Skip to main content
. 2022 Mar 29;81(19):28061–28078. doi: 10.1007/s11042-022-12624-6

Table 7.

Comparison results of the state-of-art models for automated medical diagnosis of malaria

Reference Architecture Accuracy Recall Precision F1-Score
Liang [19] Transfer Learning 0.9199 0.8900 0.9512 0.9024
Liang [19] Own CNN 0.9737 0.9775 0.9699 0.9736
Rajaraman [32] Own CNN 0.9400 0.9310 0.9512 0.9410
Rajaraman [32] ResNet50 0.9570 0.9450 0.9690 0.9570
Rahman [31] Own CNN 0.9629 0.9234 0.9804 0.9495
Rahman [31] VGG16 0.9777 0.9720 0.9719 0.9709
Shah [39] Own CNN 0.9477 0.9526 0.9437 0.9481
Quan [30] [11] DenseNet121 0.9094 0.9251 0.8960 0.9103
Quan [30] [5] DPN92 0.8788 0.8681 0.8892 0.8785
Quan [30] ADCN 0.9747 0.9520 0.9350 0.9434
Yang [59] VGG19 0.9372 0.8731 0.5299 0.6595
Yang [59] AlexNet 0.9633 0.8215 0.7023 0.7573
Yang [59] Own CNN 0.9726 0.8273 0.7898 0.8081
Proposed EfficientNetB0 0.9829 0.9882 0.9774 0.9828