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Knowledge graph-based recommendation
framework identifies drivers of resistance in EGFR
mutant non-small cell lung cancer
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Resistance to EGFR inhibitors (EGFRi) presents a major obstacle in treating non-small cell
lung cancer (NSCLC). One of the most exciting new ways to find potential resistance markers
involves running functional genetic screens, such as CRISPR, followed by manual triage of
significantly enriched genes. This triage process to identify ‘high value' hits resulting from the
CRISPR screen involves manual curation that requires specialized knowledge and can
take even experts several months to comprehensively complete. To find key drivers of
resistance faster we build a recommendation system on top of a heterogeneous biomedical
knowledge graph integrating pre-clinical, clinical, and literature evidence. The recommender
system ranks genes based on trade-offs between diverse types of evidence linking them to
potential mechanisms of EGFRi resistance. This unbiased approach identifies 57 resistance
markers from >3,000 genes, reducing hit identification time from months to minutes. In
addition to reproducing known resistance markers, our method identifies previously unex-
plored resistance mechanisms that we prospectively validate.
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n this study we explore how a biological question can be

translated into a recommendation problem!. Traditionally

recommendation systems have been used to help users dis-
cover relevant items among an overwhelming number of
options. By interacting with recommendations users provide
either implicit or explicit feedback, which recommendation
models use to personalize and improve predictions3. Information
overload is particularly common in e-commerce, streaming® and
social media applications®, hence recommendation systems play
key role in these industries. The biomedical domain on the other
hand, is not seen as a typical application area for recommenda-
tion systems. Their usage so far is limited to a handful of recent
studies: Ozsoy et al., applied collaborative filtering for drug
repositioning problem’; Frainay et al., developed a network-based
recommendation solution to enrich and interpret metabolomic
data8; Suphavilai et al, built a matrix factorization-based
recommendation system to predict response of cancer drugs’;
Radivojevic et al, developed an automated recommendation
solution for synthetic biology!?. The success of these pilot studies
suggest there are potential opportunities for recommendation
systems in the biomedical domain; the amount of biomedical data
is growing exponentially and scientists could benefit from
recommendation solutions that help them to navigate the data
and reason about it.

Naturally, direct transfer of classic recommendation approa-
ches to the biomedical domain is not trivial. Specifics of the
problem space impose numerous challenges for a recommenda-
tion system practitioner, to name a few:

e an elementary unit of recommendation is not a simple self-
contained item (e.g a gene), but rather a research direction
accompanied by a biologically sound hypothesis;

e ultimate validation of recommendations is complex and
often requires expensive and time-consuming laboratory
experiments, as opposed to users just “selecting” an item in
a common non-biological recommendation scenario;

e unlike traditional applications, in a biomedical setting both
implicit and explicit feedback is scarce, making it harder to
tune and train models;

e ground truths are scarce and in most cases context-
dependent, which renders training challenging;

e due to the high cost associated with accepting a
recommendation, an increased emphasis is placed on
explainability and exposing causal reasoning paths behind
a recommendation.

Despite these challenges, wider adoption of recommendation
approaches holds plenty of opportunities to support and accelerate
biological research. To illustrate this point, in this study we focused
on the problem of drug resistance in lung cancer. Our goal was to
build a recommendation solution that finds key genes driving drug
resistance. Similar problems are also often formulated as gene
prioritization tasks and have been previously addressed with
network-based methods!12, kernel-based learning!3, and most
recently—deep learning approaches'4!5, to name a few. In this
study we were interested to explore the lung cancer resistance
problem through the lens of recommendation approach.

Drug resistance is a complex biological phenomenon that
hinders development of efficient and lasting cancer treatments!®.
Tumors recruit diverse strategies to escape selective pressure
induced by drugs, such as changes in drug metabolism!”, inhi-
bition of cell death!8, epigenetic alterations!® or acquired muta-
tions in drug targets?. Enhanced DNA repair and increased
amplification of tumor driver genes also contribute to secondary
resistance?!. Genetic and epidemiological diversity of patients??
further complicates the resistance landscape.

In this study we focus on non-small cell lung cancer (NSCLC)
carrying activating mutations of the epidermal growth factor
receptor (EGFR). It accounts for 15-20% of lung cancer
patients?3. Treatment with first or second generation EGFR tyr-
osine kinase inhibitors such as gefitinib, erlotinib or afatinib
results in impressive response rates in patients initially?, how-
ever, tumors quickly develop resistance to treatment. The
majority of resistant cases are driven by accumulation of sec-
ondary mutations of EGFR gene, such as T790M, that prevent
binding of EGFR TKI (tyrosine kinase inhibitors) compounds?>.
Development of osimertinib, a third generation EGFR TKI,
provided the ability to target such secondary EGFR mutations2°.
In fact, treatment with osimertinib significantly improved patient
survival in first-line therapy setting?’. However, therapy resis-
tance prevails. Acquired mutations of EGFR such as C797S drive
osimertinib resistance in 6-26 % of cases. Bypass pathway acti-
vation, amplifications of MET or mutations in PIK3CA have also
been shown to contribute to resistance?3. Still, in half of the cases
the molecular resistance mechanisms remain unknown and
promising markers could reside in a so called “dark matter” of the
human genome?.

A common strategy to find key drivers of acquired resistance is
based on functional genomic screens, such as CRISPR screens>0.
CRISPR-Cas9 genome-wide knock out, knock down and knock-
in screens have recently emerged as an efficient high-throughput
technology to systematically investigate resistance mechanisms30.
CRISPR screens can be applied in two ways to understand drug
response and drug resistance. First, they can be used to identify
alterations in genes that increase sensitivity of a cell to drug
treatment. Here, researchers measure negative selection of mod-
ified genes in drug treatment. This approach can help to define
therapeutic combinations that might increase response to treat-
ment. Second, CRISPR screens are used to identify genes that
drive drug resistance if altered. In this case the experimental set-
up mimics treatment scenarios in the clinic. In this approach,
outgrowth or positive selection of drug resistant cells is measured
and used to define mechanisms that drive resistance. These can be
potentially targeted once resistance is established.

In these settings, a typical output of a CRISPR screen may
identify many hundreds of resistance genes. To narrow down the
list to the most promising, biologically plausible and actionable
resistance genes, researchers have to perform manual triage and
validation. During this process experts aggregate prior knowledge
about a disease with additional evidence available from clinical
and pre-clinical studies and decide which genes to prioritize for
experimental validation. The selection process is tedious and time
consuming. It also relies on deep specialized knowledge, hence
the results can be prone to the individual bias. Our goal was to
replace such manual triage with a recommendation solution,
which could efficiently integrate diverse types of evidence
and identify the most promising candidate genes driving drug
resistance.

