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In vitro ballooned hepatocytes can 
be produced by primary human 
hepatocytes and hepatic stellate 
cell sheets
Nobuhiro Hasui1,2, Katsuhisa Sakaguchi3*, Tetsuya Ogawa4, Yoshihiro Sakamoto5 & 
Tatsuya Shimizu1*

Despite the increasing prevalence of Nonalcoholic steatohepatitis (NASH) worldwide, there is no 
effective treatment available for this disease. “Ballooned hepatocyte” is a characteristic finding 
in NASH and is correlated with disease prognosis, but their mechanisms of action are poorly 
understood; furthermore, neither animal nor in vitro models of NASH have been able to adequately 
represent ballooned hepatocytes. Herein, we engineered cell sheets to develop a new in vitro model 
of ballooned hepatocytes. Primary human hepatocytes (PHH) and Hepatic stellate cells (HSC) were 
co-cultured to produce cell sheets, which were cultured in glucose and lipid containing medium, 
following which histological and functional analyses were performed. Histological findings showed 
hepatocyte ballooning, accumulation of fat droplets, abnormal cytokeratin arrangement, and the 
presence of Mallory–Denk bodies and abnormal organelles. These findings are similar to those of 
ballooned hepatocytes in human NASH. Functional analysis showed elevated levels of TGFβ-1, 
SHH, and p62, but not TNF-α, IL-8. Exposure of PHH/HSC sheets to a glucolipotoxicity environment 
induces ballooned hepatocyte without inflammation. Moreover, fibrosis is an important mechanism 
underlying ballooned hepatocytes and could be the basis for the development of a new in vitro NASH 
model with ballooned hepatocytes.
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Nonalcoholic fatty liver disease (NAFLD) is a metabolic syndrome of the liver and is a general term for diseases 
in which excessive triglycerides are deposited in hepatocytes. It is estimated that in 10% of patients, NAFLD 
progresses to irreversible NASH characterized by inflammation and fibrosis, which may eventually lead to liver 
cirrhosis and cancer1. It has been proposed that the pathogenesis and progression of NAFLD/NASH not only is 
dependent on the genetic background but is also influenced by various environmental factors such as cellular 
stress due to excessive lipid intake, increased insulin resistance, chronic inflammation of the adipose tissue owing 
to obesity, and abnormal secretion of adipocytokines2. The prevalence of NAFLD is over 25% worldwide and 
is increasing with an increase in the obese population1. At present, there is no effective treatment for NASH; a 
high unmet medical need. Therefore, the development of novel drugs for treating this disease is urgently needed.

Rodent models of NASH have been developed and studied since the 1990s when the disease concept was 
framed. However, no animal model completely reflects the pathogenesis of NASH as in humans due to differ-
ences in genetic background and nutrient requirements3. The histological features of NASH include “ballooned 
hepatocytes” (BHs), fat accumulation in the liver, hepatic fibrosis, inflammatory cell infiltration, and hepato-
cyte necrosis. In particular, human BHs are characterized by rounding and enlargement of the entire cell and 
thinning of the cytoplasm (“ballooning”) and eosinophilic body in hematoxylin–eosin (HE) staining. These 
features are specific to humans, unlike mouse BHs, which are enlarged mainly due to an increase in the number 
of accumulated microvesicles4. BHs in human NASH are characterized by ballooning and the accumulation of 
fat droplets in hepatocytes, abnormal cytokeratin (CK) arrangement, abnormal organelles, and Mallory–Denk-
body (MDB) formation5.

Recently, in vitro models of NASH have been developed using tissue engineering techniques such as spheroid 
and perfusion culture of human liver-derived cells to circumvent the problems associated with animal models6. 
Whereas several in vitro models show morphological features that are specific to human NASH, such as fat accu-
mulation and fibrosis7–9, none of them have been able to generate BHs. In humans, the number of BHs correlates 
with the severity of NASH, and its semi-quantification is reflected in the NAFLD activity score. Since BHs are 
potentially a therapeutic target10, it is important to develop a model that could produce BHs in vitro. Although 
BHs are clinically important in the development and progression of NASH, the mechanisms underlying BHs 
formation are poorly understood.

