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Colorectal cancer (CRC) has one of the highest cancer incidences and mortality rates. In stage III, postoperative chemotherapy
benefits <20% of patients, while more than 50% will develop distant metastases. Biomarkers for identification of patients at
increased risk of disease recurrence following adjuvant chemotherapy are currently lacking. In this study, we assessed immune
signatures in the tumor and tumor microenvironment (TME) using an in situ multiplexed immunofluorescence imaging and single-
cell analysis technology (Cell DIVETM) and evaluated their correlations with patient outcomes. Tissue microarrays (TMAs) with up to
three 1mm diameter cores per patient were prepared from 117 stage III CRC patients treated with adjuvant fluoropyrimidine/
oxaliplatin (FOLFOX) chemotherapy. Single sections underwent multiplexed immunofluorescence staining for immune cell markers
(CD45, CD3, CD4, CD8, FOXP3, PD1) and tumor/cell segmentation markers (DAPI, pan-cytokeratin, AE1, NaKATPase, and S6). We
used annotations and a probabilistic classification algorithm to build statistical models of immune cell types. Images were also
qualitatively assessed independently by a Pathologist as ‘high’, ‘moderate’ or ‘low’, for stromal and total immune cell content.
Excellent agreement was found between manual assessment and total automated scores (p < 0.0001). Moreover, compared to
single markers, a multi-marker classification of regulatory T cells (Tregs: CD3+/CD4+FOXP3+/PD1−) was significantly associated
with disease-free survival (DFS) and overall survival (OS) (p= 0.049 and 0.032) of FOLFOX-treated patients. Our results also showed
that PD1− Tregs rather than PD1+ Tregs were associated with improved survival. These findings were supported by results from an
independent FOLFOX-treated cohort of 191 stage III CRC patients, where higher PD1− Tregs were associated with an increase
overall survival (p= 0.015) for CD3+/CD4+/FOXP3+/PD1−. Overall, compared to single markers, multi-marker classification
provided more accurate quantitation of immune cell types with stronger correlations with outcomes.
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INTRODUCTION
For early and locally advanced (stage I and II) colorectal cancer
(CRC), the standard treatment of choice for low-risk patients is
surgical resection. Subsequent oncological treatment decisions for
non-metastatic CRC are based largely on the anatomical AJCC/
UICC TNM staging classification1. After the MOSAIC study in 2004,
patients with stage III CRC now commonly receive oxaliplatin/
fluoropyrimidine/leucovorin (5-fluorouracil (5FU), FOLFOX; or
xeloda/capecitabine, XELOX) as standard adjuvant treatment2. Of
patients with stage III CRC treated with adjuvant chemotherapy,
only ~20% will benefit from adjuvant FOLFOX, and 30% relapse
within 2–3 years after surgery. Consequently, 80% of patients
receive chemotherapy (and endure unnecessary toxicities) that
yields no benefit3. However, improvements in the understanding

of CRC heterogeneity are paving the way for more personalized
approaches that combine both histological and molecular data for
patient stratification and therapy selection, including selecting
which patients will benefit from adjuvant chemotherapy4,5.
In the past decade, there has been an increasing interest in the

impact of the tumor microenvironment (TME) on patient
prognosis. Decreased risk of tumor progression and improved
survival have been observed in solid tumors with high T-cell
infiltration6. For CRC, the concept of an “Immunoscore” was
introduced by Galon et al.; this evaluates CD3/CD8-positive
immune infiltrates in the tumor core and tumor margin to classify
“TNM-immune scores” for tumors7. In addition to Immunoscore,
there have been numerous studies that reinforce the importance
of tumor-infiltrating lymphocytes (TILs) as indicators of prognosis
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in CRC8,9. The importance of the immune contexture in CRC for
patient prognosis logically suggests that immunotherapy could be
a promising therapeutic approach10. Responsiveness to immu-
notherapy depends on several key factors, including high
mutational loads (leading to high levels of tumor neoantigens),
which are found in MMR-deficient (dMMR) microsatellite
instability-high (MSI-high) CRC11,12. The immune checkpoint
inhibitor (ICI) pembrolizumab has been approved by the US Food
Drug Administration for patients with metastatic dMMR/MSI-high
CRC. However, the majority of colorectal tumors (85–90%) are
microsatellite stable (MSS), with low mutational burdens and
exhibit no response to ICI therapy. Thus, chemotherapy remains
the backbone therapy for MSS CRC.
With the unmet clinical need to better stratify stage III patients

for possible adjuvant (or neo-adjuvant) chemotherapy and the
opportunity to better quantify immune response using newer cell
quantification methods, our goals were to: (1) compare multi-
marker immune cell classification with immune cell scores
determined by a Pathologist; and (2) investigate associations
between single-marker versus multi-marker immune cell classifi-
cation and patient outcomes.