By moving the problem to a recommendation domain we
encounter two major challenges. First is the lack of training data.
Here we are dealing with a highly specific molecular phenotype of
a poorly understood origin, which prevents us from using
information on resistance markers relevant for other, even closely
related, diseases as training data. Second, unlike a typical
recommendation scenario, in our case both explicit and implicit
feedback are lacking. This fact limits our ability to gradually train
and improve models. Given these constraints we followed an
unsupervised recommendation approach, which relies on
content-based filtering. We formalized re-ranking of CRISPR hits
as a multi-objective optimization problem?3!, where diverse and
conflicting types of evidence supporting gene’s relevance are
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mapped to objectives. During the optimization procedure feasible
solutions (genes) are identified and compared until no better
can be found. A crucial component of such framework is a set
of hybrid features. Each feature represents a distinct type of
evidence, such as literature support, clinical and pre-clinical
evidence.

Along with the purely biological features, our recommendation
system relied on data derived from a specially constructed het-
erogeneous biomedical knowledge graph32. Knowledge graphs
provide a convenient conceptual representation of relationships
(edges) between entities (nodes). In the recommendation context
knowledge graphs gain popularity as a way to introduce content-
specific information and also to provide explanations for the
resulting recommendations®3. In addition, graph-based recom-
mendations were shown to achieve higher precision and accuracy
compared to alternative approaches®-3%. We used graph struc-
tural information together with graph-based representations to
express relevance of a gene in the resistance context. Our
assumption was that by combining graph-derived features with
clinical ones we could discover unobvious genes that drive drug
resistance in lung cancer.

In summary, in this study we explored how a question of
finding drivers of secondary EGFR TKI resistance could be
addressed as a recommendation problem. We demonstrate that a
recommendation system based on multi-objective optimization
approach can be used to re-rank CRISPR hits in the context of
secondary drug resistance. The proposed framework, together
with an automated feature generation flow and interactive re-
ranking interface, helped to reduce gene hit prioritization time
from months to a few minutes.

Results

Re-ranking of CRISPR hits can be approached as multi-
objective optimization. We framed re-ranking of CRISPR hits as
a multi-objective optimization problem. In this setting, diverse
lines of evidence that support gene’s relevance are treated as
multiple objectives (Fig. 1). In other words, the formal goal is to
simultaneously optimize k objectives, reflected in k objective
functions: f1(x), f(x), . . ., f(x). Individual functions form a vector
function F(x):

F(x) = [f}(x)7f2(~x)7 "'7fk(x)]T (1)

where x =[x}, Xy, . . ., X,,] € (s x represents the decision variable,
Q-decision variable space. Therefore, multi-objective optimiza-
tion can be defined as minimization (or maximization) of the
objective function set F(x). With multiple competing objectives a
singular best solution often cannot be found. However, one can
identify a set of optimal solutions based on the notion of Pareto
dominance?’. A solution x; dominates solution x, if the following
two conditions are true:

e solution x; is not worse than x, according to all objectives;
e solution x; is strictly better than solution x, according to at
least one objective.

If both conditions are true, we can say that x; dominates x,,
which is equal to x, being dominated by x;. In other words,
dominant solutions can not be improved any further without
compromising at least one of the other objectives. A set of such
dominant solutions forms a Pareto front, which combines the
best trade-off combinations between competing objectives.
Therefore, by computing Pareto fronts on diverse sets of
objectives defined based on CRISPR screen data and additional
supporting evidence we can narrow down the number of
promising markers of EGFR TKI resistance (Fig. 1).
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Fig. 1 Recommendation system takes into account diverse types of
evidence to suggest promising drivers of drug resistance in NSCLC. The
evidence from specially built knowledge graph, literature, clinical and pre-
clinical datasets is aggregated and formalized as objectives in multi-
objective optimization (MOO) task. Recommended solutions (genes)
represent the optimal trade-offs between the conflicting objectives. A
subset of recommended genes is passed for the experimental validation.

A hybrid set of features supports recommendation system. To
support the recommendation system we assembled a hybrid set of
rich features (Fig. 1 and Supplementary Table 1), with an idea
that each feature represents an objective. The selected features
were relevant for EGFR inhibitor resistance in NSCLC and cor-
responded to distinct lines of evidence. Key feature types and
rationale to consider them for re-ranking of CRISPR hits are
summarized below.

CRISPR. CRISPR screen data served as a starting point for re-
ranking. In this study we relied on screens that were set-up to
resemble clinical treatment scenarios for EGFR mutant lung
cancer, using NSCLC cancer cell lines harboring EGFR mutations
commonly found in patient populations and where those cell
lines were treated with 15t or 3'd generation EGFR inhibitors. In
total we identified a starting list of 1550 candidate drug resistance
genes3® that were labeled as significant after the screen analysis.
We further aggregated CRISPR data by computing consistency
metrics, which reflected stability of a gene’s performance across
experimental conditions. Normally genes showing consistent
behavior in multiple relevant conditions, e.g related cell lines or
treatments, are ranked higher by domain experts. Altogether,
seven consistency-based features were incorporated in the feature
set: (1) three features based on loss-of-function part of the screen;
(2) three features based on gain-of-function part of the screen; (3)
a summary metric reflecting overall consistency in the full screen
(Supplementary Table 1).

Literature-based metrics. Literature search is routinely used as a
first step to confirm experimental findings and to find support for
a potential mechanistic hypothesis. For the EGFR inhibitor
resistance problem we were primarily interested in the overall
literature support for a gene. As a proxy of literature support
we calculated the total number of publications that mention a
gene in a relevant context, such as “cancer”, “resistance”, “EGFR”,
“NSCLC”. Conveniently, the same exact metric when reversed
can be interpreted as novelty of a particular target. To extract
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literature mentions we analyzed a total corpus of >180,000
PubMed papers published between 2000 and 2019. We included
aggregated literature metrics, based on two terms of interest:
EGFR and NSCLC. For each gene we computed the number of
papers that mention a gene together with one of these terms
(Supplementary Table 1). To account to the fact that mentions in
research papers vary drastically between genes, we also included
normalized literature-based frequencies.

Graph-derived features. In this study we used a custom knowledge
graph (KG) as a source of side information for the recommen-
dation system. Our KG contained 11 million nodes and 84 mil-
lion edges and was composed of 37 public and internal datasets,
such as Hetionet, OpenTargets, ChEMBL and Ensembl32, In
general, patterns of interactions between biological entities cap-
tured by knowledge graphs can be translated into features and
consumed by recommendation systems in a number of ways
(Fig. 1 and Supplementary Table 1). One way is to compute
features directly on the graph. This includes metrics such as node
degree—reflecting the importance of a node; PageRank—a mea-
sure of node’s popularity®®; betweenness—a way to detect the
amount of influence a node has over the flow of information in
the graph. An alternative approach involves projecting the graph
into a low-dimensional space, so that every node is transformed
into its vector representation—embedding. Embeddings capture
critical structural properties of the graph#?, so that the nodes that
were close in the graph also remain close in the embedding space.
In this study we computed distances in the embedding space
between each gene and two key entities of interest: “EGFR” and
“NSCLC”. The assumption is that genes most relevant to the
EGFR TKI resistance phenotype should be close to either lung
cancer or EGFR gene nodes.