We previously demonstrated that in vitro cultured primary human hepatocyte (PHH) sheets can maintain 
liver functions for a long time11. We also found that exposure to high glucose and insulin levels induces balloon-
ing in PHHs co-cultured with normal human dermal fibroblast (NHDF)12,13.

Herein, we attempted to produce BHs not only with ballooning but also with other features, such as fat accu-
mulation and the presence of Mallory-Denk bodies (MDBs), by fabricating cell sheets with PHH and Hepatic 
stellate cell (HSC), which are originally involved in liver fibrosis. Moreover, we also tried to uncover the mecha-
nism underlying BH formation and the molecules involved.

Materials and method
Hepatic stellate cell culture.  HSCs (#HMFHSC, Lot: HMFHSC8275) were purchased from Thermo 
Fisher Scientific (Waltham, MA, USA). HSCs (passage 1) were seeded at a density of 5 × 104 cells/cm2 on colla-
gen-coated dishes (#4020-010, IWAKI, Tokyo, Japan) and maintained in Stellate Cell Medium (#5301, ScienCell 
Research Laboratories, San Diego, CA, USA) in an incubator with 5% CO2 at 37 °C.

Fabrication of PHH/HSC sheets.  The protocol is illustrated in Fig. 1. PHHs (#HMSPTS, Lot: Hu8200, 
Hu8317, Hu 1652) were purchased from Thermo Fisher Scientific. Temperature-responsive culture dishes 
(UpCell, #CS3007, #CS3002) were purchased from CellSeed (Tokyo, Japan). On the day of PHH seeding (day 4), 
the dishes were coated with collagen (70 μg/cm2; #354236, Corning, New York, NY, USA) and iMatrix (0.25 μg/
cm2; #892011, Takara Bio, Shiga, Japan) and incubated at 37 °C for 5 h. The coated dishes were washed twice 
with PBS at room temperature. PHHs were thawed in Cryopreserved Hepatocyte Recovery Medium (#CM7000, 
Thermo Fisher Scientific) and seeded on the coated UpCell dishes at a density of 6 × 104 cells/cm2 and cultured 
overnight in an incubator at 37 °C with 5% CO2. PHHs were maintained in high-glucose DMEM (#10–017-CV, 
Corning) supplemented with 10% FBS (#10270-016, Gibco), 1% penicillin–streptomycin (#300-002-CI, Corn-
ing), 1.5% HEPES (#15630-080, Gibco), 0.2 µM glucagon (#G2044, Sigma-Aldrich, St. Louis, MO, USA), 0.1 μM 
dexamethasone (#D8893, Sigma-Aldrich), and 1% ITS premix (625 μg/mL insulin, 625 μg/mL human trans-
ferrin, 0.625 μg/mL selenous acid, 535 μg/mL linoleic acid, and 125 mg/mL bovine serum albumin; #354352, 
Corning) (PHH maintain medium). On the next day (day 3), HSCs (passage 2) were seeded at a density of 
12 × 104 cells/cm2 on UpCell dishes and were co-cultured overnight in an incubator at 37 °C and with 5% CO2.
The medium was replaced daily until the day of sheet fabrication (day 0). On the day before sheet preparation 
(day 1), 6-well collagen I-coated microplates (#4810-010, IWAKI) were coated with iMatrix (0.25 μg/cm2) and 
incubated overnight at 37 °C. On the day of sheet fabrication (day 0), the microplates were washed twice with 
PBS at room temperature. UpCell dishes containing the co-culture were cooled at 20 °C for 30 min, following 
which the PHH/HSC sheets were detached from the surface. The detached sheets were transferred to the 6-well 
collagen I-coated microplates.

Toxicity assay.  We prepared four different types of media (A–D) to analyze the effects of glucose and free 
fatty acids (FFA) on hepatocytes. Normal glucose/insulin medium was composed of 1 g/L glucose and 6.25 ng/
mL insulin (physiological concentration). High glucose/insulin medium was composed of 4.5 g/L glucose and 
6.25 μg/mL insulin. FFA medium contained 300 μM oleic acid and 150 μM palmitic acid (Kohjin Bio, Saitama, 
Japan).
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A; Normal glucose/insulin/FFA (−) (Normal medium)
B; High glucose/insulin/FFA (−) (Glucotoxicity medium)
C; Normal glucose/insulin/FFA (+) (Lipotoxicity medium)
D; High glucose/insulin/FFA (+) (Glucolipotoxicity medium)

Details of medium are described in the Supplementary Information.
PHH/HSC sheets were cultured in 1 mL of the indicated medium (A–D) in an incubator with 5% CO2 at 

37 °C for 11 days. The medium was replaced daily.