RESULTS
Pathologist scoring versus automated immune cell
classification
The tissue microarray (TMA) cores from the patients were assessed
by a Pathologist (M.B.L.) and, after exclusion criteria, 62 patients
had 3 assessable cores, 99 had 2 assessable cores, whereas 7
patients had only 1 assessable core. Intra-tumor heterogeneity
was reflected in intra-patient differences between the Patholo-
gist’s immune and stroma scores. Specifically, from the 62 patients
with 3 assessable cores, only 13 (19%) had the same immune
score and 18 (29%) had the same stroma score for all three cores.
For 5 (8%) patients, the immune score was different in each of the
three cores, while for 6 (10%) patients, the stroma score was
different in each of the three cores. This is to be expected given
tumor histology variation in different core punches. From the 99
patients with two cores, 44 (44%) had the same immune score and
42 (42%) had the same stroma score in both tissue cores. In
summary, for the 161 patients with more than one core, 104 (65%)
showed immune heterogeneity and 101 (63%) showed stroma
heterogeneity between their tissue cores. This highlights the
inherent high degree of intra-tumor heterogeneity in CRC.
MBL performed visual inspection of the virtual Hematoxylin and

Eosin (H&E) slides and assigned scores to each core of ‘high’,
‘moderate’ or ‘low’, for both stromal and immune cell content. We
used the machine-learning workflow to create a quantitative cell
classification-based immune and stroma score (Fig. 1A) to
compare with the Pathologist’s scores. The Cell DIVE immune (p
< 0.001; Fig. 1B) and stromal (p < 0.001; Fig. 1C) score values were
significantly associated with the corresponding Pathologist’s
scores. Therefore, the machine-learning-based Cell DIVE cell
classification has potential to be used to evaluate tumor immune
and stromal content.

T-cell classification for single-marker and multi-marker
(multiplexed) classification models
In order to study the impact of different T-cell subtypes on patient
prognosis in this adjuvant chemotherapy-treated cohort, we used
a panel of T-cell biomarkers as described earlier. In addition, to
single-marker analyses (CD3, CD4, CD8, FOXP3, PD1), multi-marker
combinations were used to define subtypes (T cytotoxic (Tc), T
cytotoxic PD1+ (TcPD1), T helper cells (Th), T helper PD1 (ThPD1),
T regulatory (Treg), T regulatory PD1 positive (TregPD1), Fig. 2A). In
the single-marker classification workflow, each one of these
immune markers was analyzed individually, and each segmented
cell was classified as either positive or negative for each marker.

Since the individual markers were used to generate the multi-
marker classification, it is not surprising that they were signifi-
cantly correlated (p < 0.001; Supplementary Fig. 3). The demo-
graphic data of the patient cohort are summarized in Table 1.
Representative immunofluorescent images of a single tissue core

for the individual markers and the corresponding Segmentation
Masks are illustrated in Supplementary Fig. 5. In the multi-marker
classification workflow, all markers were assessed simultaneously
(Fig. 2A(a)) and, depending on marker co-localization, segmented
cells were assigned to the following classes (Fig. 2A(b/c)): PD1-
negative T-helper (Th), PD1-positive Th (ThPD1), PD1-negative
cytotoxic T cells (Tc), PD1-positive Tc (TcPD1), PD1-negative Treg
and PD1-positive Treg (TregPD1).
To account for tumor heterogeneity, only patients with more

than one core were used for the analysis (117 patients). Each T-cell
subtype was calculated as a percentage of total cells per core, and
the average percentage per patient was calculated. The distribu-
tion of T-cell subtypes across the cohort is shown in Fig. 2B; Tc and
TcPD1 cells were the most abundant subtype associated with the
epithelial compartment; however, overall, and as expected, the
majority of each T-cell subtype was located in the stroma (Fig. 2C).
All T-cell subtypes were generally positively correlated with each
other, except that TcPD1 had minimal correlation with Th and
Treg (Fig. 2D). Hierarchical clustering was used to assess the
immune landscape of the patient cohort (Fig. 2E). Separation into
two clusters, immune “hot” (higher immune cells) and “cold”
(lower immune cells), showed that nearly 50% of patients were
low in all T-cell subtypes; however, Kaplan–Meier analyses showed
that their prognosis was similar to patients with higher level of
T cells (Supplementary Fig. 6A). After separating into three
clusters, the “immune-hot” cluster of patients with the highest
infiltration of T-cell subtypes showed improved disease-free
survival (DFS) and overall survival (OS) compared to the other
two groups that had lower T-cell levels; however, this did not
reach statistical significance (Supplementary Fig. 6B). Detailed
summary statistics for T cells for the multi-marker classifications
and single marker classifications are presented in Table 2.
In Fig. 3 representative images of virtual H&Es, immunofluor-

escent images and tissue mappings with color-coded cell
classifications are illustrated. The selected images are representa-
tive of all 9 Stroma-Score/Immune-Score combinations from the
Pathologist review. This shows that multiplexing can be used to
identify multiple subtypes of immune cells simultaneously,
allowing for associations and potential cross-talk between distinct
cell subtypes in the TME to be assessed.