Clinical enrichment scores. To ensure the recommendation system
captures clinical evidence, we included genomic data from
osimertinib-treated EGFR-mutant lung cancer patients in the
feature set. We prioritized five clinical trials: AURAext4],
AURA2%2, AURA3, FLAURA?’, and ORCHARD*. The pre-
valence of genomic alterations in non-responders vs. responders
across 355 patients treated with osimertinib were calculated and
included as “clinical enrichment score features” to the feature set
(Supplementary Table 1).

Tractability and gene essentiality. Traditionally drug resistance in
cancer is addressed by developing compounds or combination
therapy that modulates activity of its key driver genes (targets).
When a target is prioritized for drug development one needs to
ensure that: (1) a gene is tractable in principle, i.e., it is shown or
predicted to bind to commonly used drug modalities with high
affinity; (2) a gene should not be essential, since knock-out of an
essential gene can be detrimental to other cells in the organism,
not just the tumor ones. To support the first consideration, we
included bucket tractability estimates** for three modalities:
antibodies, small molecules and other modalities (enzyme, oli-
gonucleotides, etc). In support of the second consideration we
integrated DepMap*® essentiality estimates.

In summary, the final hybrid set contained 27 rich features,
supporting diverse criteria taken into consideration during
validation of CRISPR hits by domain experts (Supplementary
Table 1). The hybrid set was also augmented by graph-derived
features and literature-based metrics. Correlation analysis of the
hybrid feature space indicated expected patterns: (1) strong
positive correlation between structural graph features, such as
degree, pagerank and betweenness; (2) negative correlation
between CRISPR features derived from knock-out and activation
screens (Supplementary Fig. 7).

Interactive interface allows experts to re-rank CRISPR hits. So
far, we have defined a basic model for multi-objective optimiza-
tion and demonstrated how to build a hybrid set of features to
support re-ranking of CRISPR hits in the EGFR TKI context.

In the real-world scenario, decision-making can be both
iterative and subjective. A choice of a particular set of objectives
and the direction of optimization for the same variable varies
from expert to expert. Each combination of objectives and
corresponding directions for optimization might result in a
different shape of Pareto front, therefore - in a different set of top
recommended genes.

To accommodate diversity of opinions and to enable domain
scientists to explore complex trade-offs between the objectives we
built an interactive application - SkywalkR https://github.com/
AstraZeneca/skywalkR*® (Fig. 2). SkywalkR is a Shiny app?’,
which operates on top of the pre-assembled hybrid feature set
(see Supplementary Table 1). SkywalkR app combines diverse
facets of knowledge to guide re-prioritization of CRISPR hits
for experimental validation. In addition, it allows domain experts
to explore various trade-offs between objectives. Thereby, it
stimulates exploration of possibilities, highlights gaps in the
existing knowledge and motivates to adjust expectations about
optimal solutions.

Automated engineering of rich features coupled with multi-
objective optimization realized through SkywalkR interactive
interface dramatically reduced the time required for gene
prioritization from a few weeks to minutes.

Evaluation demonstrates majority of top recommendations
labeled as credible by experts. To evaluate the recommendation
framework against expert opinions we fixed a default set of pre-
ferences. Preferences were defined by a combination of selected
objectives and corresponding directions of optimization. The set
of defaults was chosen to mimic the process of CRISPR hit
validation by domain experts, but also included graph-derived
features and summary metrics extracted from the literature
(Supplementary Table 1). The resulting list contained 57
recommended genes (Fig. 3). To collect opinions on the list from
the domain experts, we set-up an interactive evaluation task with
Prodigy®s. Five independent experts assigned each of the
recommended genes to one or more predefined categories: (1)
known, resistance marker; (2) previously unknown, credible hit;
(3) previously unknown hit, unclear tractability; (4) not novel, not
credible hit. Here “unclear tractability” referred to the absence of
a clear path to biological validation.

Despite the expected discrepancies between the expert
opinions, the majority of the recommended genes (86%) were
classified as either “previously unknown, credible hit” or “known
resistance marker” (Fig. 3). To consolidate opinions we assigned
the most frequent label to each gene (best label). This resulted in
three major categories: “known”, “previously unknown, credible
hit” and “previously unknown hit, unclear tractability”. To
determine underlying data structure that supported separation
between the three labels, we analyzed values corresponding to the
objectives included in the default preference. For -easier
comparison values were standardized (Fig. 3). Genes labeled as
“previously unknown, unclear tractability” were clearly separated
from the remaining genes on the basis of low values of all
objectives across the board, except the log fold-change values
from the RNA-Seq study 3. This analysis suggests that in general
the experts tend to prioritize genes supported by several lines of
evidence.

Shapley values indicate the high impact of CRISPR-derived
features. To further estimate what was the impact of each of the
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resistance context.

objectives on the expert decisions, we calculated Shapley values*’,
a game-theoretic technique used to explain output of machine
learning models. For this analysis we reduced the problem to a
binary classification task, where a gene is either selected by an
expert or not. To assign positive labels we used a set of 100 genes
prioritized to a secondary CRISPR screen® and trained two
random forest models: (1) based on a default subset of features;
(2) based on the full set of rich features, including clinical, pre-
clinical, literature, CRISPR and graph-derived categories (Fig. 4).

The resulting Shapley values indicate that in general, CRISPR-
derived features have the largest impact on gene classification in
both experiments. When the default set of features was tested, the
composite CRISPR screen consistency variable accounted for the
most impact on classification (Fig. 4). Interestingly, in both cases
- when we used either full or only default set of features to train
the model, CRISPR-derived features remained decisive, followed

by graph-derived features. Contrary to our expectation, clinical,
pre-clinical and literature-derived features had less impact on
gene classification in this setting. This suggests that graph-derived
features though not routinely used in manual triage, could
provide a valuable insight in the overall relevance of a gene,
especially when combined with context-defining experimental
data, such as CRISPR.

Network analysis and clinical knowledge indicate EGFR resis-
tance mechanisms among top recommended genes. To link the
prioritized hits to known EGFR biology, we performed pathway
enrichment analysis. It captured pathways related to resistance
such as “mechanisms of resistance to EGFR inhibitors in lung
cancer” and “Anti-apoptotic action of ErbB2 in breast cancer”
(Supplementary Table 2). Occasionally enrichment results are
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Fig. 3 Expert curation of recommended hits along with features used for hit triaging. Evaluation of top recommended genes by five independent experts
indicates that majority of genes can be classified either as A “known resistance markers” or € “previously unknown/less known, credible hits". Eight genes were
labeled as “previously unknown/less known hits with unclear tractability” by the experts (B). Here, unclear tractability refers to the absence of clear path to
validate predictions experimentally. “Previously unknown/less known” is definned within the biological context of this study. Features used to generate
predictions: full_screen—overall consistency across all conditions in the CRISPR screen; RNASeq_LFC-log2 fold-change from internal RNASeq study; clinical_EST,
clinical_ES2, clinical_ES3-enrichment scores from clinical studies where resistant patients were compared against responders; lit_EGFR, lit_NSCLC-co-
occurrence estimates from the literature; pagerank—"popularity” measure of a node; betweenness—centrality estimate of a node. “Agreement” column
indicates the number of experts assigning a certain label to a gene. Size of a bubble reflects value normalized across the full set of features for all genes.

redundant and top terms may be similar to each other thus
carrying little new information. Therefore, we also performed
crosstalk analysis (Supplementary Fig. 8), which confirmed
“mechanisms of resistance to EGFR inhibitors in lung cancer”
among the top enriched pathways.