Simple co‑culture.  To confirm that the cell sheets maintained hepatocyte function, PHH/HSC simple co-
culture was performed on the collagen dishes using glucolipotoxicity medium group as a control group. The 
seeding density was the same as that of cell sheets. Details regarding the co-culture are presented in the Sup-
plementary Information.

Morphological analysis.  PHH/HSC sheets were imaged on day 11 using digital microscopy (VHX-900, 
KEYENCE Ltd., Osaka, Japan) and optical coherence tomography (IVS-2000, KEYENCE Ltd.). The area of the 
PHH/HSC sheets was analyzed using ImageJ ver. 1.53 (NIH, Bethesda, MD, USA). The sheet thickness of was 
calculated from the cross-sectional area by randomly imaging three different areas in each sheet using optical 
coherence tomography.

Histological analysis.  The PHH/HSC sheets were fixed with 4% paraformaldehyde (PFA), paraffin embed-
ded, and cut into 5-μm thick slices. HE staining, E-cadherin/4′, 6-diamidino-2-phenylindole (DAPI) staining, 
Vimentin/DAPI staining, CK8/18 staining, alpha-smooth muscle actin (αSMA) staining, and p62 staining 
were performed on the fixed sections. Immunofluorescence staining was performed for E-Cadherin/DAPI and 
Vimentin/DAPI. Immunohistochemical staining using 3,3′-Diaminobenzidine-4HCI (DAB) was performed to 
detect CK8/18, αSMA, and p62. Formalin-fixed human liver (#HLFFPE-B, lot: HL170064) was purchased from 
Samsara Sciences (Solana Beach, CA, USA) and used as a positive control for p62 staining (Fig. S1). Details 
of the immunohistochemical analysis, antibodies, and dilutions are described in the Supplementary Informa-
tion (Table S1). To evaluate hepatocyte ballooning, sections were stained with E-cadherin/DAPI and randomly 
imaged using a fluorescence microscope (BX51, Olympus, Tokyo, Japan). The cross-sectional area of hepatocytes 
with stained nuclei was measured using the ImageJ software. At least 15 hepatocytes were analyzed in each 
experiment under each condition. The average value was set at n = 1. The number of PHHs counted for each 
condition is described in the Supplementay Information (Table S2). To visualize accumulated lipids, oil red O 
staining was performed after fixing the sheets with 4% PFA. Briefly, oil red O powder (#154-02072, Wako) was 
dissolved in 60% isopropanol to prepare the staining solution. The staining solution was added onto PHH/HSC 

Figure 1.   Experiment protocol and images. PHH Primary human hepatocyte, HSC Hepatic stellate cells.
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sheets and incubated for 20 min, following which the staining solution was washed off, and the sheets were 
observed under a phase-contrast microscope (ECLIPSE TS2, Nikon Ltd, Tokyo, Japan). To quantify the fat accu-
mulation, oil red O stain was eluted from the sheets using 100% isopropanol and the absorbance was measured 
at 492 nm using a microplate reader. In addition, fat staining using the osmium method was performed for long-
term storage. Oil red O staining and the osmium method are described in the Supplementary Information. For 
transmission electron microscopy (TEM), PHH/HSC sheets were fixed with 2% PFA and 2% glutaraldehyde in 
0.1 M phosphate buffer. The samples were then washed and postfixed with 2% osmium tetroxide (0.1 M). Dehy-
dration, infiltration, embedding, and polymerization were then performed. Samples were ultra-thin sectioned 
at 70 nm using an ultramicrotome (Ultracut UCT; Leica Vienna, Austria) and stained with 2% uranyl acetate 
followed by secondary staining with lead stain solution (#18-0875, Sigma-Aldrich). The samples were observed 
under TEM (JEM-1400Plus, JEOL Ltd., Tokyo, Japan).