T-cell infiltration and patient prognosis
As proof of concept for the applicability of this approach for
identification of prognostic immune biomarkers, we next deter-
mined the prognostic value of the single and multiplexed markers
in this FOLFOX-treated stage III patient cohort. The correlation of
each T cell type with clinical endpoints (DFS and OS) was analyzed
using univariate and multivariate Cox proportional hazards models
and Kaplan–Meier analyses. In this analysis, we used the average
percentage of T cells for each patient (average of each patient’s
cores).
In the univariate analyses, the Forest plots in Fig. 4 demonstrate

that none of the single immune markers was significantly
associated with DFS (Fig. 4A) or OS (Fig. 4B), whereas the level
of Treg cells (CD3+/CD4+/FOXP3+/PD1−) from the multi-marker
machine-learning classification was significantly associated with
longer DFS (HR= 0.37, 95% CI= 0.14–0.99, p= 0.047). For the
multivariate analysis, the model initially included the clinical
variables: T, N, age, sex, nodal count, positive nodes, differentia-
tion and lymphovascular invasion together with single- and multi-
marker immune scores. Backward elimination was used to select
variables for the final model. For DFS in the single-marker model,
CD8 remained in the final model and was positively associated
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with longer DFS (multivariate adjusted HR= 0.78, 95% CI=
0.6–1.0, p= 0.048; Fig. 4C) and, in the multi-marker model, Tregs
remained positively associated with longer DFS (multivariate
adjusted HR= 0.34, 95% CI= 0.12 - 1.0, p= 0.049; Fig. 4C). For OS
in the single-marker model, FOXP3 remained in the final model
but did not reach significance (multivariate adjusted HR= 0.56,
95% CI= 0.297–1.06, p= 0.074; Fig. 4D) and in the multi-marker
model Tregs remained positively associated with longer OS
(multivariate adjusted HR= 0.08, 95% CI= 0.0079–0.8, p= 0.032;
Fig. 4D). The detailed Forest plots for the multivariate models for
clinical variables only are shown in Supplementary Fig. 7.
In order to facilitate comparison with previously published

results, Treg levels were divided into high and low groups using
the sample median as the cut-off, and Kaplan–Meier analyses were
performed for curves for DFS and OS (Fig. 4E, F). Similar to the
univariate and multivariate analyses above, Treg-high patients had

improved DFS (p= 0.019) and OS (p= 0.017) than Treg-low
patients. Kaplan–Meier curves for all single-marker and multi-
marker classes dichotomized on the median are included in
Supplementary Fig. 8. Sub-regional analysis based on the
percentage of immune cell subtypes located in the stroma
or located within/associated with the epithelial compartment
and association with outcome are shown in Supplementary
Table 3.
Importantly, similar results were obtained in an independent

FOLFOX-treated stage III patient cohort, where Treg-high (CD3
+/CD4+/FOXP3+/PD1− cells) patients had improved DFS
(Fig. 5A), although this just failed to reach significance (HR=
0.56, 95% CI= 0.31–1.02, p= 0.057), and significantly improved
OS (Fig. 5A) (HR= 0.4, 95% CI= 0.18–0.85, p= 0.02). In further
agreement with the discovery cohort, the Treg-PD1+ cells were
not associated with DFS or OS (Fig. 5B).

Fig. 1 Comparison of tumor immune and stromal content evaluation by Cell DIVE and Pathologist. A Cell DIVE workflow:
immunofluorescence staining with overlaying segmentation masks and resulting classification. Based on the classification data, an immune
and stroma score was calculated per TMA core. B The immune score was calculated from the immune cell density as counts of segmented
cells that were positive for any of the immune markers (CD45, CD3, CD4, CD8) in each core. The cores were grouped based on the
Pathologist’s high-medium-low immune scores (x-axis) and each dot was the value of the Cell DIVE immune score (y-axis) per core. C The
stroma score for each TMA core was calculated by counting segmented cells outside the epithelial mask that were negative for AE1 and
immune markers and converting to ‘percent of total’ cells. The cores were grouped based on the Pathologist’s high-medium-low stroma
scores (x-axis) and with each dot indicating stroma score (y-axis) per core. Statistical analysis was performed using Welch’s ANOVA and
pairwise t-test (***P and ****P < 0.001 for all comparisons).
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T-cell infiltration and patient prognosis for immune hot-spot
In order to account for tumor immune heterogeneity, the average
percentage of T cells in multiple cores was used for the above data
analyses. However, this could dilute the impact of very high but

very localized immune cell infiltrates. We hypothesized that by
focusing our analyses on the available cores with the highest
tumor immune regions, we might uncover additional prognostic
information; therefore, we repeated the above analyses for the
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one core per patient with maximum T-cell density for each
subtype. Cox proportional hazards regression analysis and
Kaplan–Meier plots were performed as above. In the univariate
analysis, none of the single markers was significantly associated
with survival. For the multi-marker classification Treg levels were
significantly associated with DFS (HR= 0.51, 95% CI= 0.27–0.97, p
= 0.04; Fig. 6A) and were borderline significant for OS (HR= 0.24,
95% CI= 0.059–1, p= 0.05; Fig. 6B).

In the multivariate analysis, for DFS in the single-marker model,
FOXP3 remained in the final model (multivariate adjusted HR= 0.75,
95% CI= 0.56–1.0, p= 0.05) and had borderline statistical significance
(Fig. 6C), and, in the multi-marker model, Treg and TcPD1 remained in
the final model and Treg remained statistically significant (for TcPD1:
multivariate adjusted HR= 0.68, 95% CI= 0.38–1.22, p= 0.194; for

Table 1. Demographic data of patient cohort.

