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Abstract
Purpose  Predicting the survival of patients diagnosed with glioblastoma (GBM) is essential to guide surgical strategy and 
subsequent adjuvant therapies. Intraoperative ultrasound (IOUS) can contain biological information that could be correlated 
with overall survival (OS). We propose a simple extraction method and radiomic feature analysis based on IOUS imaging 
to estimate OS in GBM patients.
Methods  A retrospective study of surgically treated glioblastomas between March 2018 and November 2019 was performed. 
Patients with IOUS B-mode and strain elastography were included. After preprocessing, segmentation and extraction of 
radiomic features were performed with LIFEx software. An evaluation of semantic segmentation was carried out using the 
Dice similarity coefficient (DSC). Using univariate correlations, radiomic features associated with OS were selected. Sub-
sequently, survival analysis was conducted using Cox univariate regression and Kaplan–Meier curves.
Results  Sixteen patients were available for analysis. The DSC revealed excellent agreement for the segmentation of the 
tumour region. Of the 52 radiomic features, two texture features from B-mode (conventional mean and the grey-level zone 
length matrix/short-zone low grey-level emphasis [GLZLM_SZLGE]) and one texture feature from strain elastography 
(grey-level zone length matrix/long-zone high grey-level emphasis [GLZLM_LZHGE]) were significantly associated with 
OS. After establishing a cut-off point of the statistically significant radiomic features, we allocated patients in high- and 
low-risk groups. Kaplan–Meier curves revealed significant differences in OS.
Conclusion  IOUS-based quantitative texture analysis in glioblastomas is feasible. Radiomic tumour region characteristics 
in B-mode and elastography appear to be significantly associated with OS.
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Introduction

Glioblastomas account for approximately 80% of all brain 
neoplasms. The overall survival (OS) is estimated to be 
around 15 months despite continuous efforts to find new and 
more effective treatments [1]. For this reason, one strategy to 
optimise the therapeutic approach would advocate for adapt-
ing the extent of resection and adjuvant therapies of patients 
to their specific life expectancy.

Nowadays, the union of radiomics and artificial intelli-
gence seeks to establish tumour patterns by analysing pre-
operative magnetic resonance images (MRI) and correlating 
the radiomic features with OS [2, 3].

Intraoperative ultrasound (IOUS) has proven to be a 
handy tool for guiding tumour resection [4]. Advanced 
modalities, such as contrast-enhanced ultrasound (CEUS), 
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intraoperative ultrasound elastography (IOUS-E), and navi-
gated three-dimensional (3D) ultrasound (US), currently 
make it possible to exploit the full potential of this versatile 
and low-cost imaging technique to achieve maximal safe 
tumour resections [5–11].

IOUS-E is an ultrasound modality that allows in vivo 
analysis of the elasticity of tissues. It has been used for sev-
eral years in liver, breast, and thyroid pathology [12–14]. 
IOUS-E application in neuro-oncology is relatively new. 
Several publications highlight its advantages and propose a 
histological correlation [15, 16].

We hypothesise that IOUS images in both B-mode and 
strain elastography can show tumour texture features cor-
related with OS in glioblastomas.

Methods

A retrospective analysis of patients who underwent surgery 
from March 2018 to November 2019 and had a confirmed 
histopathological diagnosis of glioblastoma was performed. 
Cases with IOUS studies were included. Only cases in which 
a gross total resection was achieved, followed by the Stupp 
protocol treatment, were included [17]. The primary end-
point was overall survival (OS), which was defined as the 
number of days from the initial pathological diagnosis to 
death (censored = 1) or the last date that they were known 
to be alive (censored = 0). Stereotactic biopsies, partial or 
subtotal resections, tumour recurrence, and patients who 
could not complete the adjuvant treatment were excluded.