ELISA and assay.  The bioactive substances present in the culture supernatant were analyzed using the TGF-
β1 ELISA kit (#KE00002, Protein Tech, Rosemont, IL, USA), IL-8 ELISA kit (#KE00006, Protein Tech), and 
Sonic hedgehog (SHH) ELISA kit (#ab100639, Abcam) according to the manufacturer’s protocol. The samples 
were analyzed on day 3 or day 4 when ballooning was first observed (Fig. S2). On day 11, PHH/HSC sheets were 
homogenized, and protein lysates were prepared. Lysates were analyzed using the p62 ELISA kit (#ADI-900-212, 
ENZO New York, NY, USA), and protein carbonyl ELISA kit (#STA-310, CELL BIOLABS, San Diego, CA, USA) 
according to the manufacturer’s protocol. The BCA protein assay kit (#T9300A, Takara Bio) was used to deter-
mine the protein concentration in the lysates. The Human Albumin ELISA kit (#E88-129, Bethyl Laboratories, 
Inc., Waltham, MA, USA) and Urea assay kit (#DIUR-100, BioAssay Systems, Hayward, CA, USA) were used to 
assess hepatocyte function. The samples were analyzed on days 0, 1, 5, and 10.

Real‑time PCR.  RNA was extracted from day 11 PHH/HSC sheets using the RNeasy Plus Mini Kit (#74134, 
QIAGEN, Venlo, Netherlands) and quantified using the NanoDrop One (Thermo Fisher Scientific). cDNA was 
prepared using the High-Capacity cDNA Reverse Transcription Kit (#4368814, Thermo Fisher Scientific) and 
ProFlex™ PCR System (Applied Biosystems). RT-PCR was performed using the ViiATM 7 Real-Time PCR Sys-
tem (Applied Biosystems) with glyceraldehyde-3-phosphate dehydrogenase (GAPDH: Hs02786624_g1), TNFα-
induced protein 8 (TNFAIP8: Hs02621508_s1), and CYP1A2 (Hs00167927_m1). TaqMan assays (Thermo 
Fisher Scientific). GAPDH was used as internal normalizer.

Statistical analyses.  All experiments were performed at least thrice. The results were expressed as 
mean ± standard error of the mean (SEM). Intergroup differences between glucose and FFA exposed groups were 
analyzed using two-way ANOVA with Tukey’s post hoc test (for the comparison of more than two groups). All 
analyses were performed using the GraphPad Prism software (version 9.0, La Jolla, CA, USA). A p value < 0.05 
was considered statistically significant.

Results
Effect of glucose and FFA on morphology of PHH/HSC sheets.  Following PHH and HSC co-cul-
ture, strong aggregation occurred, and cells were detached from the UpCell culture dishes, leading to the forma-
tion of PHH/HSC sheets (Fig. 2A). We tested the effects of glucose and FFA on the fabricated PHH/HSC sheets. 
In the non-FFA-treated group, the cells were more loosely connected to each other than in the FFA-treated 
group (Fig. 2B), whereas the area of PHH/HSC sheets was smaller in the FFA-treated-group (Fig. 2C) on day 11. 
There was a statistically significant difference in the FFA group (two-way ANOVA; FFA factor: F(1,8) = 55.19, 
p < 0.0001; glucose factor: F(1,8) = 3.494, p = 0.0985; FFA × glucose: F(1,8) = 1.106, p = 0.3237). The thickness 
of the PHH/HSC sheets was more in the glucolipotoxicity group than in other groups (Fig. 2D,E). There was 
a statistically significant difference in the glucose and FFA treatment groups [two-way ANOVA; FFA factor: 
F(1,8) = 85.67, p < 0.0001; glucose factor: F(1,8) = 59.97, p < 0.0001; FFA × glucose (4,8): F = 2.595, p = 0.1459]. 
These results indicate that FFA causes sheet aggregation and hyperglycemia along with FFA cause sheet thicken-
ing.

