Table 4.
Setting | Time limit | Algorithm | Accuracy | Sensitivity | FP-rate | Precision | F-score | MCC | ROC AUC | PR AUC | Kappa |
---|---|---|---|---|---|---|---|---|---|---|---|
Setting 1 (clinical and Rx data) | 5 minutes | Bagging | 80.3738 | 0.804 | 0.25 | 0.802 | 0.8 | 0.575 | 0.861 | 0.859 | 0.57 |
15 minutes | Random Commitee | 86.4486 | 0.864 | 0.174 | 0.864 | 0.863 | 0.709 | 0.903 | 0.896 | 0.706 | |
30 minutes | Multilayer Perceptron | 80.3738 | 0.804 | 0.34 | 0.802 | 0.802 | 0.577 | 0.864 | 0.863 | 0.575 | |
60 minutes | Multilayer Perceptron | 80.3738 | 0.804 | 0.34 | 0.802 | 0.802 | 0.577 | 0.864 | 0.863 | 0.575 | |
Overnight | Multilayer Perceptron | 93.9252 | 0.939 | 0.08 | 0.94 | 0.939 | 0.87 | 0.915 | 0.913 | 0.869 | |
Setting 2 (only clinical data) | 5 minutes | LMT | 87.3832 | 0.874 | 0.173 | 0.876 | 0.871 | 0.73 | 0.908 | 0.918 | 0.723 |
15 minutes | REP Tree | 81.7757 | 0.818 | 0.222 | 0.816 | 0.816 | 0.608 | 0.822 | 0.79 | 0.606 | |
30 minutes | REP Tree | 81.7757 | 0.818 | 0.222 | 0.816 | 0.816 | 0.608 | 0.822 | 0.79 | 0.606 | |
60 minutes | J48 | 79.9065 | 0.799 | 0.262 | 0.798 | 0.794 | 0.564 | 0.786 | 0.754 | 0.557 | |
Overnight | Random Tree | 84.1121 | 0.841 | 0.222 | 0.845 | 0.836 | 0.659 | 0.898 | 0.891 | 0.647 | |
Setting 3 (only Rx data) | 5 minutes | SMO | 71.9626 | 0.72 | 0.378 | 0.715 | 0.705 | 0.379 | 0.735 | 0.751 | 0.364 |
15 minutes | Multilayer Perceptron | 70.5607 | 0.706 | 0.392 | 0.699 | 0.706 | 0.691 | 0.346 | 0.737 | 0.755 | |
30 minutes | SMO | 70.0935 | 0.701 | 0.39 | 0.693 | 0.689 | 0.338 | 0.741 | 0.756 | 0.329 | |
60 minutes | AdaBoost | 70.5607 | 0.706 | 0.368 | 0.699 | 0.698 | 0.355 | 0.717 | 0.699 | 0.351 | |
Overnight | Bagging | 70.5607 | 0.706 | 0.406 | 0.701 | 0.686 | 0.343 | 0.741 | 0.734 | 0.324 |
Accuracy = (TP + TN)/(TP + TN + FP + FN); Sensitivity = TP/(TP + FN); FP-rate = FP/(FP + TP); Precision = TP/(TP + FP);
Kappa is the measure of how closely the instances were correctly classified by the algorithm, comparing it’s accuracy with that of a random classifier.
TP, true positive; TN, true negative; FP, false positive; FN, false negative; MCC, Matthews correlation coefficient; AUC-ROC, area under the receiver operating characteristic curve; AUC-PR, area under the Precision-Recall (sensitivity) curve; Rx, radiographic; LMT, logistic model tree; REP, reduced error pruning; SMO, sequential minimal optimization.