To additionally annotate recommended genes with clinical
relevance information, we performed a comparison with
OncoKB>’. OncoKB assesses genetic alterations by annotating
each gene under five categories: therapeutic, prognostic, diag-
nostic, resistance, and FDA-levels. As expected, this assessment
captured genes with known clinical significance (Supplementary
Table 3).

Experimental validation demonstrates key regulatory roles for
epigenetic and Ras-signaling genes in mediating resistance
phenotype. To further validate a subset of recommended genes
we experimentally investigated their direct impact on osimertinib
resistance. For experimental validation of our recommendations,
we identified biological mechanisms that have recently gained
prominence within the domain of EGFRIi resistance but do not
yet have an approved drug target within the pathway (Hippo
pathway—WWTRI1 and NF1°! and KCTD family>2). In addition,

we selected targets that have inhibitors available to assess com-
bination benefit in resistance models when a recommended target
is inhibited in combination with osimertinib (SRC and EZH2).
Lastly, to provide ground truth we included established EGFRi
resistance markers as the background to our validation studies
(MET and PTEN). We manipulated expression of six recom-
mended genes (MET, WWTR1, EZH2, PTEN, NF1, and KCTD5)
in EGFR mutant NSCLC cell lines sensitive to osimertinib
(Fig. 5A). Genes for validation were selected from “known” (as
true positives) as well as “previously unknown” categories (Fig. 3).

PTEN, NF1 and KCTD5 were previously shown to negatively
regulate MAPK or PI3K/AKT signaling®3->°, known drivers of
EGFR TKI resistance. Hence our expectation was that deregula-
tion of PTEN, NF1 and KCTD5 should mediate a stable
resistance phenotype. To test this hypothesis we established a
flow cytometry-based long-term competition assay (Fig. 5B). The
assay showed that after 14 days of co-culture under control
(DMSO) condition, perturbation of NF1, PTEN or KCTD5
expression (Fig. 5B, C) did not affect proliferation in comparison
to non-targeting control (NTC) cells. However, when treated with
osimertinib NF1 or PTEN KO caused a fitness advantage,
measured as a two to three fold increase in proliferation (in PC-9
or HCC827, respectively) compared to control cells (Fig. 5C).
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In case of KCTD5, KO the observed resistance effect was more
pronounced in PC-9 compared to HCC827 cells.

Inhibition of EZH2 expression in lung cancer was recently
described as sensitizer to anticancer treatment®®. We abrogated
EZH?2 expression in II-18 cells (Supplementary Fig. 9D) and
tracked proliferation under control and treatment condition. Loss
of EZH2 expression in II-18 induced a pronounced osimertinib
resistance phenotype. Regarding MET, recent studies suggest that
its amplifications?® are often associated with an overexpression of
receptor tyrosine kinase, resulting in bypassing of EGFR signals®’.
To validate relevance of MET to osimertinib resistance we
activated its expression in PC-9 cells (Supplementary Fig. 9B) and
compared proliferation in control (DMSO) and drug treatment.
As expected, overexpression of MET did not alter cell prolifera-
tion under control conditions. In contrast, cell proliferation was
substantially elevated in cells under osimertinib treatment,
compared to control modified cells (Fig. 5E).

We obtained similar results when we activated expression of
WWTRI1 in PC-9. WWTRI1 is an effector of transcriptional
activity in the Hippo pathway. This pathway was recently linked
to EGFR inhibitor resistance®®. As demonstrated in long-term
clonogenic assays, WWTRI activation in PC-9 (Fig. 5F and
Supplementary Fig. 9B) resulted in substantial outgrowth of
colonies resistant to osimertinib treatment, compared to NTC
control cells.

To target recommended resistance hits therapeutically, we
combined available inhibitors with EGFR inhibition in osimerti-
nib sensitive and resistant cell lines.

One recommended hit from our analysis was the SRC proto-
oncogene, a non-receptor tyrosine kinase, which has been
previously implicated in EGFR-TKI resistance®®. To validate
SRC as a resistance driver, we employed our panel of acquired-

resistant cell lines (Fig. 6A and Supplementary Fig. 10A, C, G) as
previously described®®. We generated dose-response curves for
three small molecule SRC inhibitors (ECF-506, dasatinib or
saracatinib), comparing sensitivity in parental and resistant
clones. Note that resistant clones were co-treated with osimerti-
nib, in which they readily proliferate. We found that parental cell
lines were generally resistant to the monotherapy effects of SRC
inhibitor treatment (Figs. 6B and Supplementary Fig. 10B, D-F,
H). Critically, treatment with equivalent doses of these SRC
inhibitors could sensitize all osimertinib-resistant (OR) PC-9,
HCC827, NCI-H1975 and HCC4006 cell lines to the clinically
relevant dose of osimertinib (160 nM), thus highlighting the
importance of SRC in mediating osimertinib resistance.

Combination of osimertinib with EZH2 inhibitor—tazemeto-
stat at increasing concentrations revealed a dose-dependent
increase in resistance to osimertinib. Thus, we could demonstrate
by genetic and pharmacological means, that abrogation of EZH2
function can increase osimertinib resistance (Fig. 6C). In
summary, we collected initial experimental evidence indicating
that manipulation of a subset of recommended genes—EZH2,
KCTD5, MET, NF1, PTEN, SRC and WWTRI causes osimertinib
resistance.

In addition to known osimertinib resistance markers, and
validated markers discussed above, our method also identified
several markers of osimertinib resistance with very limited prior
knowledge or literature evidence, but could be exciting oppor-
tunities as targets in NSCLC treatment or for defining new
drug combinations with osimertinib (Fig. 3). Here, we define
“previously unknown” as genes having no publications that
directly associate them to EGFR in the context of resistance.