Effects of glucotoxicity, lipotoxicity, and glucolipotoxicity on BH.  HE staining showed cell layer-
ing and enlargement of PHHs with thinning of cytoplasm (ballooning) in the glucotoxicity, lipotoxicity, and 
glucolipotoxicity groups on day 11 (Fig.  3A). Vimentin/DAPI staining revealed Vimentin expression in the 
HSCs in each medium condition and was especially strong in Glucolipotoxicity (Fig. S3). Quantification of the 
cross-sectional area of PHHs was performed by E-Cadherin/DAPI staining. Results showed that PHHs were 
more than twofold enlarged in the glucolipotoxicity group than in the normal group (Fig. 3A,B). There was a 
statistical difference in the FFA group (two-way ANOVA; FFA factor: F(1,2) = 22.63, p = 0.0415; glucose factor: 
F(1,2) = 4.263, p = 0.1750; FFA × glucose: F(1,2) = 0.6088, p = 0.5169). αSMA staining labelled all cells, includ-
ing periportal hepatocytes, in day 0 samples. At day 11, in the non-FFA-treated group, polarity in staining was 
observed as αSMA was localized to the basement membrane side, whereas in the FFA-treated group, staining 
was observed in all cells, including the periportal hepatocytes (Fig. 3A). Oil red O staining showed fat accumula-
tion in the FFA-treated group (Fig. 4A,B). There was a statistically significant difference between the glucose and 
FFA treatment groups (two-way ANOVA; FFA factor: F(1,5) = 116.7, p = 0.0001; glucose factor: F(1,5) = 6.868, 
p = 0.0471; FFA × glucose: F(1,5) = 0.3450, p = 0.5825). Osmium method evaluation and electron microscopy 
revealed that fat droplets were not observed in HSCs, only in PHH (Fig.  4C,D). These results indicate that 
FFA induce the ballooning of PHHs, and hyperglycemia and FFA induce fat accumulation. Moreover, αSMA is 
strongly expressed during sheet detachment and FFA resolves polarity in αSMA localization.
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Figure 2.   PHH/HSC sheet analysis. (A) PHH/HSC sheet fabrication. PHHs and HSCs were co-cultured on 
35 mm or 24-well UpCell culture plates at 37 °C for 4 days. After, the UpCell plates were incubated at 20 °C 
for 30 min following which the PHH/HSC sheets were detached from the surface, contracted, and became 3D. 
Scale bar, 10 mm. (B) PHH/HSC sheet on day 11 fabricated on 35 mm UpCell dishes, viewed from the top. 
Scale bar, 10 mm. (C) Area of the PHH/HSC sheet fabricated on 24-well UpCell dishes. The area of sheets in 
the lipotoxicity and glucolipotoxicity groups was smaller than that in control and glucotoxicity groups, n = 9, 3 
independent experiments, **p < 0.01, *p < 0.05. PHH: Primary human hepatocyte. (D) PHH/HSC sheet on day 
11 fabricated on 24-well UpCell dishes, viewed from the side (OCT). Scale bar, 200 μm. (E) Thickness of the 
PHH/HSC sheet fabricated on 24-well UpCell dishes. The thickness was highest in the glucolipotoxicity group, 
n = 9, 3 independent experiments, **p < 0.01.

Figure 3.   Histological analysis. (A) Representative images of HE staining and immunohistochemistry staining. 
Green: E-Cadherin, Blue: DAPI. Scale bar, 100 μm. HE: Hematoxylin–eosin, αSMA: Alpha-smooth muscle 
actin. (B) Evaluation of PHH ballooning. Ballooning was largest in the glucolipotoxicity group, n = 3, *p < 0.05. 
PHH: Primary human hepatocyte.
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Visualization of MDBs.  HE and CK8/18 staining showed eosinophilic bodies and CK8/18-positive aggre-
gates in the BHs. p62 staining showed the presence of MDBs in the glucotoxicity and glucolipotoxicity groups 
(Fig. 5A). The expression level of p62 was markedly increased in the FFA-treated group (Fig. 5B). There was 
a statistically significant difference in the FFA and glucose treatment groups (two-way ANOVA; FFA factor: 
F(1,3) = 117.8, p = 0.0017; glucose factor: F(1,3) = 10.07, p = 0.0503; FFA × glucose: F(1,3) = 0.00915, p = 0.9963). 
TEM results showed MDBs as a dark-colored granular structure with radial distribution in the glucotoxicity and 
lipotoxicity groups (Fig. 5C). In addition, enlarged mitochondria with crystalline structures were observed in 
the glucolipotoxicity group (Fig. 5D).