Image acquisition and processing

The US equipment was the Hitachi Noblus model with a 
C42 probe at a frequency range of 4–8 MHz, scan width of 
20 mm radius, and 80° field-of-view (FOV) scan angle. The 
acquisition of IOUS images was carried out following the 
methods detailed in previous publications [16, 18]. Ultra-
sound images were acquired after craniotomy and before 
dural opening. The ultrasound probe was protected with 
sterile sheets and positioned perpendicularly over the dura. 
First, we localised the tumour and the peritumoural areas 
using B-mode. Then the images were acquired in elastog-
raphy mode. Compressions were performed over the dura, 
with the goal of maintaining a constant rhythm and intensity. 
Manual compression amplitudes and cycle speeds may influ-
ence the quality of the elastograms. Too fast compression 
cycle resulted in poor image quality. Larger-amplitude com-
pressions appeared to produce elastograms demonstrating 
less strain contrast between the brain and the tumour tissue 
but more strain at their boundary. Lower-amplitude compres-
sions resulted in images showing better stiffness contrast. 
When slower palpations were applied, tumour heterogeneity 

was far more obvious on the elastograms. In addition, the 
strain propagated far deeper, improving the image definition 
in deep tissue. Therefore, the optimal parameters seemed 
to be a compression cycle of 0.5 s and axial displacement 
of no more than 5 mm. One way to verify that compres-
sions meet these frequency and amplitude criteria is through 
the representation of the compression waves shown by the 
equipment (Fig. 1).

Strain ultrasound generates colour maps in real time 
translucently superimposed on the conventional B-mode 
images. These images, called elastograms, were acquired in 
different projections with the intention to cover the tumour, 
the adjacent parenchyma with signal alteration, and the 
apparently healthy brain. The colorimetric scale of these 
images assigns a value ranging from 0 to 256, with 0 (soft) 
corresponding to red and 256 (hard) corresponding to blue.

The images in B-mode and strain elastography acquired 
concurrently were stored in 8-bit Tagged Image File For-
mat (TIFF). In each case, one slice was chosen, in which 
the largest diameter of the tumour was shown. The images 
were cropped, leaving only the area containing the tumour. 
Later, the image was rescaled to a size of 512 × 512 pixels. 
The elastogram images were converted to hue-saturation-
brightness (HSB) format, extracting the hue component in 
which the elasticity was expressed in greyscale. ImageJ soft-
ware version 1.50i (National Institutes of Health, Maryland, 
USA) was used for this process (Fig. 2a–c).

Afterward, the B-mode image was used to manually seg-
ment the tumour and peritumoural region. We used the open-
source program LIFEx version 6.0 (http://www.lifex​soft.org) 
[19]. Segmentation of the area corresponding to the tumour 
was performed, avoiding cystic/necrotic regions. The peri-
tumoural area with evidently altered echogenicity was also 
segmented (Fig. 2d). These regions of interest (ROIs) were 
saved and exported to be used over the elastograms. The 
segmentations were performed by a neurosurgeon specially 
trained in the acquisition of intraoperative ultrasound images 
and supervised by a senior neuroradiologist.

Evaluation of semantic segmentation and radiomic 
features extraction

The Dice similarity coefficient (DSC) [20] was used as a 
metric to evaluate the semantic segmentation of the two 
regions: tumour and peritumoural area. Segmentations 
labelled as ‘ground truth’ were compared with the ROIs 
drawn by three other neurosurgeons, all of whom had exten-
sive neuroimaging and tumour pathology experience.

The DSC can be def ined by the formula 
QS =

2C

A+B
=

2|A∩B|

|A|+|B|
 , in which A is the number of pixels of 

the reference or ‘ground truth’ ROI, B is the number of 

http://www.lifexsoft.org
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Fig. 1   Illustrative cases of intra-
operative ultrasound images 
and the acquisition technique. 
Elastograms are shown on the 
left of the figure, while images 
acquired in B-mode simultane-
ously are shown on the right. In 
the lower part of the elasto-
grams, the schematic represen-
tation of the compression waves 
is observed on a dimensionless 
scale. a A 55-year-old man 
with right parietal GBM. b A 
64-year-old woman with a right 
parietal GBM. c A 68-year-old 
man with a right temporo-
parietal GBM
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pixels of the evaluated ROI, and C is the number of pixels 
of the overlap area between ROIs A and B (Fig. 2e–f).

In a previous step, the images were pre-processed by 
resampling at 1 × 1 mm size, a median filter was applied to 
reduce noise, and the histogram’s intensities were normal-
ised. Intensity discretisation was also carried out using 256 
grey levels and a relative rescaling of intensities using the 
three-sigma method (± 3 standard deviations [SD]). The next 
step was to extract the radiomic features of the segmented 
regions in both B-mode and elastography. Intensity and tex-
ture features are detailed in Supplementary Table 1.