Overall

(N= 117)

DFS (months)

Mean (SD) 51.7 (27.9)

Median [Min, Max] 50.7 [2.40, 115]

IQR [25.9 - 73.0]

OS (months)

Mean (SD) 58.5 (24.7)

Median [Min, Max] 59.1 [9.20, 115]

IQR [38.9–76.7]

sex

Female 46 (39.3%)

Male 71 (60.7%)

T

2 10 (8.5%)

3 70 (59.8%)

4 37 (31.6%)

N

1 83 (70.9%)

2 34 (29.1%)

Age (years)

Mean (SD) 59.2 (11.2)

Median [Min, Max] 61.0 [26.0, 79.0]

IQR [52.0–67.0]

LNC

Mean (SD) 21.3 (11.0)

Median [Min, Max] 19.0 [5.00, 73.0]

IQR [14.0–25.0]

PLN

Mean (SD) 3.05 (2.49)

Median [Min, Max] 2.00 [1.00, 13.0]

IQR [1.00–4.00]

LVI

No 49 (41.9%)

Yes 68 (58.1%)

Differentiation

Moderate to well 99 (84.6%)

Poor 16 (13.7%)

Missing 2 (1.7%)

MSI status

MSI 5 (4.3%)

MSS 30 (25.6%)

Missing 82 (70.1%)

LNC lymph node count, PLN positive lymph nodes, LVI lymphovascular
invasion.

Table 2. Summary statistics for multi-marker and single-marker
subtypes.

Overall

(N= 117)

% Tc (of total cells)

Mean (SD) 0.693 (0.925)

Median [Min, Max] 0.423 [0.0111, 6.49]

IQR [0.156–0.826]

% TcPD1

Mean (SD) 0.477 (0.619)

Median [Min, Max] 0.197 [0, 3.06]

IQR [0.0798–0.652]

% Th

Mean (SD) 0.133 (0.251)

Median [Min, Max] 0.0511 [0, 1.62]

IQR [0.0103–0.144]

% ThPD1

Mean (SD) 0.559 (0.593)

Median [Min, Max] 0.394 [0.0222, 3.57]

IQR [0.189–0.729]

% Treg

Mean (SD) 0.568 (0.732)

Median [Min, Max] 0.312 [0, 4.88]

IQR [0.139–0.669]

% TregPD1

Mean (SD) 0.262 (0.275)

Median [Min, Max] 0.166 [0.00471, 1.48]

IQR [0.0723–0.331]

% CD3 (of total cells)

Mean (SD) 3.18 (2.88)

Median [Min, Max] 2.52 [0.221, 22.3]

IQR [1.36–4.31]

% CD4

Mean (SD) 3.64 (3.52)

Median [Min, Max] 2.67 [0.126, 23.3]

IQR [1.46–4.73]

% CD8

Mean (SD) 2.17 (2.42)

Median [Min, Max] 1.35 [0.0283, 12.3]

IQR [0.576–2.71]

% FOXP3

Mean (SD) 1.58 (1.46)

Median [Min, Max] 1.19 [0.0114, 8.57]

IQR [0.651–1.98]

% PD1

Mean (SD) 0.669 (0.694)

Median [Min, Max] 0.395 [0.00943, 3.41]

IQR [0.189–0.919]
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Fig. 4 Assessment of DFS and OS using the average percentage of T cells for each patient (average of each patient’s cores). Forest plots
for multi-marker classification (Tc, TcPD1, Th, ThPD1, Treg, TregPD1) and single-marker classification (CD3, CD4, CD8, FOXP3, PD1) were
generated for DFS (A) and OS (B). HRs, 95% CIs, and p values from likelihood ratio tests from univariate Cox proportional hazards models were
calculated. In the multivariate analysis, the biomarkers were adjusted for clinical variables (T, N, age, sex, nodal count, positive nodes,
differentiation, lymphovascular invasion) for DFS (C) and OS (D). Kaplan–Meier curves demonstrating univariate survival analysis for average
Treg scores dichotomized on the median for DFS (E) and OS (F). Differences in Kaplan–Meier survival curves are presented as log-rank p value.
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Treg: multivariate adjusted HR= 0.44, 95% CI= 0.20–0.95, p= 0.038).
For OS, none of the single markers remained in the final model. In the
multi-marker model, Treg levels remained in the final model and were
significantly associated with improved OS (multivariate adjusted HR
= 0.14, 95% CI= 0.026–0.78, p= 0.025) (Fig. 6D).
As previously, Kaplan–Meier curves for all single-marker and

multi-marker classes dichotomized on the median were gener-
ated. Again, high levels of PD1-negative Tregs were significantly
associated with better prognosis: DFS (p= 0.0061); and OS (p=
0.0046) (Fig. 6E, F). In this “hot-spot” analysis, high CD4 levels also
correlated with better prognosis but with borderline significance,
while no other single or multiplex marker had prognostic
significance (Supplementary Fig. 9). Sub-regional analysis based
on the percentage of immune cell subtypes located in the stroma
or located within/associated with the epithelial compartment and
association with outcome are shown in Supplementary Table 4.