Two of the hits, FOSL1 and BCL6, have since been shown to be
involved in key molecular bypass mechanisms for EGFR-TKI
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Fig. 5 Validation of resistance genes proposed by recommendation system. A Proliferation assays confirm osimertinib sensitivity of EGFR-mutant NSCLC
cell lines PC-9, 11-18 and HCC827. Data are presented as mean values +/- SD, n = 2 technical replicates, representative data of three biological replicates.
B Resistance to osimertinib by target gene KO was measured in flow cytometry-based competition assays. Increase in percentage of KO cells compared to
control cells was considered as resistance effect to osimertinib. C, D Confirmation of resistance to osimertinib in EGFR mutant NSCLC KO cell line models.
Effect of KO of genes (EZH2, KCTD5, NF1 and PTEN) on osimertinib resistance was tested in 11-18, PC-9 and HCC827 cell lines. Proliferation of cells in
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dCas9-VP64 SAM CRISPR for WWTR1 activation. Data presented as mean values +/- SD, representative data of two biological replicates, each consisting
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presented as mean values +/- SD (nh=23) of a typical plot, where the experiment was repeated at least three times.

resistance®!2 (Supplementary Fig. 11). FOSL1 has been shown to
play a key role in the crosstalk between MEK and Hippo
pathways. Misregulation of MEK pathway in driving tumor
growth is well established®?, and key Hippo pathway members
(YAP, TAZ) have been implicated in NSCLC®*. Pham et al.%!
showed that a significant decrease in FOSL1 expression was
observed when YAPIl-amplified cells were treated with a
combination of YAP1 knockdown and Cobimetinib (MEKi),
but not for either treatment. BCL6 plays a key role in mediating
core cell functions such as antiapoptosis and DNA Damage
recognition and has been shown to play a key role in NSCLC®.
Tran et al.®2 showed that inhibition of BCL6 in NSCLC cell lines
conferred sensitivity to Gefitinib. Further experiments also
showed that targeting BCL6 and EGFR as a combination showed
significant synergy.

NRF2 transcription factor and downstream signaling (more
specifically the Keapl-Nrf2 pathway disregulation) has also been
implicated in driving EGFR TKI resistance in lung cancer®. In
addition to identifying KEAPI1, the recommendation system
also identified CAND1 as a marker of osimertinib resistance.
Increased CAND1 expression has been recently shown to be
implciated in NSCLC tissues®’. Altogether these observations
indicate that our recommendation approach suggested not only
well known resistance markers, but was also able to identify
previously unexplored and promising drivers of resistance.

Discussion

In this study, we explored how an open-ended biological question
—discovering drivers of drug resistance in lung cancer—can be
approached as a recommendation problem. The current protocol
to find resistance markers starts with high-throughput CRISPR
screens, followed by a lengthy and time-consuming manual triage,
which requires specialized knowledge. Our goal was to replace the
manual triage with a recommendation solution that outputs genes
potentially driving the resistance. Undoubtedly, such a biomedical
setting is not a traditional area of application for recommendation
systems. Still, the need to find a small number of relevant genes
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amongst prohibitively large set of possibilities constitutes a typical
recommendation task. How to approach it?

Common recommendation problems are often solved with
collaborative filtering®8, content-based®® or hybrid solutions”.
The idea behind collaborative filtering is to predict preferences of
a user for an item based on weighted preferences of other users®S.
This approach was demonstrated to work successfully to
recommend conceptually complex entities, such as movies,
without any additional information about the entity itself’!.
However, to work accurately collaborative filtering requires either
large datasets of users actively rating items or a substantial
amount of historical data. Owing to the lack of user interactions
data, or its equivalent, collaborative filtering is not directly
applicable to the CRISPR hit re-ranking task.

On the other hand, content-based approaches recommend
items exclusively based on the properties of an item and do not
require user interaction data. Therefore, this class of methods
seems more suitable for our case. Such content-based recom-
mender would require a set of features, describing properties of a
gene relevant for secondary resistance in lung cancer. The dis-
advantage of content-based approaches is their reliance on
similarities between items to make a recommendation. They
require either a point of reference or more broadly - training data
to make predictions. In the CRISPR hit re-ranking case training
data is lacking mainly because a clear conceptual representation
of a “good resistance hit” is also lacking. The closest analog of
training data in this case would be a weakly labeled dataset’?
created based on information about genes implicated in drug
resistance in related types of cancer under similar treatments. It
still remains to be proved, however, if a notion of resistance is
directly transferable between very specific cancer contexts.
Moreover, in this study we focus on discovery drug resistance
markers that have never been explored before. Hence it won’t
make sense to base recommendations on a handful of genes that
are already known to be implicated in drug resistance.

In short, CRISPR hit re-ranking task does not immediately fit
into classic recommendation frameworks. Complexity of the
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biological context, lack of insight about mechanisms of resistance,
coupled with absence of training data and user feedback make it
difficult to build a fully fledged recommendation solution capable
of reasoning about drug resistance.

Devoid of user feedback and training data we approached
CRISPR re-ranking problem as a decision-making task. We for-
malized the problem as a multi-objective optimization with the
goal to find solutions defined by optimal trade-offs between
novelty, druggability, clinical and pre-clinical relevance. This
approach operates in an unsupervised domain, where a perfect
solution is unknown. Still we can leverage domain expertise to
loosely define a profile of a “good resistance hit”. This can be
formalized by including/excluding objectives, setting directions of
optimization and setting constraints on the objectives themselves.

Similar to the manual triage, re-ranking of CRISPR hits
through multi-objective optimization can be performed itera-
tively. By experimenting with diverse sets of objectives one could
explore plausible solutions given the constraints of underlying
data. We recognized such iterative decision-making could benefit
from an interactive interface. Therefore we developed a Shiny
app, SkywalkR, that accounts for diversity of opinions and allows
the users to explore the resistance space more efficiently. The app
allows the experts to compose custom optimization preferences
and re-rank the list of hits based on them. The overall technical
solution includes: (1) an automated pipeline that generates fea-
tures; (2) an interactive interface that runs on top of multi-
objective optimization model and has access to the features. This
set-up helped to dramatically reduce the time required to prior-
itize CRISPR screen hits from the usual weeks-months to a few
minutes.

The key component of our recommendation system is a hybrid
set of features, which is tailored to the EGFR inhibitor resistance
context. Along with the usual types of evidence used by the experts
during the manual triage, such as clinical and pre-clinical evi-
dence, we included features derived from a custom heterogeneous
biomedical knowledge graph. The rationale behind it is that
structural properties of the knowledge graph can express relevance
of a gene, even if a direct proof of its association with resistance
does not yet exist in the literature or clinical/pre-clinical sources.
In other words graph-derived features could aid discovery of less-
explored or unexpected drivers of drug resistance.

To determine if our recommendation approach produces
meaningful results we adopted a hybrid validation strategy.
Recommendations were initially evaluated by domain experts,
followed by targeted experimental validation of a few promising
genes. The in silico evaluation demonstrated that majority (86%) of
suggested genes were classified by independent experts as credible
and/or novel. The remaining genes (14%) were classified by the
experts as “previously unknown hits with unclear tractability”,
meaning at the time path to biological validation was not obvious.
To complement the expert evaluation we picked six genes from the
“known” and “previously unknown” categories (WWTR1, MET,
PTEN, NF1, KCTD5, EZH2 and SRC) for experimental validation.
We demonstrated that deregulation of these genes by genetic and
pharmacological means indeed mediated stable resistance pheno-
type. Though the exact mechanism of this effect remains to be
investigated, our experiments proved that recommended genes are
implicated in secondary resistance. In summary, hybrid evaluation
demonstrates that our recommendation approach not only pro-
duces relevant results, but also does it in a fraction of a time
compared with the manual triage.