Statistical analysis

All radiomic features were standardised. Correlation of OS 
with radiomic features was tested using Spearman’s rho 
coefficient, which was selected to ensure all potential mono-
tonic correlations. We removed redundant texture features 
with linear correlation. Thus, only a small number of the 

highest-ranking features were selected. For survival analysis, 
we determined the optimal cutpoint of the statistically signifi-
cant radiomic features to split the data into high- and low-risk 
groups using the cutp function for the survMisc R package. 
The Kaplan–Meier survival curves of the two risk groups were 
then plotted with log-rank tests to compare the curves.

Moreover, the association of radiomic features with OS 
was assessed with a univariate Cox regression. The univari-
ate prognostic performance of each feature measure was 
assessed using the Harrell concordance index (C-index). All 
statistical analyses were performed using R version 3.5.0 (R 
Core Team, Vienna, Austria).

Results

During the study period, a total of 25 patients with glioblas-
tomas underwent surgery. Three patients without an IOUS 
study were excluded. Six patients were excluded, because 

Fig. 2   Example of intraoperative ultrasound images and manual seg-
mentation technique. a Image of B-mode. b Image of the elastogram. 
According to the colour code, the softest tissues appear in green and 
the hardest in blue. c Hue component of the elastogram image. d 
Illustrative case of the segmentation of the tumour (purple) and peri-
tumoural region (yellow). e Illustration of the Sorensen–Dice coef-

ficient. The blue circle represents the reference ROI, and the yellow 
circle represents the ROI drawn by a second observer. In green is the 
overlap area. f Example of the concordance visualisation between two 
segmentations. The overlap of the tumoural ROIs (orange) represents 
an excellent agreement, while the overlap of the peritumoural ROIs 
(purple) shows a wide variability
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they had undergone partial resections/biopsies or they were 
recurrences.

A total of 16 patients were available for analysis. Thir-
teen (81%) were males, and three (19%) were females. The 
mean age was 65.5 ± 9.26 years. The median pre-operative 
Karnofsky Performance Scale (KPS) was 80 (interquartile 
range [IQR] = 10). The median pre-operative tumour volume 
was 16 cm3 (IQR = 31.5). All cases were isocitrate dehydro-
genase (IDH) mutant.

The results of the evaluation of semantic segmentations 
are summarised in Supplementary Table 2. The DSC for 
the tumour region had a median value of 0.9 (IQR = 0.09), 
while that for the peritumoural region was 0.56 (IQR = 0.35).

Because of the wide variability in the peritumoural 
area segmentation, these radiomic characteristics were not 
included in the correlation analysis with OS.

From the tumour region analysis, 52 radiomic features 
were obtained in each modality (B-mode and elastography) 
(Supplementary Table 3). The features that were best cor-
related with the OS were computed for each US modality. 
A correlation matrix of these texture features was gener-
ated to perform a collinearity diagnosis (Fig. 3). Radiomic 
features that were highly correlated (r > 0.8) were elimi-
nated. As a result, in B-mode, conventional mean and the 
grey-level zone length matrix/short-zone low grey-level 
emphasis (GLZLM_SZLGE) showed a strong negative sig-
nificant correlation with OS: r (14) = − 0.70; p = 0.003 and 

r (14) = − 0.62; p = 0.012, respectively. In the elastography 
modality, the grey-level zone length matrix/long-zone high 
grey-level emphasis (GLZLM_LZHGE) showed a moderate 
negative and significant correlation with OS, r (14) = 0.52; 
p = 0.038. Initial tumour volume also showed a negative and 
significant correlation with OS, r (14) = 0.62; p = 0.012.

The results of the Cox univariate analysis are summa-
rised in Table 1. Neither age nor KPS was significantly 
correlated to OS in the univariate analysis. In B-mode, the 
variable conventional intensity mean and GLZLM_SZLGE 
were significantly associated with survival (hazard ratio 
[HR] = 2.84, confidence interval [CI] = 1.42–5.69, p = 0.003 
and HR = 3.59, CI 1.48–8.69; p = 0.005.

For elastography, the GLZLM_LZHGE was signifi-
cantly associated with survival (HR = 2.31, CI 1.16–4.58; 
p = 0.017). Also, pre-operative tumour volume was sig-
nificantly associated with OS (HR = 1.06, CI 1.02–1.10; 
p = 0.003).

Using the radiomic features, a cut-off point was estab-
lished to divide the sample into high- and low-risk survival 
groups (Table 2).