Functional analysis.  TGF-β1 secretion was the highest in the glucolipotoxicity group (Fig. 6A). There was 
a statistically significant difference in both glucose and FFA treatment groups (two-way ANOVA; FFA factor: 
F(1,5) = 73.66, p = 0.0004; glucose factor: F(1,5) = 34.93, p = 0.0020; FFA × glucose : F(1,5) = 1.121, p = 0.3382). 
SHH secretion was markedly elevated in the FFA-treated group (Fig. 6B). There was a statistically significant 
difference in both glucose and FFA treatment groups (two-way ANOVA; FFA factor: F(1,5) = 108.8, p < 0.0001; 
glucose factor: F(1,5) = 0.02621, p = 0.8767; FFA × glucose: F(1,5) = 0.6917, p = 0.4374). Moreover, IL-8 secretion 
was decreased in the FFA-treated group (Fig. 6C). There was a statistically significant difference in the FFA group 
(two-way ANOVA; FFA factor: F(1,6) = 19.68, p = 0.0044; glucose factor: F(1,6) = 0.4651, p = 0.5207; FFA × glu-
cose: F(1,6) = 3.377, p = 0.1157). Protein carbonyl production and TNFα-IP8 expression levels were not signifi-
cantly different between the groups (Fig. 6D,E). These results indicate that hyperglycemia and FFA induce the 
secretion of the fibrosis factor TGF-β1, and FFA induces SHH, but have no effect on inflammatory cytokines 
and oxidative stress.

Hepatocyte function in the PHH/HSC sheets.  Albumin secretion and urea synthesis were immedi-
ately deactivated in the simple co-culture, while they were maintained in cell sheets. The activity of CYP1A2 on 
day 11 was maintained compared to day 1 even in the presence of fatty acids. (Fig. S4).

Discussion
The presence of a BH is an important finding in the histological diagnosis of human NASH. BHs are considered 
a special form of cellular degeneration that is caused by the accumulation of fatty acids and glycogen, abnormal 
protein accumulation due to unfolded protein response dysfunction, and autophagy suppression. However, the 
mechanism underlying BH formation is not well understood5,14–17. Histological features of BHs include hepato-
cyte ballooning (1.5- to twofold increase in size compared to normal hepatocytes), accumulation of fat droplets, 
abnormal arrangement of CK, abnormalities in organelles such as those in the mitochondria and endoplasmic 
reticulum, and the presence of MDBs5,18–20. In this study, we found that the exposure of PHH/HSC sheets to 
a glucolipotoxicity environment resulted in the production of BHs with features similar to those observed in 
human NASH. Functional analysis showed the involvement of fibrosis factors such as SHH and TGF-β1 but not 
the inflammatory cytokines such as TNFα and IL-8. Interestingly, BH was produced without the involvement 
of Kupffer cell (KC) or inflammatory cytokines. These results suggest that fibrosis is the major factor whereas 

Figure 4.   Evaluation of fat drop. (A) Representative images of oil red O staining. Scale bar, 200 μm. (B) 
Quantification of oil red O staining. Lipotoxicity and glucolipotoxicity groups showed significantly more oil 
red O accumulation than control and glucotoxicity groups, n = 6, 3 independent experiments, **p < 0.01. (C) 
Representative images of fat drops (Osmium method). Red arrow indicates fat drop. Scale bar, 100 μm. (D) 
Representative images of TEM. Fat accumulation was observed in the glucolipotoxicity group. Scale bar, 10 μm. 
N: nuclear, FD: fat drops.
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inflammation is a supporting factor in BH formation. This observation is supported by the pathological correla-
tion between fibrosis and BH formation21,22, and both correlate with clinical outcomes10.