Though the results are promising, we recognize that overall our
recommendation approach has a few limitations and areas of
improvement. First of all, when applying the multi-objective
optimization approach to the CRISPR hit triage problem, there is
a risk to obtain unbalanced solutions in some cases. Such

solutions occupy margins of a Pareto front and can result from
some genes having relatively high values according to just a single
objective. Secondly, there is a risk to consider an excessive
number of objectives/lines of evidence. The more objectives we
take into account, the broader and more topologically complex
Pareto fronts can become. This effect limits our ability to
unambiguously select a small set of optimal solutions. A few
strategies can help to overcome this problem: (1) select a small
number of the most important objectives relying on the domain
knowledge; (2) multiple objectives can be combined into a single
one using scalarization techniques’3; (3) introduce adaptive
weights to individual objectives based on the domain knowledge
and the notion of the relative importance of each type of
evidence3%; (4) multi-objective optimization can be performed in
consecutive stages on a sub-selection of objectives, similar to
Markov decision process’4. Some of the above approaches could
be combined, for example scalarization and adaptive weights.
Worth mentioning that all of the listed strategies rely on domain
knowledge. Perhaps, they can be viewed as a progressive way to
translate individual researcher bias into a formal model.

Another limitation we faced in this study is difficulties with
assessing the accuracy of our recommendations. Primarily it
stems from the lack of clear notion of a “good resistance hit”. One
way to address this would be to rely on clinical significance
estimates®® to define reference hits. However, such approach
would down-prioritize previously unexplored targets due to lack
of clinical data support.

Finally, unlike in traditional recommendation settings, we
could not rely on user feedback to gradually evaluate and improve
predictions. The ultimate source of truth in our case is experi-
mental validation, where a role of a gene in driving resistance
phenotype could be tested in vitro or in animal models. At the
moment large-scale validation experiments are not feasible since
they are costly and take long time to perform. However in an
ideal scenario, experimental output can become an equivalent of
user feedback and be used to improve predictions of biomedical
recommendation systems.

In summary, accumulation of large amounts of biomedical data
coupled with the need to comprehend and reason about it makes
biomedical applications an attractive field for recommendation
techniques. However, direct translation of traditional recom-
mendation approaches to the biomedical domain is not always
trivial. Specifics of the problem space and complexity of biological
systems call for efficient recommendation solutions that could
operate in unsupervised or weakly supervised settings. We believe
that wider adoption and systematic use of recommendation sys-
tem to solve biological problems bear a potential to transform
biomedical research and drug discovery.

Methods

EGFRi CRISPR screen design. Genome-wide CRISPR knockout and activation
screens were performed in the EGFR mutant cell lines PC-9 and HCC827 (exon 19
EGEFR deletions), as well as gefitinib-resistant clones harboring the secondary
EGFR T790M resistance mutation (PC-9T790M and HCC827T790M). The cells
were treated with the EGFR inhibitors gefitinib and osimertinib to model resistance
to EGFR inhibitors in the 1st and 2nd line clinical settings®.

For genome-wide loss-of-function CRISPR screens (“CRISPRn™), cell lines
were transduced with a sgRNA library targeting 18,010 human genes. For genome-
wide gain-of-function (activation) CRISPR screens (“CRISPRa”), cell lines were
transduced with a sgRNA library targeting 23,430 coding isoforms with a unique
transcription start site. After selection, library transduced cells were treated with
either gefitinib or osimertinib (100 nM each) over 21 days to select for resistance
genes. The MAGeCK”? algorithm was used to identify genes significantly enriched
in treatment vs. control arms across all six studies.

Analysis of CRISPR-pooled screens. The quality of the sequencing data was
assessed using fastqc’® and mutltiqc’’. The guide sequences were mapped to the
Kosuke Yusa 3 library with custom scripts. The resulting raw counts were quality
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controlled in terms of read depth per sample, diversity of guide RNA within a
sample using Gini coefficients and in terms of expected clustering of the samples.

Three main comparisons were studied (i) Control samples vs. Treated samples
named CvT, (ii) Control samples vs. Plasmid samples named CvP, and (iii) Treated
samples vs. Plasmid sample named TvP. The CvT differential analysis was
performed with MAGeCK v0.5.77°. The CvP and TvP differential analyses were
performed with CRISPRCleanR”® followed by BAGEL”®. The threshold of
significance for BAGEL essentiality results was calculated as described in ref. 80 and
for a selected false-discovery rate (FDR) of 5%. The CvP comparison analyses were
used for further quality assessments, i.e., identification of core essential genes
according to the list published in ref. 8! and expression level of the essential genes.
This latest assessment aimed at highlighting any potential false positives by
verifying that genes called as essential were expressed in the basal expression
profiles of the cell lines. The basal expression data used was published in refs. 80-82,

The three comparisons CvT, CvP and TvP were then aggregated using
desirability curves®3 to inform the ranking of genes of interest leading to resistance
or to sensitivity. The desirability of a given gene is comprised between 0 and 1. A
value of 1 denotes the most interesting genes according to the defined parameters.
This score is the aggregation of several partial desirabilities assessing different
factors. It enables for instance to take into account for both p-values and log fold-
change (LFC) at the same time when ranking the genes of interest. For resistance,
the following parameters were considered:

® (i) the partial desirability assessing the FDR of CvT is set to 0 if the FDR is
higher than 0.1 and to 1 if the FDR is lower. This enables to focus on the
significant genes only.

® (i) the partial desirability assessing the p-value of CvT is set to 0.01 when
the p-value is higher than 0.1. As p-values gets lower, it increases rapidly to
reach 1 for a p-value of 104, This rule enables to give a higher desirability
to genes with a lower p-value.

®  (iii) the partial desirability assessing the size effect of CvT is set to 1 when
the effect size is higher the mean log fold-change (LFC) 4 3 x standard
deviation of the LFC and drops sharply to 0.01 if the LFC is lower than this
boundary. This rule enables to give a higher desirability to genes with a
higher size effect. Above three times the standard deviation, the desirability
plateaus to a maximum of 1.

® (iv) to remove any essential list of genes of interest, the partial desirability
assessing essentiality of a gene is set to 0 if it was called as significantly
essential in CvP and CvT. If genes with negative LFC remain, their partial
desirability is also put to 0. This rule filters out a number of false positives
arising because, when knocking done slow essential genes, cells in the
treated arm might be dying less quickly than the cells in the control arm
leading to a false enrichment in CvP.

For sensitivity, the partial desirabilities (i) and (ii) described above were used.
Moreover, the partial desirability assessing the size effect of CvT is set to 1 when
the effect size is lower the mean log fold-change (LFC) - 3 x standard deviation of
the LFC and drops sharply to 0.01 if the LFC is higher than this boundary.

The partial desirabilities were aggregated as described in ref. 83 and used to rank
the genes of interest to be used for further analysis.

Key terms:

TvC—Treated samples vs. Control samples

CvP—Control samples vs. Plasmid samples

OverallDesi—Overall Desirability

posFDR—Positive false-discovery rate

TvCCvP_OverallDesi—Aggregated TvC and CvP comparison with
Desirability scores

TvC_posFDR—Aggregated TvC with posFDR to capture statistical
significance.