Each group’s survival probability was estimated using 
Kaplan–Meier curves. The survival distributions for the 
three radiomic features were statistically significantly dif-
ferent. For conventional mean χ2 16.5 (1), p < 0.001; for 
GLZLM_SZLGE χ2 14.9 (1), p < 0.001; and for GLZLM_
LZHGE, χ2 8.4 (1), p = 0.004 (Fig. 4).

Fig. 3   Correlation matrix between the best ranked radiomic features and overall survival. a B-mode and b strain elastography. Inside the squares, 
the value of the Spearman coefficient appears in percentage format, as well as the colour scale representing the strength of the correlation
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Table 1   Univariate Cox 
regression for overall survival

HR hazard ratio, KPS Karnofsky Performance Score, GLZLM_SZLGE coventional intensity mean and the 
grey-level zone length matrix/short-zone low gray-level emphasis, GLZLM_LZHGE grey-level zone length 
matrix/long-zone high gray-level emphasis

Variable β HR 95% CI p Likelihood ratio test C-index

Age 0.01 1.01 0.94–1.08 0.77 χ2 = 0.08, df = 1, p = 0.8 0.46
KPS − 0.05 0.95 0.85–1.06 0.333 χ2 = 0.97, df = 1, p = 0.3 0.58
Initial tumor volume 0.06 1.06 1.02–1.10 0.003 χ2 = 10.62, df = 1, p = 0.001 0.80
B-mode
 Conventional mean 1.04 2.84 1.42–5.69 0.003 χ2 = 9.31, df = 1, p = 0.002 0.85
 GLZLM_SZLGE 1.28 3.59 1.48–8.69 0.005 χ2 = 0.48, df = 1, p = 0.002 0.75

Strain elastography
 GLZLM_LZHGE 0.84 2.31 1.16–4.58 0.017 χ2 = 5.02, df = 1, p = 0.02 0.61

Table 2   Kaplan–Meier analysis 
for overall survival and texture-
based groups

OS overall survival, IQR interquartile range, GLZLM_SZLGE coventional intensity mean and the grey-level 
zone length matrixshort-zone low gray-level emphasis, GLZLM_LZHGE grey-level zone length matrix/
long-zone high gray-level emphasis

Radiomic feature Cutpoint Risk groups and 
number of cases

Median OS (IQR) Log-rank test

χ2 p

Conventional mean − 0.1824347 Low = 8 427 (197) 16.5 < 0.001
High = 8 126 (114)

GLZLM_SZLGE − 0.1300415 Low = 12 374 (182) 14.9 < 0.001
High = 4 106 (50)

GLZLM_LZHGE 0.2890771 Low = 13 361 (175) 8.4 0.004
High = 3 109 (86)

Fig. 4   Survival probability estimated by the Kaplan–Meier curves, 
including 95% confidence intervals. Censoring is indicated by verti-
cal marks. Statistical significance was calculated by the log-rank test. 

The comparison groups correspond to the variables: conventional 
mean (a) and GLZLM_ SZLGE (b) from B-mode and GLZLM_
LZHGE (c) from strain elastography
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Discussion

This feasibility study found a significant correlation between 
tumour radiomic characteristics of intraoperative ultrasound 
B-mode and strain elastography with OS in glioblastomas.

Among the strengths of our work, we can say that to the 
best of our knowledge, this is the first study to implement 
quantitative texture analysis of IOUS images in both B-mode 
and strain elastography in brain tumours. This study is also 
the first to attempt to correlate the radiomic features of IOUS 
images with the OS of brain tumour patients.

On the other hand, we verified that the segmentation 
method is sufficiently consistent and accurate to delimit 
the tumour areas, but not peritumoural areas. Although 
limited, our sample is homogeneous, since all patients 
underwent surgery using the same surgical technique (per-
forming complete resections in all cases) and received the 
same treatment protocol. Furthermore, both the US equip-
ment and the parameters used to acquire the intraoperative 
images were the same in all cases.

Advanced image processing and artificial intelligence 
intervention have made great strides in characterising 
brain tumours and developing predictive models of sur-
vival and response to treatment [21]. Preoperative MRI 
images have proven to provide valuable information for 
elaborating such models; however, the difficulty in har-
monisation and variability between processing pipelines 
continues to be a challenge [22].

