Table 7.
Reference | Architecture | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|
Liang [19] | Transfer Learning | 0.9199 | 0.8900 | 0.9512 | 0.9024 |
Liang [19] | Own CNN | 0.9737 | 0.9775 | 0.9699 | 0.9736 |
Rajaraman [32] | Own CNN | 0.9400 | 0.9310 | 0.9512 | 0.9410 |
Rajaraman [32] | ResNet50 | 0.9570 | 0.9450 | 0.9690 | 0.9570 |
Rahman [31] | Own CNN | 0.9629 | 0.9234 | 0.9804 | 0.9495 |
Rahman [31] | VGG16 | 0.9777 | 0.9720 | 0.9719 | 0.9709 |
Shah [39] | Own CNN | 0.9477 | 0.9526 | 0.9437 | 0.9481 |
Quan [30] [11] | DenseNet121 | 0.9094 | 0.9251 | 0.8960 | 0.9103 |
Quan [30] [5] | DPN92 | 0.8788 | 0.8681 | 0.8892 | 0.8785 |
Quan [30] | ADCN | 0.9747 | 0.9520 | 0.9350 | 0.9434 |
Yang [59] | VGG19 | 0.9372 | 0.8731 | 0.5299 | 0.6595 |
Yang [59] | AlexNet | 0.9633 | 0.8215 | 0.7023 | 0.7573 |
Yang [59] | Own CNN | 0.9726 | 0.8273 | 0.7898 | 0.8081 |
Proposed | EfficientNetB0 | 0.9829 | 0.9882 | 0.9774 | 0.9828 |