DISCUSSION
A large number of multigene signatures using tumor gene
expression profiles have emerged in the last decade, such as
Consensus Molecular Subgroups (CMS) and CRC Intrinsic Subtypes
(CRIS), which classify patients into molecular subtypes for risk
prediction19–21. However, this approach is therapeutically valuable
only under the assumption that highest-risk patients will also be
the most responsive to chemotherapy. This is not the case and, in
fact, CMS4 patients who are predicted to have poor prognosis do
not benefit from intensive adjuvant chemotherapy22. We recently

reported that stage II patients with CMS2/CRIS-C tumors, which
demonstrate low levels of CD8-positive TILs benefit from adjuvant
chemotherapy. In stage III patients, benefit from chemotherapy
was particularly apparent in CMS2/CRIS-C and CMS2/CRIS-D
patients5. However, transcriptional profiling is not routinely
available or applied in clinical practice. Ideally, a clinical test to
triage patients for adjuvant chemotherapy that could be
performed rapidly on a single formalin-fixed paraffin-embedded
(FFPE) tumor section would be extremely useful.
Over the last decade, there has been a growing body of evidence

that multiplexed imaging methods and spatial cell analysis, including
immunofluorescence-based23–26, mass cytometry27,28, multiplexed ion
beam imaging by time-of-flight (MIBI-TOF)29 and spatial transcrip-
tomics30, can provide critical new insights into spatial relationships
between tumor and immune cells, as well as characterization of the
TME31–35. Since multiplexed imaging allows multiple markers to be
stained and quantified simultaneously in a single tissue section, this
avoids potentially confounding cellularity changes that are introduced
by sequential sectioning, thereby opening up the potential to develop
accurate multi-marker classifications. Here, we used multiplexed
immunofluorescent imaging to compare the prognostic potential of
single marker and multiplex analyses of markers associated with
helper, cytotoxic and regulatory T cells in a single FFPE section. To
evaluate the real-World potential of the methodology, we initially
determined how evaluation of immune and stroma burden
compared to immune and stroma scoring by a gastrointestinal
Pathologist. Our machine-learning cell classification method showed

Fig. 5 Validation cohort. Kaplan–Meier curves demonstrating univariate survival analysis for average Treg (A) and TregPD1 (B) scores
dichotomized on the median for DFS and OS. Differences in Kaplan–Meier survival curves are presented as log-rank p value.
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Fig. 6 Survival estimates for DFS and OS for T-cell scores in immune “hot-spot” regions. Forest plots for multi-marker classification (Tc,
TcPD1, Th, ThPD1, Treg, TregPD1) and single-marker classification (CD3, CD4, CD8, FOXP3, PD1) were generated for DFS (A) and OS (B). HRs,
95% CIs, and p values from likelihood ratio tests from univariate Cox proportional hazards models were calculated. In the multivariate analysis,
the biomarkers were adjusted for clinical variables (T, N, age, sex, nodal count, positive nodes, differentiation, lymphovascular invasion) for
DFS (C) and OS (D). Kaplan–Meier curves demonstrating univariate survival analysis for Treg levels in the immune hot-spot regions
dichotomized on the median for DFS (E) and OS (F). Differences in Kaplan–Meier survival curves are presented as log-rank p value.
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significant correlation with the Pathologist’s assessment, supporting
the potential clinical utility of the platform.
Using a combination of ten markers for cell classification, we

went on to show that we could quantify six sub-classes of T cells
using a single TMA section. Our results showed that high levels of
CD3+/CD4+/FOXP3+/PD1− Treg cells were associated with
better DFS in this FOLFOX-treated cohort. These results were
supported by analysis of an independent stage III FOLFOX-treated
cohort. We also assessed the association between different T-cell
subpopulations and disease outcome using the core with the
highest T-cell infiltration (or the “immune hot-spot” core). We
reasoned that, while using the core average accounts for
heterogeneity and may be more representative of an entire
tumor section, the immune hot-spot core could be more
indicative of how likely patients were to relapse by more
accurately reflecting the extent of anti-tumor immunity. However,
comparing the two workflows, the results were similar, especially
in the univariate analysis, where none of the single markers was
significant, while Treg/PD1-negative cells were significantly
associated with DFS in both workflows. In the multivariate
analysis, the results were also comparable for the multi-marker
classes, with Treg/PD1-negative cells remaining significant.
Tregs regulate the activity of multiple immune cells, such as