Even though image quality and resolution could be con-
sidered inferior compared with other imaging techniques 
such as MRI, there is growing evidence that the US image 
contains biological information that can be set as a base 
to create models that allow classification tasks, for exam-
ple, benignity versus malignancy [23]. Also, the capac-
ity of US as a prognostic marker in response to adjuvant 
treatments in breast pathology has recently been evaluated 
[24, 25]. One possible explanation may lie in the fact that 
echogenicity in B-mode and loss of elasticity identified by 
IOUS-E could be associated with cellularity, which, on the 
other hand, is related to tumour aggressiveness.

The main limitation of US is the dependence on the 
explorer and the variability between the parameters used in 
image acquisition among different centres. For this reason, 
image pre-processing is a fundamental step [26].

IOUS imaging facilitates tumour resection, and these 
images can be used to create a radiomic profile that pro-
vides information about the survival and progression of 
these tumours. We emphasise the simplicity of the pro-
cessing and extraction of radiomic variables using a series 
of user-friendly and open source programs.

We are aware of the study limitations, such as the 
small sample size and low representativeness of the entire 

tumour volume when basing the analysis on a single 
image. Another disadvantage is the lack of an integration 
tool in our navigation system for US and pre-operative 
MRI. For this reason, segmentation of peritumoural areas 
is particularly complicated, since there was no ‘ground 
truth’ from a reference imaging technique, such as MRI. 
For this reason, since this is an initial study, it seemed cor-
rect to use only the tumour region. On the other hand, the 
statistical analysis is limited to the univariate correlations 
between radiomic characteristics and survival. Given our 
sample size, it seemed inappropriate to perform multivari-
ate analysis, much less a predictive model, in the absence 
of a validation cohort.

Besides providing better contrast to distinguish tumour 
morphology, intra-operative elastography can contain 
important information about cytoarchitecture and biological 
behaviour. This information, in turn, may have prognostic 
implications in these patients.

Our results may serve as the basis for future multi-insti-
tutional studies to validate the relationship between the 
quantitative analysis of intra-operative US images and the 
prognosis of patients with glioblastoma diagnosis, integrat-
ing these findings with other available sources at the time, 
such as the case of the presurgical MRI.

Conclusion

According to our results, quantitative texture analysis of 
intra-operative B-mode US and strain elastography is fea-
sible in glioblastomas. The radiomic characteristics of the 
tumour region correlate with the OS of these patients.

Supplementary Information  The online version contains supplemen-
tary material available at https​://doi.org/10.1007/s4047​7-021-00569​-9.

Acknowledgements  We thank all the members of the Radiology 
Department of our hospital for their support in carrying out this work.

Author contributions  All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were per-
formed by SG-G, RS, MV-C and IA. The first draft of the manuscript 
was written by SC and all authors commented on previous versions of 
the manuscript. All authors read and approved the final manuscript.

Funding  No funding was received for this research.

Data availability  The data that support the findings of this study are 
available from the corresponding author upon reasonable request.

Compliance with ethical standards 

Conflict of interest  All authors certify that they have no affiliations 
with or involvement in any organization or entity with any financial in-
terest (such as honoraria; educational grants; participation in speakers’ 
bureaus; membership, employment, consultancies, stock ownership, 

https://doi.org/10.1007/s40477-021-00569-9


128	 Journal of Ultrasound (2022) 25:121–128

1 3

or other equity interest; and expert testimony or patent-licensing ar-
rangements), or non-financial interest (such as personal or professional 
relationships, affiliations, knowledge or beliefs) in the subject matter or 
materials discussed in this manuscript.

Ethical approval  All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the Ethics 
Committee of our center and with the 1964 Helsinki declaration and its 
later amendments or comparable ethical standards.

Informed consent  Informed consent was obtained from all individual 
participants included in the study.

References

	 1.	 Koshy M, Villano JL, Dolecek TA et al (2012) Improved survival 
time trends for glioblastoma using the SEER 17 population-based 
registries. J Neurooncol 107:207–212. https​://doi.org/10.1007/
s1106​0-011-0738-7

	 2.	 Kickingereder P, Neuberger U, Bonekamp D et al (2018) Radi-
omic subtyping improves disease stratification beyond key molec-
ular, clinical, and standard imaging characteristics in patients with 
glioblastoma. Neuro Oncol 20:848–857. https​://doi.org/10.1093/
neuon​c/nox18​8

	 3.	 Bakas S, Shukla G, Akbari H et al (2020) Overall survival predic-
tion in glioblastoma patients using structural magnetic resonance 
imaging (MRI): advanced radiomic features may compensate for 
lack of advanced MRI modalities. J Med imaging (Bellingham, 
Wash) 7:031505. https​://doi.org/10.1117/1.JMI.7.3.03150​5

