the majority comprising of noncomparative
cohort studies [104, 110]. Despite this, a recent systematic
review has shown clinical response rates in early follow-up to
be higher with multiple FMT treatments than with single
FMT. The dose or type of FMT (fresh vs frozen) did not
influence clinical outcomes, although delivery of FMT via
the upper gastrointestinal route demonstrated higher early
efficacy rates of 75-100% compared with lower delivery
routes (30-58%). Unfortunately, this difference was not
upheld beyond 8 weeks [104]. Although this study dem-
onstrates therapeutic potential using FMT, the results should
be interpreted with caution due to the overrepresentation of
low methodological quality studies.

In 2020, one of the largest cohort studies investigating
FMT in CD patients was published [111]. A total of 214
patients were enrolled and followed up for a median du-
ration of 43 months (interquartile range IQR: 28-59). The
principal finding of this study concluded that after one
month, 73%, 62%, 76%, and 71% of patients with FMT
showed an improvement in symptoms of abdominal pain,
haematochezia, fever, and diarrhoea, respectively. A further
50% achieved steroid-free remission after FMT treatment. In
their multivariate analysis, long disease duration (>5 years)
and moderate-to-severe disease were associated with a poor
response to FMT, implying that FMT may be of clinical use
in the earlier stages of disease. This study is also noteworthy
in that 44% of patients achieved clinical response and 20% of
sustained clinical remission until the end of the follow-up
period of the study. Despite the encouraging results of this
study, there was no comparator group and objective pa-
rameters such as endoscopy findings and biomarkers were
not used to determine remission.

7.4. FXR Agonists. 'There is ongoing research into developing
FXR agonists as potential treatment for IBD as well as for
hepatic and metabolic disorders. FXR is activated by BA and
regulates gene transcription involved in BA synthesis,
transport, and metabolism in the liver and intestine [112].
FXR also controls several genes that protect against intes-
tinal inflammation, intestinal permeability, and bacterial
overgrowth [1, 24]. Activation of FXR in the intestinal tract
decreases the production of proinflammatory cytokines such
as IL1-beta, IL-2, IL-6, TNF-alpha, and IFN-gamma, thereby



reducing inflammation and epithelial permeability [23]. This
was demonstrated by Gadaleta et al. in mice models where
FXR agonists improved intestinal permeability and FXR
activation counteracted pro-inflammatory cytokine ex-
pression and secretion by enterocytes [24].

Wilson et al. have now demonstrated that patients with
CD have reduced FXR activation compared to patients
without CD and subsequently exert reduced CYP3A4 ac-
tivity and FGF19 expression [113]. This is an important
finding considering the central role that CYP3A4 plays in the
metabolism of the majority of drugs currently being used for
CD, including corticosteroids and certain biologics such as
tofacitinib [113]. These data suggest that FXR agonists
should be explored further as a novel therapeutic strategy for
IBD.

7.5. Bile Acids and Bile Acid Sequestrants (BAS). The use of
BAs to restore intestinal functionality has already been
established with the use of ursodeoxycholic acid (UDCA),
which is currently licensed for the treatment in primary
biliary cholangitis [114]. UDCA acts as an anti-inflamma-
tory, cytoprotective, and anti-apoptotic signalling molecule
[115].

Recent studies have demonstrated the role of BAS in the
induction of remission and improvement in CD symptoms.
A randomised, double-blind placebo-controlled trial of
colesevelam in TI resected CD patients with a diagnosis of
BAD demonstrated significant improvements with a re-
duction in the number of liquid stools and an improvement
in stool consistency [116]. Devarakonda et al. also recently
showed an improvement in stool frequency in CD patients
with colesevelam monotherapy from pre- to post-treatment
(median 33/week vs 14/week, p = 0.038) [117]. In addition,
patients taking colesevelam had a reduction in their Crohn’s
disease activity index (CDAI) from pre- to post-treatment
(median 213 vs 118, p = 0.013) and an improvement in their
QoL score via the SF36 survey (pretreatment median score
118 vs post-treatment median score 121, p = 0.005) [117].
Thus, the restoration of BA signalling is an exciting novel
avenue to focus on for future therapeutic target for CD
patients. Given the importance of BA in the modulation of
the microbiome, it would be interesting to explore whether
therapeutic interventions that alter BA composition might
potentially enable us to modify the microbiome in the future.
Current studies evaluating the impact of BAS on the
microbiome are underway and will likely be reported later
this year.

8. The Future

The prevention of postoperative disease recurrence in CD is
a high priority given the morbidity associated with clinical
and surgical recurrence and the long-term risk of short gut
syndrome that may arise from multiple bowel resections
[118]. Although there is a large medical compendium of
medications for the treatment of CD, some patients become
refractory to standard management, whilst others suffer with
adverse side effects or encounter significant long-term
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complication risks, including risk of immunogenicity, re-
current infections, and malignancy [119, 120]. Moreover,
many patients will continue to live with mildly active
symptoms and endure a poor QoL despite medical treatment
[121].

Studies targeting microbiological changes and BA reg-
ulation in the postoperative setting may provide greater
insight and ultimately help mediate the underlying disease
progression. Thus far, therapeutic approaches aimed at
adapting the environment at the mucosal border have been
attempted with elemental diets, total parenteral nutrition,
surgical diversion of the faecal stream, probiotics, and an-
tibiotics [46]. There is now increasing evidence that BAS may
alter the composition of intestinal microbial species and thus
potentially reduce IBD recurrence, particularly in postop-
erative CD patients [122]. Manipulation of the colonic
bacteria with this drug may prove to be more effective and
better tolerated, considering they are noninvasive, cheaper,
and have fewer side effects and long-term complications
than the currently licensed IBD medications. Further studies
are needed to establish a clear correlation, and there is
ongoing research in this particular topic with possible an-
swers in the near future.
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