Although fibrosis is the most important factor in BH formation, it is not well understood why exposure of 
PHH/HSC sheets to a glucolipotoxicity environment results in BH formation. In a previous study, it was shown 
that ballooning did not occur in co-culture sheets with 3T3-J2 cells12, which have been used as a feeder for main-
taining PHH function23, but ballooning did occur in co-culture with NHDF, a fibroblast cell line12. These results 
suggest that fibrosis, hyperglycemia, and insulin resistance are important for ballooning. One of the factors that 
could produce BH was the change of co-culture cells to HSCs. HSCs are non-parenchymal cells of the liver and 
have a variety of functions24 One pathway of HSCs is activated by SHH, which functions as a protection against 
apoptosis when the liver is damaged, and are transformed into myofibroblasts25, to produce extracellular matrix 
(ECM) by increasing desmin and αSMA24. After ECM production, activated HSCs regress to inactive forms or 
undergo apoptosis26. However, HSCs continue to be activated under chronic damage such as fatty acid and oxida-
tive stress and produce excessive ECM while further producing fibrosis-inducing factors such as TGF-β, causing 
liver fibrosis24. It has also been reported that hyperglycemia and insulin resistance indirectly promote fibrosis27. 
The action of HSCs as fibroblasts, chronic stimulation by fatty acids, and indirect effects of hyperglycemia and 
insulin resistance may have been factors involved in BH formation. Since ballooning does not occur in simple 
co-cultures28,29, it is assumed that there are some factors that lead to the production of BH in PHH/HSC sheets. 
We hypothesized that cells in the sheet will become three-dimensional (3D). This is supported by our observation 
that cells in the glucotoxicity, lipotoxicity, and glucolipotoxicity groups were layered compared to the normal 
group. Moreover, the 3D PHH/HSC sheets better represent the complex human liver due to enhanced cell-to-
cell interaction11,30,31. Recently, the sinusoidal pressure hypothesis has been proposed, and a correlation between 
pressure and fibrosis has been shown32. We suspect that aggregation of PHH/HSC sheets during detachment 
exerts a strong force on cells (Fig. 2A), which in turn triggers fibrosis and HSC activation. In support of this, we 
observed that αSMA staining on day 0 of sheet fabrication showed strong activation of HSCs (Fig. 3A). During 
PHH/HSC sheet fabrication in the absence of FFA, αSMA was mainly localized at the basal side, while in the pres-
ence of FFA, αSMA showed no polarity and was localized to all regions including the periphery of hepatocytes 

Figure 5.   Identification of MDBs in vitro. (A) Representative images of HE staining and immunofluorescence 
staining. Eosinophilic bodies and CK8/18 aggregates were observed in glucotoxicity, lipotoxicity, and 
glucolipotoxicity groups. However, p62-positive bodies were identified only in the glucotoxicity and 
glucolipotoxicity groups. Red arrows indicate MDBs. Scale bar, 100 μm in normal views. Scale bar, 50 μm in 
enlarged views. HE: Hematoxylin–eosin, CK: Cytokeratin. (B) p62 protein quantification in PHH/HSC sheets 
by ELISA. p62 levels were significantly higher in the lipotoxicity and glucolipotoxicity groups compared to 
control and glucotoxicity groups. n = 4, 3 independent experiments, **p < 0.01, *p < 0.05. (C) Representative 
images of TEM. Red arrows indicate MDBs. MDBs were observed in the glucotoxicity and glucolipotoxicity 
groups. Scale bar, 10 μm. N: nuclear. (D) Representative images of TEM. Giant mitochondria was observed 
in the glucolipotoxicity group. Scale bar, 2 μm. M: mitochondria, GM: giant mitochondria with crystalline 
inclusion.
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(Fig. 3A). Thus, during sheet fabrication, stress due to external forces and glucolipotoxicity environment may 
have contributed to BHs formation.

MDBs are not specific to NASH but are also observed in various other diseases such as alcoholic steato-
hepatitis, liver cell carcinoma, and Wilson’s disease33. MDBs are thought to be formed as a result of the complex 
interaction between several factors, such as fibrosis, inflammation, suppression of autophagy, and cellular stress. 
All these factors lead to an imbalance in protein homeostasis within the cell and accumulation of abnormal 
intracellular proteins such as ubiquitin and p62 in addition to CK33–35. However, the detailed underlying mecha-
nisms remain unclear. Autophagy, a mechanism through which homeostasis is maintained by the degradation 
of unwanted cytoplasmic components and abnormal proteins, is thought to be important for MDB formation36. 
In general, damaged organelles and abnormal proteins are modified with p62 and degraded. Once autophagy is 
inhibited, degradation cannot be performed, and p62 accumulates in the cell, which leads to MDB formation37. 
Histological and functional analyses in our study showed that Ballooning, fibrosis, and fat accumulation are 
mainly induced by FFA exposure. The presence of MDBs suggest the involvement of hyperglycemia and hyper-
insulinemia because these bodies appeared in the glucotoxicity and glucolipotoxicity groups. Interestingly, MDBs 
appeared in the glucotoxicity group, even though autophagy was only mildly suppressed as evidenced by a 
slight increase in p62 expression. It might be possible that mechanisms involved in autophagy suppression are 
different in PHHs and PHH/HSC sheets. It has been reported that autophagy is suppressed in hepatocytes with 