	 4.	 Sastry R, Bi WL, Pieper S et al (2017) Applications of ultrasound 
in the resection of brain tumors. J Neuroimaging 27:5–15. https​://
doi.org/10.1111/jon.12382​

	 5.	 Del Bene M, Perin A, Casali C et al (2018) Advanced ultrasound 
imaging in glioma surgery: beyond gray-scale B-mode. Front 
Oncol. https​://doi.org/10.3389/fonc.2018.00576​

	 6.	 Prada F, Del Bene M, Rampini A et al (2019) Intraoperative strain 
elastosonography in brain tumor surgery. Oper Neurosurg 17:227–
236. https​://doi.org/10.1093/ons/opy32​3

	 7.	 Della Pepa GM, Ius T, La Rocca G et al (2020) 5-Aminolevulinic 
acid and contrast-enhanced ultrasound: the combination of the two 
techniques to optimize the extent of resection in glioblastoma sur-
gery. Neurosurgery 86:E529–E540. https​://doi.org/10.1093/neuro​
s/nyaa0​37

	 8.	 Selbekk T, Bang J, Unsgaard G (2005) Strain processing of intra-
operative ultrasound images of brain tumours: Initial results. 
Ultrasound Med Biol 31:45–51. https​://doi.org/10.1016/j.ultra​
smedb​io.2004.09.011

	 9.	 Unsgaard G, Ommedal S, Muller T et al (2002) Neuronavigation 
by intraoperative three-dimensional ultrasound: initial experience 
during brain tumor resection. Neurosurgery 50:804–812. https​://
doi.org/10.1097/00006​123-20020​4000-00022​

	10.	 Prada F, Del Bene M, Mattei L et al (2014) Fusion imaging 
for intra-operative ultrasound-based navigation in neurosur-
gery. J Ultrasound 17:243–251. https​://doi.org/10.1007/s4047​
7-014-0111-8

	11.	 Vitale V, Rossi E, Di Serafino M et al (2020) Pediatric encephalic 
ultrasonography: the essentials. J Ultrasound 23:127–137. https​://
doi.org/10.1007/s4047​7-018-0349-7

	12.	 Bhatia KSS, Tong CSL, Cho CCM et  al (2012) Shear wave 
elastography of thyroid nodules in routine clinical practice: 

preliminary observations and utility for detecting malignancy. Eur 
Radiol 22:2397–2406. https​://doi.org/10.1007/s0033​0-012-2495-1

	13.	 Ferraioli G, Parekh P, Levitov AB, Filice C (2014) Shear wave 
elastography for evaluation of liver fibrosis. J Ultrasound Med 
33:197–203. https​://doi.org/10.7863/ultra​.33.2.197

	14.	 Berg WA, Cosgrove DO, Doré CJ et al (2012) Shear-wave elas-
tography improves the specificity of breast US: the BE1 multina-
tional study of 939 masses. Radiology 262:435–449. https​://doi.
org/10.1148/radio​l.11110​640

	15.	 Chauvet D, Imbault M, Capelle L et al (2015) In vivo measure-
ment of brain tumor elasticity using intraoperative shear wave 
elastography. Ultraschall der Medizin Eur J Ultrasound 37:584–
590. https​://doi.org/10.1055/s-0034-13991​52

	16.	 Cepeda S, Barrena C, Arrese I et al (2020) Intraoperative ultra-
sonographic elastography: a semi-quantitative analysis of brain 
tumor elasticity patterns and peritumoral region. World Neurosurg 
135:e258–e270. https​://doi.org/10.1016/j.wneu.2019.11.133

	17.	 Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy 
plus concomitant and adjuvant temozolomide for glioblastoma. N 
Engl J Med 352:987–996. https​://doi.org/10.1056/NEJMo​a0433​
30

	18.	 Chakraborty A (2007) The developement of intraoperative ultra-
sound elasticity imaging techniques to assist during brain tumour 
resection. Doctoral thesis. University of London.