CD4+ and CD8+ effector cells, macrophages and dendritic cells36.
In apparent contrast to our findings, high Treg levels have been
associated with poor clinical outcomes in different cancers,
including CRC37–39. However, in agreement with our study, others
have found that high Treg levels associate with better prognosis in
CRC patients40–44. There are a number of reasons that could be
responsible for these apparently contradictory results. For
example, differences in the study cohorts, such as stage and
whether patients were treated with chemotherapy, in addition to
technical differences in detection and variable thresholds for
scoring45. Importantly, the conflicting results may be due to the
use of single biomarkers that fail to reflect the Treg versatility and
plasticity. FOXP3 is routinely used as a Treg biomarker in clinical
studies. However, it has limitations since it is not exclusively
expressed by Treg cells. For example, FOXP3 can also be
expressed in dividing, activated T effector cells46,47. In addition
to FOXP3, some Treg subtypes express other molecules that
increase their immunosuppressive capacity, and these highly
suppressive Treg cells have been detected in CRC patients48–51.
The immunosuppressive activity of PD1 has made it and its ligand
PD-L1 key targets for immune oncology. Our results show that it is
PD1-negative Tregs rather than PD1+ Tregs that are associated
with improved prognosis in two independent cohorts. The
enrichment of PD1-negative Tregs may reflect the presence of
an active inflammatory response rather than the establishment of
an immunosuppressive TME; this would explain the association
which we observed with improved prognosis in this
chemotherapy-treated stage III cohort. Therefore, relying solely
on FOXP3 as a marker of Tregs may be the cause of some of the
inconsistencies in the literature regarding Treg and CRC prognosis.
The inter-relationships between immune cell lineages and spatial
heterogeneity of the tumor are also of critical importance for
understanding how tumors progress and for evaluating therapy
options. For example, the role of the TME and epithelial and
stromal domains and their contribution to tumor progress was
demonstrated by Uttam et al.34 who used multiplexed imaging
and cell analysis of 55 biomarkers (using the same platform as this
study) in 432 stage II chemo-naive CRC patients. Their spatial
analytics computational and systems biology platform (SpAn)
showed the prognostic significance of spatial domains and
networks within the tumor34. Combining this type of spatial
analysis with immune cell phenotypes will provide powerful new
insights into tumor progression and therapy options in CRC
patients.

The limitations for adoption of this methodology in the clinic
would include the additional cost for the automated fluorescent
imaging platform. Most importantly, as this powerful analytical
tool produces large amount of multidimensional data, user-
friendly machine-learning methodologies and analytical work-
flows would need to be customized. One technical limitation of
our study is the use of TMA cores instead of whole tissue slides
(WTS). TMAs have multiple advantages compared to WTS, such as
prevention of batch effects, minimizing of analysis times and
costs, and preservation of valuable biomaterials. While non-perfect
correlations between TMAs and WTS have been reported, analysis
of WTS is more expensive, time-consuming and generates even
more data, with subsequent issues for data storage interpretation.
In summary, we show that multiplexed analyses can be used to

accurately identify and enumerate subpopulations of T cells. We also
provide evidence that compared to single marker (FOXP3) assessment
of Tregs, a multi-marker classification (CD3+/CD4+/FOXP3+/PD1−)
has superior clinical potential to identify patients who have a better
prognosis following adjuvant FOLFOX treatment. Overall, we
conclude that automated multi-marker immune cell classification
provides accurate quantification of immune cell subtypes and has
real-world potential for evaluation of prognostic biomarkers.

MATERIALS AND METHODS
Patient cohorts
Five TMAs from FFPE tissue blocks with up to three 1-mm-diameter cores
per patient were prepared from 170 patients with stage III CRC. The
punches were taken from the center of the tumor based on identification
by a Pathologist (Prof Manuel Salto-Tellez, Queen’s University Belfast) and
the invasive front was not included. The patient samples were collected
from three Research Centres: Beaumont Hospital (RCSI Hospital Group,
Ireland), Queen’s University Belfast (UK), and Paris Descartes University
(France), and the TMAs were constructed at Queen’s University Belfast. The
TMAs from Ireland and France had three cores from each tumor and the
TMAs from UK had two cores from each tumor. The TMA design is shown
in Supplementary Fig. 1. The pathological stage was determined by the
AJCC 7th edition TNM staging system. All Centers provided ethical
approval for this study and informed consent was obtained from all
participants (NIB12-0034). This was a retrospective study, and the patients
were recruited during 2005–2012. None of the patients had received any
sort of ICI therapy prior to resection. At the patient level, the exclusion
criteria based on tissue block or clinical data were as follows: (i) poor tissue
quality or no tumor cells in tissue; (ii) loss of follow-up or recurrence and/or
death within less than two months from surgical resection; (iii) absence of
chemotherapy treatment; (iv) positive resection margins; (v) tumor site was
appendix; (vi) stage II or IV disease; (vii) only one assessable core remaining
after applying all exclusion criteria. At the tissue core level, individual cores
on the TMA were excluded for assessment after pathology TMA slide
review if no or minimal viable tumor was present for evaluation (i.e.
minimal or no tumor tissue, heavily artefacted tissue, extensive tumor
necrosis, extensive presence of normal adjacent tissue). After applying
exclusion criteria from the original patient cohort, the remaining training
data comprised 117 stage III patients, who were all treated with 5FU-based
adjuvant chemotherapy (predominantly FOLFOX or XELOX).

Validation cohort
Eleven TMAs from FFPE tissue blocks with two 1-mm-diameter TCs per
patient were prepared from 388 patients with stage II and III CRC (n=
287 stage III patients). The punches were taken from the center of the
tumor based on identification by a Pathologist (J.S., Memorial Sloan
Kettering Cancer Center) and two adjacent normal cores were also
included for each patient. However, for the purpose of validation, the data
set was filtered to only include TCs and patients receiving FOLFOX
treatment. Clinical details are included in Supplementary Table 1.