CRISPR Screen QC and essentiality assessment. As part of our CRISPR screen
processing framework, we developed a pipeline that performs a final QC check to
ensure that the screen is of good quality and comparable to other screens per-
formed within our functional genomics center. This analysis assesses whether the
expected essential genes can be predicted from the screen. We compared our
results with Hart et al.881, and Cancer Dependency Map®2.

We expected and observed the AUC dropout for these essential gene list
comparisons to be >0.9 (Hart et al.31: 0.91, Behan et al.8: 0.99, DepMap%2: (0.96).
Further, we also measure the log fold-change (LFC) distribution in control vs.
plasmid to confirm that the LFC distribution is centered around 0, which highlights
that there are no survival issues with the cell population under examination
(Supplementary Fig. 12).

CRISPR screen-derived features. In total we identified a starting list of >3000
resistance genes as hits to be re-ranked. A summary consistency metric was defined
as a total number of cell lines, where a gene came up as a hit. Hits were defined
according to desirability scores. We used two different types of thresholds to define
hits for CRISPRn and CRISPRa screens: (TvCCvP_OverallDesi > 0.7 and
TvC_posFDR < 0.1) and (TvCCvP_OverallDesi > 0.7 and TvC_posFDR <0.1),

respectively. We considered consistency in CRISPRn, CRISPRa screens separately,
as well as the overall consistency in the screen (CRISPRa and CRISPRn combined).

Graph-derived features. The biomedical knowledge graph was built as described
in32, Embeddings were calculated based on the full graph using RESCAL
algorithm®. L2 distance from human gene nodes to “EGFR” and “NSCLC” nodes
was calculated using Faiss package®. Full graph was also used to calculate
descriptive network metrics such as node degree and number of unique neighbors
connected to a node.

To make graph-derived metrics more relevant to mechanistic explanation of
EGFRI resistance, we further focused on a protein-protein interaction (PPI)
subgraph. PPI subgraph was defined based on the “interacts” edges from
HetioNet3087. PPI subgraph was used to calculate PageRank®® and betweenness
metrics for each gene node.

We included Jupyter notebooks, illustrating how graph-derived features can be
generated on biomedical knowledge graphs (https://github.com/AstraZeneca/
skywalkR-graph-features)®°. Owing to licensing restrictions we are not able to
share our knowledge graph, however similar work can be performed on open
access heterogeneous biomedical graphs such as Hetionet30:87,

88

Literature-based features. To estimate overall literature support for a gene’s
involvement in EGFR inhibitor resistance we analyzed a corpus of PubMed and
PMC articles as well as Springer bio-classified data published between 2000 and
2019. The corpus was further restricted to a set of 185,299 publications relevant to
cancer and/or secondary drug resistance. The search was performed on the title,
abstract and full text. Next, two key terms were identified—“EGFR” and “NSCLC”.
For each of the target terms we computed the total number of papers that mention
a given human gene and one of the key terms of interest together. To account for
the fact that total number of published papers per gene differs greatly, we have
included normalized literature frequencies. The resulting four summary metrics
were included in a hybrid feature set and exposed through the SkywalkR interface.

In addition to single-gene metrics we computed multi-term gene co-occurrence
in previously defined (cancer and drug resistance) context. The idea behind this
analysis was to discover sets of genes that tend to co-occur together in EGFR
inhibitor resistance context. Frequent co-occurrence of gene combinations across
publications could indicate a strong link between genes within a set and suggest a
potential mechanism driving secondary resistance. Gene co-occurrence matrix was
used to build an interactive heatmap in the SkywalkR app.

Clinical enrichment features. Osimertinib is an irreversible EGFR inhibitor that
selectively targets the EGFR T790M mutation®. We aggregated data from
osimertinib-treated patients across five clinical trials—AURAext, AURA2, AURA3,
FLAURA, and ORCHARD. AURAext is a phase II extention of the AURA trial
with an 80 mg/day osimertinib dose administered to non-small cell lung cancer
(NSCLC) patients*!. AURA2 is a Phase 2 single arm clinical trial for NSCLC
patients with advanced disease who progressed on previous treatment with EGFR
Tyrosine Kinase Inhibitor (TKI), and also carry the EGFR T790M mutation*2.
AURAS3 is a Phase 3 randomized study comparing the efficacy of osimertinib vs.
platinum-based chemotherapy in advanced NSCLC patients who have progressed
on prior treatment with EGFR TKI. These patients also carry the EGFR T790M
mutation. FLAURA is a Phase 3 clinical trial for first-line osimertinib treated
advanced NSCLC patients vs. other EGFR TKI standard-of-care (SoC)
treatments?’. ORCHARD is a Phase 2 platform study in patients with advanced
NSCLC who have progressed on first-line osimertinib treatment3.

In all, 335 patients treated with osimertinib across the trials were analyzed.
Sequencing data from Guardant Health and FMI gene panels were utilized to identify
genetic alterations. Patients who were classified with the RECIST criteria of Partial
Responder/Complete Responder AND PFS > 6 mos were classified as responders, and
enrichment of genetic alterations in responders vs. non-responders was calculated. As
individual trials utilized different clinical gene panels, the enrichment metrics were
kept trial-specific and no aggregation across trials was performed. This “enrichment
score” was used as a feature for multi-objective optimization.

Tractability. To estimate druggability of candidate genes we relied on tractability
scores from OpenTargets https://github.com/melschneider/tractability_pipeline_v2,44.
Tractability scores for three modalities were included: antibodies, small molecules and
other modalities (e.g., enzyme, protein, oligonucleotide, etc.). For convenience buckets
were reversed, so that the highest druggable bucket corresponded to the highest
numeric score 10. Reversed tractability metrics were exposed through the

SkywalkR app.

Gene essentiality. Information about whether the gene is common essential or
not was retrieved from DMC DepMap®2. We flagged a gene as “essential” if
inhibition of target gene results in reduced viability for 90% of cell lines used in
DepMap. Otherwise a gene was flagged as “nonessential”.

Transcriptomic features. The features “RNAseq_LFC” and “RNAseq_pval” that
were included in the recommendation system framework resulted from an
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unpublished internal experiment to capture the effect of acute Osimertinib treat-
ment on gene upregulation within the cell lines. The experiment involved treating
the cell lines PC9 and HCC827 with Osimertinib and DMSO, respectively, to
capture transcriptomic changes pre- and post-treatment with Osimertinib. The
features derived from the experiment have been included as part of our public code
and data repository https://github.com/AstraZeneca/skywalkR,*. Raw RNAseq
data is available under the accession number GSE193259.

Models and implementations. Pareto fronts were computed based on the
implementation from the rPref R package®!. During the multi-objective optimi-
zation we were looking for solutions that occupy an optimal surface (front), which
represents the best trade-offs between the considered objectives. This optimal
surface is labeled as Pareto level 1. Subsequently, sub-optimal surfaces by definition
contain worse (less optimal) solutions and are labeled Pareto level 2, ... n. The
SkywalkR interface returns genes that occupy Pareto level 1. Solutions can be
further sorted within a Pareto front by the users by one or more variables of choice.
To build binary classifiers for gene labels we used fast implementation of
random forest from ranger package2. Shapley values were calculated using
fastshap package®3. Correlation plot was generated with corrplot package®?.