	19.	 Nioche C, Orlhac F, Boughdad S et al (2018) LIFEx: a freeware 
for radiomic feature calculation in multimodality imaging to 
accelerate advances in the characterization of tumor heteroge-
neity. Cancer Res 78:4786–4789. https​://doi.org/10.1158/0008-
5472.CAN-18-0125

	20.	 Dice LR (1945) Measures of the amount of ecologic asso-
ciation between species. Ecology 26:297–302. https​://doi.
org/10.2307/19324​09

	21.	 Rudie JD, Rauschecker AM, Bryan RN et al (2019) Emerging 
applications of artificial intelligence in neuro-oncology. Radiology 
290:607–618. https​://doi.org/10.1148/radio​l.20181​81928​

	22.	 Carré A, Klausner G, Edjlali M et al (2020) Standardization of 
brain MR images across machines and protocols: bridging the 
gap for MRI-based radiomics. Sci Rep 10:1–15. https​://doi.
org/10.1038/s4159​8-020-69298​-z

	23.	 Zhou H, Jin Y, Dai L et al (2020) Differential diagnosis of benign 
and malignant thyroid nodules using deep learning radiomics of 
thyroid ultrasound images. Eur J Radiol 127:108992. https​://doi.
org/10.1016/j.ejrad​.2020.10899​2

	24.	 Quiaoit K, DiCenzo D, Fatima K et al (2020) Quantitative ultra-
sound radiomics for therapy response monitoring in patients with 
locally advanced breast cancer: multi-institutional study results. 
PLoS ONE 15:1–19. https​://doi.org/10.1371/journ​al.pone.02361​
82

	25.	 Dasgupta A, Brade S, Sannachi L et al (2020) Quantitative ultra-
sound radiomics using texture derivatives in prediction of treat-
ment response to neo-adjuvant chemotherapy for locally advanced 
breast cancer. Oncotarget 11:3782–3792. https​://doi.org/10.18632​
/oncot​arget​.27742​

	26.	 Perez-Moreno A, Dominguez M, Migliorelli F et al (2019) Clini-
cal feasibility of quantitative ultrasound texture analysis: a robust-
ness study using fetal lung ultrasound images. J Ultrasound Med 
38:1459–1476. https​://doi.org/10.1002/jum.14824​

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11060-011-0738-7
https://doi.org/10.1007/s11060-011-0738-7
https://doi.org/10.1093/neuonc/nox188
https://doi.org/10.1093/neuonc/nox188
https://doi.org/10.1117/1.JMI.7.3.031505
https://doi.org/10.1111/jon.12382
https://doi.org/10.1111/jon.12382
https://doi.org/10.3389/fonc.2018.00576
https://doi.org/10.1093/ons/opy323
https://doi.org/10.1093/neuros/nyaa037
https://doi.org/10.1093/neuros/nyaa037
https://doi.org/10.1016/j.ultrasmedbio.2004.09.011
https://doi.org/10.1016/j.ultrasmedbio.2004.09.011
https://doi.org/10.1097/00006123-200204000-00022
https://doi.org/10.1097/00006123-200204000-00022
https://doi.org/10.1007/s40477-014-0111-8
https://doi.org/10.1007/s40477-014-0111-8
https://doi.org/10.1007/s40477-018-0349-7
https://doi.org/10.1007/s40477-018-0349-7
https://doi.org/10.1007/s00330-012-2495-1
https://doi.org/10.7863/ultra.33.2.197
https://doi.org/10.1148/radiol.11110640
https://doi.org/10.1148/radiol.11110640
https://doi.org/10.1055/s-0034-1399152
https://doi.org/10.1016/j.wneu.2019.11.133
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1158/0008-5472.CAN-18-0125
https://doi.org/10.1158/0008-5472.CAN-18-0125
https://doi.org/10.2307/1932409
https://doi.org/10.2307/1932409
https://doi.org/10.1148/radiol.2018181928
https://doi.org/10.1038/s41598-020-69298-z
https://doi.org/10.1038/s41598-020-69298-z
https://doi.org/10.1016/j.ejrad.2020.108992
https://doi.org/10.1016/j.ejrad.2020.108992
https://doi.org/10.1371/journal.pone.0236182
https://doi.org/10.1371/journal.pone.0236182
https://doi.org/10.18632/oncotarget.27742
https://doi.org/10.18632/oncotarget.27742
https://doi.org/10.1002/jum.14824

	Relationship between the overall survival in glioblastomas and the radiomic features of intraoperative ultrasound: a feasibility study
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Image acquisition and processing
	Evaluation of semantic segmentation and radiomic features extraction
	Statistical analysis

	Results
	Discussion
	Conclusion
	Acknowledgements 
	References