Figure 6.   Functional analyses. (A) Evaluation of TGF-β1 levels in culture supernatant by ELISA. TGF-
β1 levels were significantly higher in lipotoxicity and glucolipotoxicity groups compared to control and 
glucotoxicity groups. n = 6, 3 independent experiments, **p < 0.01, *p < 0.05. (B) Evaluation of SHH levels in 
culture supernatants by ELISA. SHH levels were significantly higher in lipotoxicity and glucolipotoxicity groups 
compared to control and glucotoxicity groups. n = 7, 3 independent experiments, **p < 0.01, *p < 0.05. SHH: 
Sonic hedgehog. (C) Evaluation of IL-8 levels in culture supernatant by ELISA. IL-8 levels were significantly 
higher in the lipotoxicity and glucolipotoxicity groups compared to control and glucotoxicity groups. n = 6, 3 
independent experiments, **p < 0.01 *p < 0.05. (D) Evaluation of protein carbonyl levels in PHH/HSC sheet 
lysates by ELISA. Protein carbonyl levels were not significantly different between groups. n = 4. (E) Evaluation of 
TNFα-IP8 mRNA expression in PHH/HSC sheets by RT-qPCR. GAPDH was used as normalizer. No significant 
difference was observed between groups. n = 3, 3 independent experiments.
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fat accumulation in human NASH38, which is consistent with the results of this study. We investigated the pres-
ence of MDBs in PHHs from three different donors and found that MDBs were present in PHHs from only one 
donor (HU8317), even though all donors showed BH phenotypes such as ballooning and fatty degeneration. 
Clinically, MDBs have been reported only in 10%–70% of patients with NASH33,39. Reportedly, MDBs are par-
ticularly difficult to observe in pediatric NASH40 and in cases of acute liver injuries such as acute hepatitis and 
drug poisoning33. This suggests that aging-related cumulative oxidative injury or genetic variables may play a 
contributing role. The background of the PHH lot used in this experiment was reviewed (Table S3), but no clear 
factor causing donor differences was found. On the other hand, in vitro, p62 aggregation by NF-κB activation41 
and dysfunction of the ubiquitin–proteasome system are relevant to MDB33. Therefore, there may be differences 
in the expression of ubiquitin and NF-κB among lots.

Although various molecules are involved in NASH development and progression, the key factors are thought 
to be metabolic abnormalities due to hepatocyte steatosis, progression of fibrosis due to HSC activation, and 
inflammatory stimulation by KCs2. This study has some limitations. Our PHH/HSC model Our PHH/HSC 
model only partially represented NASH; i.e., it only demonstrated BHs. It could partially reproduce hepatocyte 
steatosis and fibrosis but could not reproduce inflammation. Since no inflammation was observed in our in vitro 
model, oxidative stress and endoplasmic reticulum stress could not be detected as well. Further, reportedly, KCs 
and inflammatory cytokines can cause fibrosis and cellular damage42,43. Therefore, a tri-culture model with KCs 
is essential to better reproduce human NASH, and further research is required to evaluate cell behavior in a 
tri-culture model. Our model could produce BHs and fibrosis in approximately 2 weeks; therefore, it could also 
be used as a fibrosis model with BHs13. Furthermore, patients with MDBs have been reported to have a worse 
prognosis, and thus, the presence of MDBs can be a clinically important indicator44. Hence, the use of healthy 
hepatocytes from the donors in this model and screening for the appearance of MDBs may be applied to predict 
the prognosis of the donor after future development of NASH.

In summary, in vitro BH can be produced by exposing PHH/HSC sheets to a glucolipotoxicity environment. 
BH formation in this model is not due to inflammatory cytokines production but due to transformation of cells 
to a 3D structure and fibrosis. Our model will further help in understanding the mechanisms underlying BH 
formation. In the future, this model could be further developed by incorporating inflammatory cells in the PHH/
HSC sheets and creating a new type of in vitro NASH model with BHs.

Data availability
Data supporting the findings of this study are available in the article and Supplementary Information files, or 
from the corresponding author upon request.
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