Multiplexed immunofluorescence analysis of TMAs
Multiplexed immunofluorescence staining of the CRC TMAs was performed
as previously described13 using Cell DIVE™ (formerly GEHC, now part of
Leica Microsystems, Issaquah, WA), a multiplexed immunofluorescence
microscopy method allowing for multiple protein markers to be imaged
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and quantified at cell level in a single tissue section. Briefly, FFPE tissue
slides were de-paraffinized and rehydrated, underwent a two-step antigen
retrieval, and were then stained for 1 h at room temperature using a Leica
Bond autostainer. All antibodies were characterized per the previously
described protocol13 and when possible, antibodies in routine clinical use
were employed. After downselection, each antibody was conjugated with
either Cy3 or Cy5 bis-NHS-ester dyes using standard protocols as
previously described13. The entire core underwent multiplexed immuno-
fluorescence staining and imaging for a total of 24 markers listed in
Supplementary Table 2. The markers of interest for this study included
CD3, CD4, CD8, FOXP3, CD45, NaKATPase, S6, pan-cytokeratin and AE1 and
DAPI nuclear stain. All samples underwent DAPI imaging in every round,
and background (inherent tissue autofluorescence prior to staining)
imaging for the first five rounds and every three rounds thereafter.

Image processing, single-cell segmentation
Using Cell DIVE automated image pre-processing software, all images were
registered to baseline using DAPI and underwent background autofluor-
escence subtraction, illumination and distortion correction. DAPI and Cy3
autofluorescence images were used to generate a pseudo-colored image,
which visually resembles a H&E stained image, which we refer to as a
virtual H&E (vH&E). This visualization format helps tissue quality control
(QC) review and facilitated review of tumor morphology and lymphocytes.
All cells in the epithelial and stromal compartments were segmented using
DAPI and pan-cytokeratin, while S6, and NaKATPase were used for
subcellular analysis of epithelial cells. Each segmented cell was assigned an
individual ID and spatial coordinate, as previously described13–16. Post
segmentation, several QC steps were conducted (described in detail in
Berens et al.17), including visual review and manual scoring of tissue quality
and segmentation for every image, and the CONSORT flow diagram with
exclusion criteria is summarized in Supplementary Fig. 1. Briefly, each
image was reviewed for completeness and accuracy of segmentation
masks in each subcellular compartment and tumor and stroma separation.
Average biomarker intensity was calculated for each cell and the following
additional cell filtering criteria were applied: (1) epithelial cells were
required to have either 1–2 nuclei; (2) each subcellular compartment
(nucleus, membrane, cytoplasm) area had to have >10 pixels and <1500
pixels; (3) cells had to have excellent alignment with the first round of
staining (round 0); (4) cells were at >25 pixels distance from the image
margins; (5) cell area for nuclear segmentation mask was >100 or <3000
pixels, (6) duplicates.

Immune cell annotation workflow for cell classification—
FOLFOX cohort
For each of the single-marker models, the cell classification models were
separately trained for each individual marker. For each model, two classes
of cells were annotated: marker positive (CD3+, CD4+, CD8+, FOXP3+,
and PD1+) or negative cells. In total, five models were generated for the
five individual markers. The multi-marker cell classification model involved
using all relevant cell phenotype markers simultaneously, in one single
model. The table in Fig. 2A(ii) shows the combinations of markers that
determined the eight immune cell classes. All trained models are linear-
kernel support vector machines (SVMs). The features included in the model
were the mean and standard deviation of the marker’s intensity expression
within identified cells. A minimum of five images were used for the model
training (one core from each TMA slide with the max mean intensity of the
marker of interest) and approximately ten cells per marker per image were
annotated (roughly 10 cells per core and up to 50 cells for each class) in
the first training. As shown in Supplementary Fig. 2, the annotated process
is aided by the use of the cell segmentation masks, which reduces the risk
of false positives from artefacts etc. Training accuracy (i.e., the number of
training annotations that were correctly predicted) was between 69 and
100% for single markers and 78% for the multi-marker model. Training
error is generated from an SVM that was trained on the entire dataset, to
address the low relative presence of some markers. This was the model
used for classification predictions of all the cells. Further, the images and
predictions were visually evaluated, and the model was re-run with
additional annotations. The initial annotations were conducted on cores
with high numbers of immune cells, followed by intermediate and lower
numbers of immune cells. Test accuracy was 70% ± 15% for single marker
models and 44% for the multi-marker model. The test accuracy numbers
were obtained by training SVM models with threefold cross validation. We
attribute the lower accuracy of the multi-marker model to the larger
number of classes (8) and the relatively small, unbalanced sample size

once the data is split into 3 groups. We conducted a further extensive
visual verification of the cell types vs predictions and correlated the counts
of the multi-marker classification vs each individual cell types, shown in
Supplementary Fig. 3. Further, there was good agreement between the
FOXP3 counts and Treg counts in each core (Supplementary Fig. 4), with
the Treg counts (CD3+CD4+FOXP3+and PD1±) generally lower than the
total FOXP3 counts (as expected).