Pathway enrichment analysis. We used MetaCore (Clarivate, https://
portal.genego.com/) to perform enrichment analysis. Genes were matched to
possible targets in functional ontologies of MetaCore. The probability of a random
intersection between a set of IDs the size of target list with ontology entities is
estimated in p-value of hypergeometric intersection. The lower p-value means
higher relevance of the entity to the dataset. Canonical pathway maps represent a
set of signaling and metabolic maps for human. All maps are created by manual
curators/scientists from Clarivate Analytics relying on published peer-reviewed
literature. To adjust enrichment results we additionally performed crosstalk
analysis.

Clinical significance of recommended hits. To assess clinical relevance of hits
recommended by our framework, we compared our list to MSK’s FDA-approved
Precision Oncology Knowledge base OncoKB>’. OncoKB assesses genetic altera-
tions by annotating each gene under five categories: therapeutic, prognostic,
diagnostic, resistance, and FDA-levels). Specific definitions can be found in
OncoKB'.

Generation of KO or activation cell lines, plasmids and antibodies. PC-9, II-18,
HCC4006, NCI-H1975 and HCC827 cell lines were cultured at 37 °C and 5% CO,
in RPMI 1640 GlutaMAX media (Gibco, US) supplemented with 10% fetal bovine
serum. For generation of KO cell line pools PC-9, HCC827 and II-18 cells were
transduced with pKLV2-EFla-Cas9Bsd-W (Addgene ID:68343)%° to stably express
Cas9. Transduced cells were subjected to Blasticidin (Gibco, US) selection. To
knockout target genes guide RNAs targeting KCTD5, NF1, PTEN, EZH2 or non-
targeting-control (see Supplementary Table 4) were cloned into pLKV2-
U6gRNAS5(BbsI)-PGKpuro2ABFP-W (Addgene ID:67974) and Cas9-expressing
cell lines were transduced and selected with puromycin (Gibco, US). To activate
MET expression in PC-9 cells the three vector-based CRISPR SAM system® was
used. In brief, viroid’s containing open reading frames of dCas9-VP64 and MS2-
P65-HSF1 as well as target specific guideRNA expression constructs were pur-
chased (SAMVP64BSTV, SAMMS2HYGV and LV06, respectively, Sigma-Aldrich)
and used to stepwise transduce and select PC-9 cells. After each transduction cells
were subjected to respective antibiotic selection (blasticidin, hygromycin, pur-
omycin). Fourteen days after transduction whole-cell lysates of selected cell pools
were analyzed by western blot to confirm CRISPR KO or CRISPR activation of
gene expression using anti-EZH2 (CST, #5246, 1:1000) anti-KCTD5 (proteintech,
15553-1-AP, 1:1000), anti-MET (CST, #8198, 1:1000), anti-NF1(abcam, ab17963,
1:1000), anti-PTEN (CST, #9559, 1:1000), anti-WWTR1(CST, #70148, 1:1000) as
well as loading control antibodies anti-Tubulin (Sigma-Aldrich, T9026, 1:5000) or
anti-Vinculin (Abcam, ab18058, 1:5000). Unprocessed western blot scans are
included as supplementary data in this manuscript.

Viability assay. Two-thousand cells were seeded 24 h prior to treatment into 96-
well plates. Cells were treated with indicated concentrations of DMSO, osimertinib
or ECF-506 and cultured for 4 or 5 days as technical triplicates. For the Osi-
mertinib + Tazemetostat combination, cells were pre-treated with Tazemetostat
for 3 days, followed by treatment with Osimertinib + Tazemetostat for 6 days at
the indicated concentrations. Considering that this experiment was to confirm the
KO readout, it was performed once with three technical replicates (Fig. 6C). Via-
bility was determined by adding CellTiter-Glo Luminescent Cell Viability Assay
(Promega, US) according to manufacturer’s protocol and measuring luminescence
using a SpectraMax plate reader (Molecular Devices, US). Results are visualized as
percent viability of DMSO treated control. Shown are representative results of three
biological replicates.

Flow cytometry-based resistance tracking. For studying the effects of gene KO
on osimertinib resistance, PC-9, II-18 and HCC827 KO cell lines were co-cultured

with respective Cas9-expressing control cells and treated with DMSO or osi-
mertinib (50 nM) for 14 days. Media and drug was replenished every 3-4 days.
Fractions of KO cells relative to control cells were determined by measuring BFP
co-expression in KO cells via flow cytometry at indicated time points. In case of
PC-9 CRISPR activation lines, PC-9 control cells were stably labeled with BFP and
fractions of unstained CRISPR activation cells relative to BFP-positive control cells
were determined by flow cytometry. All experiments were performed as three
technical replicates of two independent guideRNAs per gene as biological repli-
cates. FlowJo 10 was used for analysis of FACS data.

Clonogenic assay. PC-9 cells were seeded in 6-well plates and 24 h later treated
with indicated concentrations of osimertinib or DMSO for 21 days or 10 days,
respectively. Media and treatment was replaced every 3 to 4 days. After indicated
treatment periods cells were PBS washed, fixed (BD Cytofix, BD, US) and stained
with 0.01% (w/v) crystal violet (Sigma-Aldrich,US). Plates were scanned on a
GelCount plate scanner (Oxford Optronics, UK). All experiments were performed
as two technical replicates of two independent guideRNAs per gene as biological
replicates.

Acquired-resistant cell lines. Osimertinib-resistant cell lines were derived from
sensitive parental lines as previously described®. Briefly, cells were plated in
individual 14 mm wells and cultured in growth media containing either low-dose
(10 nM) osimertinib, which was progressively increased to a high-dose treatment
(500 nM) over a 6-week time frame, or treated initially with high-dose osimertinib.
Cells avidly proliferating in high-dose osimertinib were further expanded in media
containing 160 nM osimertinib, banked, and used for subsequent experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data generated, analyzed, and interpreted have been included as part of the code
repository https://github.com/AstraZeneca/skywalkR*°. Specifics have been included in
the Methods section. For clinical data features, aggregated enrichment scores have been
included, but not individual patient-level data as these are proprietary at the time of
drafting the manuscript. However, these trials have been published and appropriately
referenced in the manuscript. We utilized two features from an internal RNAseq study
that we described briefly in the additional methods document. The data itself has been
included in our code repository for reviewers and readers to access. The raw RNAseq
data used in this study is available in the GEO database under accession code
GSE193259. The Knowledge Graph as it was used for this study cannot be released due to
proprietary data included in it. However, the construction of the KG was as described in
Geleta et al.32.

Code availability

SkywalkR source code and documentation can be found at https://github.com/
AstraZeneca/skywalkR?6. Notebooks, illustrating how to generate graph-derived features
based on a biomedical knowledge graph can be found at https://github.com/AstraZeneca/
skywalkR-graph-features®.
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