Automated immune cell classification workflow for validation
cohort
For the validation cohort, a modification to the immune cell classification
workflow was used whereby a larger training set for CD3+, CD20+, CD4+,
CD8+ FOXP3+, and PD1+ cells was automatically generated. This method
was recently reported by Santamaria-Pang et al.15. The advantage of this
method over the earlier version is that many more annotations can be
automatically generated vs the earlier version, which relies on intensive
annotations over multiple iterations to improve model performance.
Briefly, the autofluorescence-removed images were segmented at cellular
level to identify cells that were potentially positive for each marker via
intensity and morphological criteria. These candidate annotations are then
correlated with segmented nuclei and potential annotations with no
corresponding nucleus are discarded. The remaining annotations are now
the automatically generated training set. In the second step, a probability
model is inferred from the automated training set. The probabilistic model
captures staining patterns in mutually exclusive cell types and builds a
single probability model for each marker. Manual annotations of the cell
types (using a similar workflow shown in Supplementary Fig. 2) were also
used to validate the algorithm performance with accuracy levels ranging
from 70–100% for predicted vs annotated cells (150–500 cells annotated
per marker, depending on abundance). After cell-level predictions were
made for each marker, they were combined to generate multi-marker
immune cell classification for each cell, including cytotoxic, helper, and r;
egulatory T cells ± PD1. The manual and automated approaches were
compared in independent CRC dataset and showed excellent correlations
(correlations were >0.90 for single markers and >0.80 for multi-marker
classifications).

Pathologist scoring
Gastrointestinal Pathologist (M.B.L.) performed visual inspection of the
virtual H&E slides generated from the DAPI and autofluorescence
images13,18 for the 419 TMA cores from the FOLFOX study. After applying
exclusion criteria described earlier, 28 cores were excluded and 391 cores
were assessed. MBL assigned two qualitative scores to each core
comprising either ‘high’, ‘moderate’ or ‘low’ scores, one for stromal cell
content and one for immune cell content. For stroma, a high score was
assigned when the stromal area was higher than the epithelial area; a
moderate score was assigned when the stromal and the epithelial areas
were equivalent; and a low score was assigned when the stromal area was
lower than the epithelial area. The immune score was based on lymphoid
cell abundance in the tissue core. For equivalent comparison of the
Pathologist stroma and immune score with Cell DIVE automated scores the
following steps were taken: (1) “Stromal cells” were defined as DAPI
positive cells that were negative for all markers and outside the epithelial
segmentation mask. The stroma score was calculated as the percentage of
non-immune stromal cells in all segmented cells in the non-epithelial
region. (2) “Immune cells” were defined as segmented cells that were
positive for any of the immune markers (CD45, CD3, CD4, CD8) and
negative for the AE1 epithelial marker. The immune scores were calculated
from the counts of all segmented immune cells. (3) “Epithelial cells” were
defined as segmented cells that were positive for AE1 staining and were
within the Epithelial Segmentation Mask15.

Statistical analysis
For comparison of quantitative stroma and immune scores with the
Pathologist scores, the scores were categorized based on the Pathologist’s
three qualitative groups (high–moderate–low). Statistical analysis for
comparison of group means was performed using Welch’s ANOVA and
pairwise t-test. The association of the single-marker and multi-marker
classified immune cells with clinical outcome was evaluated using both
univariate and multivariate analyses with adjustment for clinico-
pathological confounders (T, N, age, sex, nodal count, positive nodes,
lymphovascular invasion, differentiation) in the multivariate Cox propor-
tional hazards models. For the final multivariate models, the variables were
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subjected to backward elimination and the variables that did not
contribute to model fit were removed. The final multivariate model was
tested for multi-collinearity and proportional Hazards assumption.
Variables with variance inflation factor >2 were removed, and the
remaining variables were re-subjected to backward elimination. The
relative quality and goodness of fit of models was examined using
Harrell’s C-index, and the model choice was determined by the Akaike
Information Criterion. The T-cell subtypes were counted and analyzed as
continuous variables after being transformed to ‘Percent of total’ tissue
segmented cells, per patient. When the patients had multiple cores, the
average percent of the assessable cores was calculated. For the immune
hot-spot, we calculated the total counts of T cells in each core (CD3 counts
for single markers and sum of all T cell subtypes for the multiplexed
model). From the 117 patients, the cores with the highest number of CD3
or T cells (immune hot-spot core) were selected for further analysis. For
survival analyses, the T cell subtypes calculated as % of total tissue cells
were dichotomized at the median, and the Kaplan-Meier method was used
to plot survival curves with the log-rank test used for comparisons. No
adjustments were made for multiple comparisons. Hypothesis testing was
performed at the 5% significance level. The endpoints studied were DFS
and OS. DFS was the time between the study entry and either the date of
the first recurrence, or the date that the last follow-up took place. OS was
the time between the date of study entry and either the date of death
from any cause, or the date of the last follow-up. All statistical analyses
were performed in R Version 3.5.1 (https://cran.r-project.org).

DATA AVAILABILITY
Please contact the corresponding author for further information/access to data.
Supplementary information is available at Modern Pathology’s website.
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